Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbuchel A. Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol. 2004;50:75–86.
Article
CAS
PubMed
Google Scholar
Asselineau J, Lederer E. Structure of the mycolic acids of Mycobacteria. Nature. 1950;166:782–3.
Article
CAS
PubMed
Google Scholar
Barkan D, Liu Z, Sacchettini JC, Glickman MS. Mycolic acid cyclopropanation is essential for viability, drug resistance, and cell wall integrity of Mycobacterium tuberculosis. Chem Biol. 2009;16:499–509.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y. Mycolic acids: structure, biosynthesis and physiological functions. Progress Lipid Res. 1998;37:143–79.
Article
CAS
Google Scholar
Bendinger B, Rijnaarts HHM, Altendorf K, Zehnder AJB. Physicochemical cell-surface and adhesive properties of coryneform bacteria related to the presence and chain-length of mycolic acids. Appl Environ Microbiol. 1993;59:3973–7.
CAS
PubMed
PubMed Central
Google Scholar
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–7.
Article
CAS
PubMed
Google Scholar
Chrzanowski L, Wick LY, Meulenkamp R, Kaestner M, Heipieper HJ. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E. Lett Appl Microbiol. 2009;48:756–62.
CAS
PubMed
Google Scholar
de Carvalho CCCR. Adaptation of Rhodococcus erythropolis cells for growth and bioremediation under extreme conditions. Res Microbiol. 2012;163:125–36.
Article
PubMed
Google Scholar
de Carvalho CCCR, Da Cruz AARL, Pons MN, Pinheiro HMRV, Cabral JMS, Da Fonseca MMR, Ferreira BS, Fernandes P. Mycobacterium sp., Rhodococcus erythropolis, and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech. 2004;64:215–22.
Article
PubMed
Google Scholar
de Carvalho CCCR, Marques MPC, Hachicho N, Heipieper HJ. Rapid adaptation of Rhodococcus erythropolis cells to salt stress by synthesizing polyunsaturated fatty acids. Appl Microbiol Biotechnol. 2014;98:5599–606.
PubMed
Google Scholar
de Carvalho CCCR, Wick LY, Heipieper HJ. Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol. 2009;82:311–20.
Article
CAS
PubMed
Google Scholar
Duetz WA, Fjallman AHM, Ren SY, Jourdat C, Witholt B. Biotransformation of d-limonene to (+) trans-carveol by toluene-grown Rhodococcus opacus PWD4 cells. Appl Environ Microbiol. 2001;67:2829–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hartmans S, Smits JP, van der Werf MJ, Volkering F, de Bont JAM. Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Appl Environ Microbiol. 1989;55:2850–5.
CAS
PubMed
PubMed Central
Google Scholar
Heipieper HJ, de Bont JAM. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of the fatty acid composition of membranes. Appl Environ Microbiol. 1994;60:4440–4.
CAS
PubMed
PubMed Central
Google Scholar
Heipieper HJ, Loffeld B, Keweloh H, de Bont JAM. The cis/trans isomerization of unsaturated fatty acids in Pseudomonas putida S12: an indicator for environmental stress due to organic compounds. Chemosphere. 1995;30:1041–51.
Article
CAS
Google Scholar
Jensen J. Chlorophenols in the terrestrial environment. Rev Environ Contam Toxicol. 1996;146:25–51.
CAS
PubMed
Google Scholar
Kaszycki P, Walski T, Hachicho N, Heipieper HJ. Biostimulation by methanol enables the methylotrophic yeasts Hansenula polymorpha and Trichosporon sp to reveal high formaldehyde biodegradation potential as well as to adapt to this toxic pollutant. Appl Microbiol Biotechnol. 2013;97:5555–64.
Article
CAS
PubMed
Google Scholar
Kellogg JA, Bankert DA, Withers GS, Sweimler W, Kiehn TE, Pfyffer GE. Application of the sherlock mycobacteria identification system using high-performance liquid chromatography in a clinical laboratory. J Clin Microbiol. 2001;39:964–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kolouchova I, Schreiberova O, Masak J, Sigler K, Rezanka T. Structural analysis of mycolic acids from phenol-degrading strain of Rhodococcus erythropolis by liquid chromatography-tandem mass spectrometry. Folia Microbiol. 2012;57:473–83.
Article
CAS
Google Scholar
Liu J, Barry CE, Besra GS, Nikaido H. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J Biol Chem. 1996;271:29545–51.
Article
CAS
PubMed
Google Scholar
Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J Lipid Res. 1964;5:600–8.
CAS
PubMed
Google Scholar
Nishiuchi Y, Baba T, Yano I. Mycolic acids from Rhodococcus, Gordonia, and Dietzia. J Microbiol Methods. 2000;40:1–9.
Article
CAS
PubMed
Google Scholar
Rock CO. Turnover of fatty-acids in the 1-position of phosphatidylethanolamine in Escherichia coli. J Biol Chem. 1984;259:6188–94.
CAS
PubMed
Google Scholar
Sokolovska I, Rozenberg R, Riez C, Rouxhet PG, Agathos SN, Wattiau P. Carbon source-induced modifications in the mycolic acid content and cell wall permeability of Rhodococcus erythropolis E1. Appl Environ Microbiol. 2003;69:7019–27.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stratton HM, Brooks PR, Carr EL, Seviour RJ. Effects of culture conditions on the mycolic acid composition of isolates of Rhodococcus spp. from activated sludgefoams. Syst Appl Microbiol. 2003;26:165–71.
Article
CAS
PubMed
Google Scholar
Sutcliffe IC. Cell envelope composition and organisation in the genus Rhodococcus. Anton Leeuw Int J G. 1998;74:49–58.
Article
CAS
Google Scholar
Takayama K, Armstrong EL, Davidson LA, Kunugi KA, Kilburn JO. Effect of low-temperature on growth, viability, and synthesis of mycolic acids of Mycobacterium tuberculosis strain H37RA. Am Rev Respir Dis. 1978;118:113–7.
CAS
PubMed
Google Scholar
Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev. 2005;18:81–101.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroide. J Bacteriol. 1982;151:828–37.
CAS
PubMed
PubMed Central
Google Scholar
Tsitko IV, Zaitsev GM, Lobanok AG, Salkinoja-Salonen MS. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl Environ Microbiol. 1999;65:853–5.
CAS
PubMed
PubMed Central
Google Scholar
Van Loosdrecht MCM, Lyklema J, Norde W, Schraa G, Zehnder AJB. The role of bacterial cell wall hydrophobicity in adhesion. Appl Environ Microbiol. 1987;53:1893–7.
PubMed
PubMed Central
Google Scholar
Wick LY, Pasche N, Bernasconi SM, Pelz O, Harms H. Characterization of multiple-substrate utilization by anthracene-degrading Mycobacterium frederiksbergense LB501T. Appl Environ Microbiol. 2003;69:6133–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wick LY, Wattiau P, Harms H. Influence of the growth substrate on the mycolic acid profiles of mycobacteria. Environ Microbiol. 2002;4:612–6.
Article
CAS
PubMed
Google Scholar