Acea MJ, Moore CR, Alexander M. Survival and growth of bacteria introduced into soil. Soil Biol Biochem. 1988;20:509–15.
Article
Google Scholar
Albers CN, Banta GT, Jacobsen OS, Hansen PE. Characterization and structural modeling of humic substances in field soil displaying significant differences from previously proposed structures. European J Soil Sci. 2008;59:693–705.
Article
CAS
Google Scholar
Albers CN, Jacobsen OS, Aamand J. Using 2,6-dichlorobenzamide (BAM) degrading Aminobacter sp. MSH1 in flow through biofilters—initial adhesion and BAM degradation potential. Appl Microbiol Biotechnol. 2014;98:957–67.
Article
CAS
PubMed
Google Scholar
Benner J, Helbing DE, Kohler HPE, Wittebol J, Kaiser E, Prasse C, Ternes TA, Albers CN, Aamand J, Horemans B, Springael D, Walravens E, Boon N. Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes? Water Res. 2013;47:5955–76.
Article
CAS
PubMed
Google Scholar
Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P. Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int Dairy J. 2004;14:835–47.
Article
CAS
Google Scholar
Compeau G, Al-Achi BJ, Platsouka E, Levy SB. Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol. 1988;54:2432–8.
CAS
PubMed
PubMed Central
Google Scholar
Conrad PB, Miller DP, Cielenski PR, de Pablo JJ. Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiol. 2000;41:17–24.
Article
CAS
Google Scholar
El Fantroussi S, Agathos SN. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol. 2005;8:268–75.
Article
CAS
PubMed
Google Scholar
Gentry T, Rensing C, Pepper I. New approaches for bioaugmentation as remediation technology. Crit Rev Environ Sci Technol. 2004;34:447–94.
Article
CAS
Google Scholar
Herigstad B, Hamilton M, Heersink J. How to optimize the drop plate method for enumerating bacteria. J Microbiol Met. 2001;44:121–9.
Article
CAS
Google Scholar
Higashiyama T. Novel functions and applications of trehalose. Pure Appl Chem. 2002;74:1263–9.
Article
CAS
Google Scholar
Johannesen H. Microbial degradation of herbicides aged in soil or aquifer sediments. Copenhagen: Geological Survey of Denmark and Greenland (GEUS); 2002 (PhD Thesis, Faculty of Science, Institute of Molecular Biology, University of Copenhagen/Department of Geochemistry).
Google Scholar
Karlson U, Miethling R, Schu K, Hansen SS, Uotila J. Biodegradation of PCP in soil. In: Hinchee RE, Hoeppel RE, Anderson DB, editors. Bioremediation of recalcitrant organics, vol. 3(7). Columbus: Battelle Press; 1995. p. 83–92.
Google Scholar
Knaebel DB, Stromo KE, Crawford RL. Immobilization of bacteria in macro- and microparticles. Methods in biotechnology. In: Sheehan D, editor. Bioremediation protocols, vol. 2. Totowa: Humana Press Inc; 1997.
Chapter
Google Scholar
Krüger US, Johnsen AR, Burmølle M, Aamand J, Sørensen SR. The potential for bioaugmentation of sand filter materials from waterworks using bacterial cultures degrading 4-chloro-2-methylphenoxyacetic acid. Pest Manag Sci. 2015;71:257–65.
Article
PubMed
Google Scholar
Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol. 1995;61:3592–7.
CAS
PubMed
PubMed Central
Google Scholar
Linders LJM, de Jong GIW, Meerdink G, van’t Riet K. Carbohydrates and the dehydration inactivation of Lactobacillus plantarum: the role of moisture distribution and water activity. J Food Eng. 1997;31:237–50.
Article
Google Scholar
Meckenstock RU, Elsner M, Griebler C, Lueders T, Stumpp C, Aamand J, Agathos SN, Albrechtsen HJ, Bastiaens L, Bjerg PL, Boon N, Dejonghe W, Huang WE, Schmidt SI, Smolders E, Sørensen SR, Springael D, van Breukelen BM. Biodegradation: updating the concept of control for microbial cleanup in contaminated aquifers. Environ Sci Technol. 2015;49:7073–81.
Article
CAS
PubMed
Google Scholar
Mertens B, Boon N, Verstraete W. Slow-release inoculation allows sustained biodegradation of hexachlorocyclohexane. Appl Environ Microbiol. 2006;72:622–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moslemy P, Neufeld RJ, Guiot SR. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. Biotechnol Bioeng. 2006;80:175–84.
Article
Google Scholar
Owsianiak M, Dechesne A, Binning PJ, Chambon JC, Sørensen SR, Smets BF. Evaluation of bioaugmentation with entrapped degrading cells as a soil remediation technology. Environ Sci Technol. 2010;44:7622–7.
Article
CAS
PubMed
Google Scholar
Petrich CR, Stromo KE, Ralston DR, Crawford RL. Encapsulated cell bioremediation: evaluation on the basis of particle traces tests. Ground Water. 1998;36:771–8.
Article
CAS
Google Scholar
Qiu S, Gözdereliler E, Weyrauch P, Lopez ECM, Kohler HPE, Sørensen SR, Meckenstock RU, Elsner M. Small 13C/12C fraction contrasts with large enantiomer fraction in aerobic biodegradation of phenoxy acids. Environ Sci Technol. 2014;45:5501–11.
Article
Google Scholar
Saez JM, Benimeli CS, Amoroso MJ. Lindane removal by pure and mixed cultures of immobilized acinobacteria. Chemosphere. 2012;89:982–7.
Article
CAS
PubMed
Google Scholar
Sapir L, Harries D. Linking trehalose self-association with binary aqueous solution equation of state. J Phys Chem. 2011;115:624–34.
Article
CAS
Google Scholar
Schultz-Jensen N, Knudsen BE, Frkova Z, Aamand J, Johansen T, Thykaer J, Sørensen SR. Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1. Appl Microbiol Biotechnol. 2014;98:2335–44.
Article
CAS
PubMed
Google Scholar
Sheehan D. Methods in biotechnology. In: Sheehan D, editor. Bioremediation protocols, vol. 2. Totowa: Humana Press Inc; 1997.
Chapter
Google Scholar
Simonsen A, Badawi N, Anskjær GG, Albers CN, Sørensen SR, Sørensen J, Aamand J. Intermediate accumulation of metabolites results in a bottleneck for mineralisation of the herbicide metabolite 2,6-dichlorobenzamide (BAM) by Aminobacter spp. Appl Microbiol Biotechnol. 2012;94:237–45.
Article
CAS
PubMed
Google Scholar
Siripattanakul S and Khan E (2010) Fundamental and application of entrapped cell bioaugmentation for contaminant removal. Chapter 7 in Emerging Environmental Technologies. Springer.
Sørensen SR, Holtze MS, Simonsen A, Aamand J. Degradation and mineralization of nanomolar concentrations of the herbicide dichlobenil and its persistent metabolite 2,6-dichlorobenzamide by Aminobacter spp. isolated from dichlobenil-treated soils. Appl Environ Microbiol. 2007;73:399–406.
Article
PubMed
PubMed Central
Google Scholar
Steenson LR, Klaenhammer TR, Swaisgood HE. Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci. 1987;70:1121–7.
Article
CAS
PubMed
Google Scholar
Steinbüchel A, Oppermann-Sanio FB. Mikrobiologisches Praktikum Versuche und Theorie. Mikrobiologisches Praktikum Versuche und Theorie, Springer; 2003. p. 421–425.
Stromo KE, Crawford RL. Pentachlorophenol degradation by microencapsulated flavobacteria and their enhanced survival for in situ aquifer bioremediation. In: Applied biotechnology for site remediation. CRC Press, Inc. Lewis Publishers; 1994.
Thompson IP, van der Gast CJ, Ciric L, Singer AC. Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol. 2005;7:399–406.
Google Scholar
Thorling L, Hansen B, Langtofte L, Brüsch W, Møller RR, Mielby S, Højbjerg AL. Groundwater monitoring 2011 (Grundvandsovervågning 2011) in Danish with English summary. 2011. (http://www.grundvandsovervaagning.dk). Accessed 22 Dec 2015.