Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B. Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett. 2001;498:98–103. doi:10.1016/S0014-5793(01)02503-0.
Article
CAS
PubMed
Google Scholar
Ali SS, Khan M, Mullins E, Doohan FM. Identification of Fusarium oxysporum genes associated with lignocellulose bioconversion competency. Bioenergy Res. 2014;7:110–9. doi:10.1007/s12155-013-9353-0.
Article
CAS
Google Scholar
Ali SS, Khan M, Mullins E, Doohan FM. The effect of wheat genotype on ethanol production from straw and the implications for multifunctional crop breeding. Biomass Bioenergy. 2012a;42:1–9. doi:10.1016/j.biombioe.2012.03.020.
Article
CAS
Google Scholar
Ali SS, Khan M, Mullins E, Fagan B, Doohan FM. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol. AMB Express. 2012b;2:16. doi:10.1186/2191-0855-2-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali SS, Nugent B, Mullins E, Fagan B, Doohan FM. Insights from the fungus Fusarium oxysporum point to high affinity glucose transporters as targets for enhancing ethanol production from lignocellulose. PLoS ONE. 2013;8:e54701. doi:10.1371/journal.pone.0054701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amore A, Faraco V. Potential of fungi as category I consolidated BioProcessing organisms for cellulosic ethanol production. Renew Sustain Energy Rev. 2012;16:3286–301. doi:10.1016/j.rser.2012.02.050.
Article
CAS
Google Scholar
Anasontzis GE, Christakopoulos P. Challenges in ethanol production with Fusarium oxysporum through consolidated bioprocessing. Bioengineered. 2014;5:1–3. doi:10.4161/bioe.36328.
Article
Google Scholar
Anasontzis GE, Zerva A, Stathopoulou PM, Haralampidis K, Diallinas G, Karagouni AD, Hatzinikolaou DG. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics. J Biotechnol. 2011;152:16–23. doi:10.1016/j.jbiotec.2011.01.002.
Article
CAS
PubMed
Google Scholar
Balat M. Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energ Convers Manage. 2011;52:858–75.
Article
CAS
Google Scholar
Balan V, Chiaramonti D, Kumar S. Review of US and EU initiatives toward development, demonstration, and commercialization of lignocellulosic biofuels. Biofuel Bioprod Bior. 2013;7:732–59. doi:10.1002/bbb.1436.
Article
CAS
Google Scholar
Banerjee S, Mudliar S, Sen R, Giri B, Satpute D, Chakrabarti T, Pandey RA. Commercializing lignocellulosic bioethanol: Technology bottlenecks and possible remedies. Biofuel Bioprod Bior. 2010;4:77–93. doi:10.1002/bbb.188.
Article
CAS
Google Scholar
Battaglia E, Benoit I, van den Brink J, Wiebenga A, Coutinho PM, Henrissat B, de Vries RP. Carbohydrate-active enzymes from the zygomycete fungus Rhizopus oryzae: a highly specialized approach to carbohydrate degradation depicted at genome level. BMC Genom. 2011;12:38. doi:10.1186/1471-2164-12-38.
Article
CAS
Google Scholar
Behera S, Arora R, Nandhagopal N, Kumar S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sustain Energy Rev. 2014;36:91–106. doi:10.1016/j.rser.2014.04.047.
Article
CAS
Google Scholar
Bentsen NS, Felby C, Thorsen BJ. Agricultural residue production and potentials for energy and materials services. Prog Energy Combust Sci. 2014;40:59–73. doi:10.1016/j.pecs.2013.09.003.
Article
Google Scholar
Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Soon Lee T, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD. Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci USA. 2011;108:19949–54. doi:10.1073/pnas.1106958108.
Article
PubMed
PubMed Central
Google Scholar
Bonaccorsi ED, Ferreira AJS, Chambergo FS, Ramos ASP, Mantovani MC, Simon Farah JP, Sorio CS, Gombert AK, Tonso A, El-Dorry H. Transcriptional response of the obligatory aerobe Trichoderma reesei to hypoxia and transient anoxia: implications for energy production and survival in the absence of oxygen. Biochemistry. 2006;45:3912–24. doi:10.1021/bi052045o.
Article
CAS
PubMed
Google Scholar
Brandao RL, Loureiro-Dias MC. Regulation of sugar transport systems in Fusarium oxysporum var. lini. Appl Environ Microbiol. 1990;56:2417–20.
CAS
PubMed
PubMed Central
Google Scholar
Brethauer S, Studer MH. Consolidated bioprocessing of lignocellulose by a microbial consortium. Energy Environ Sci. 2014;7:1446. doi:10.1039/c3ee41753k.
Article
CAS
Google Scholar
Chandler M, Stanley G, Rogers P, Chambers P. A genomic approach to defining the ethanol stress response in the yeast Saccharomyces cerevisiae. Ann Microbiol. 2004;54:427–54.
CAS
Google Scholar
Cheilas T, Stoupis T, Christakopoulos P, Katapodis P, Mamma D, Hatzinikolaou DG, Kekos D, Macris BJ. Hemicellulolytic activity of Fusarium oxysporum grown on sugar beet pulp. Production of extracellular arabinanase. Process Biochem. 2000;35:557–61. doi:10.1016/S0032-9592(99)00103-X.
Article
CAS
Google Scholar
Cherry JR, Fidantsef AL. Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol. 2003;14:438–43. doi:10.1016/S0958-1669(03)00099-5.
Article
CAS
PubMed
Google Scholar
Christakopoulos P, Goodenough PW, Kekos D, Macris BJ, Claeyssens M, Bhat MK. Purification and characterisation of an extracellular β-glucosidase with transglycosylation and exo-glucosidase activities from Fusarium oxysporum. Eur J Biochem. 1994;224:379–85. doi:10.1111/j.1432-1033.1994.00379.x.
Article
CAS
PubMed
Google Scholar
Christakopoulos P, Kekos D, Kolisis FN, Macris BJ. Controlling simultaneous production of endoglucanase and β-glucosidase by Fusarium oxysporum in submerged culture. Biotechnol Lett. 1995a;17(8):883–8. doi:10.1007/BF00129023.
Article
CAS
Google Scholar
Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK. Purification and characterization of a less randomly acting endo-1,4-β-d-glucanase from the culture filtrates of Fusarium oxysporum. Arch Biochem Biophys. 1995b;316:428–33.
Article
CAS
PubMed
Google Scholar
Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK. Purification and mode of action of a low molecular mass endo-1,4-β-glucanase from Fusarium oxysporum. J Biotechnol. 1995c;39(1):85–93. doi:10.1016/0168-1656(94)00147-5.
Article
CAS
Google Scholar
Christakopoulos P, Koullas D, Kekos D, Koukios E, Macris B. Direct conversion of straw to ethanol by Fusarium oxysporum: effect of cellulose crystallinity. Enzyme Microb Technol. 1991a;13:272–4. doi:10.1016/0141-0229(91)90141-V.
Article
CAS
Google Scholar
Christakopoulos P, Koullas D, Kekos D, Koukios E, Macris B. Direct ethanol conversion of pretreated straw by Fusarium oxysporum. Bioresour Technol. 1991b;35:297–300. doi:10.1016/0960-8524(91)90128-7.
Article
CAS
Google Scholar
Christakopoulos P, Macris BJ, Kekos D. Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Technol. 1989;11:236–9. doi:10.1016/0141-0229(89)90098-7.
Article
CAS
Google Scholar
Christakopoulos P, Mamma D, Nerinckx W, Kekos D, Macris B, Claeyssens M. Production and partial characterization of xylanase from Fusarium oxysporum. Bioresour Technol. 1996a;58:115–9. doi:10.1016/S0960-8524(96)00091-0.
Article
CAS
Google Scholar
Christakopoulos P, Nerinckx W, Kekos D, Macris B, Claeyssens M. Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J Biotechnol. 1996b;51:181–9. doi:10.1016/0168-1656(96)01619-7.
Article
CAS
PubMed
Google Scholar
Chu BCH, Lee H. Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv. 2007;25:425–41. doi:10.1016/j.biotechadv.2007.04.001.
Article
CAS
PubMed
Google Scholar
Chow CM, Yague E, Raguz S, Wood DA, Thurston CF. The cel3 gene of Agaricus bisporus codes for a modular cellulase and is transcriptionally regulated by the carbon source. Appl Environ Microbiol. 1994;60:2779–85.
CAS
PubMed
PubMed Central
Google Scholar
Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues; Opportunities and perspectives. Int J Biol Sci. 2009;5:578–95. doi:10.7150/ijbs.5.578.
Article
CAS
PubMed
PubMed Central
Google Scholar
den Haan R, Mcbride JE, La Grange DC, Lynd LR, van Zyl WH. Functional expression of cellobiohydrolases in Saccharomyces cerevisiae towards one-step conversion of cellulose to ethanol. Enzyme Microb Technol. 2007;40:1291–9. doi:10.1016/j.enzmictec.2006.09.022.
Article
CAS
Google Scholar
den Haan R, van Rensburg E, Rose SH, van Gorgens JF, van Zyl WH. Progress and challenges in the engineering of non-cellulolytic microorganisms for consolidated bioprocessing. Curr Opin Biotechnol. 2015;33:32–8. doi:10.1016/j.copbio.2014.10.003.
Article
CAS
Google Scholar
Deshpande V, Keskar S, Mishra C, Rao M. Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme Microb Technol. 1986;8:149–52. doi:10.1016/0141-0229(86)90103-1.
Article
CAS
Google Scholar
Di Pietro A, Madrid MP, Caracuel Z, Delgado-Jarana J, Roncero MIG. Fusarium oxysporum: exploring the molecular arsenal of a vascular wilt fungus. Mol Plant Pathol. 2003;4:315–25. doi:10.1046/j.1364-3703.2003.00180.x.
Article
PubMed
Google Scholar
Dionisi D, Anderson JA, Aulenta F, McCue A, Paton G. The potential of microbial processes for lignocellulosic biomass conversion to ethanol: a review. J Chem Technol Biotechnol. 2015;90:366–83. doi:10.1002/jctb.4544.
Article
CAS
Google Scholar
Dogaris I, Vakontios G, Kalogeris E, Mamma D, Kekos D. Induction of cellulases and hemicellulases from Neurospora crassa under solid-state cultivation for bioconversion of sorghum bagasse into ethanol. Ind Crops Prod. 2009;29:404–11. doi:10.1016/j.indcrop.2008.07.008.
Article
CAS
Google Scholar
Eggeman T, Elander RT. Process and economic analysis of pretreatment technologies. Bioresour Technol. 2005;96:2019–25. doi:10.1016/j.biortech.2005.01.017.
Article
CAS
PubMed
Google Scholar
Eliasson A, Christensson C, Wahlbom CF, Hahn-Hagerdal B. Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol. 2000;66:3381–6. doi:10.1128/AEM.66.8.3381-3386.2000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enari T, Suihko ML. Ethanol production by fermentation of pentoses and hexoses from cellulosic materials. Crit Rev Biotechnol. 1983;1:229–40. doi:10.3109/07388558309077980.
Article
Google Scholar
European Biofuels Technology Platform. 2015. Newsletter 21, January 2015. www.biofuelstp.eu/newsletters.
Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA. 2011;108:3803–8. doi:10.1073/pnas.1100310108.
Article
PubMed
PubMed Central
Google Scholar
Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. Hemicelluloses for fuel ethanol: a review. Bioresour Technol. 2010;101:4775–800. doi:10.1016/j.biortech.2010.01.088.
Article
CAS
PubMed
Google Scholar
Gnansounou E. Production and use of lignocellulosic bioethanol in Europe: current situation and perspectives. Bioresour Technol. 2010;101:4842–50. doi:10.1016/j.biortech.2010.02.002.
Article
CAS
PubMed
Google Scholar
Gong CS, Maun CM, Tsao GT. Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus Monilia sp. Biotechnol Lett. 1981;3:77–82. doi:10.1007/BF00145114.
Article
CAS
Google Scholar
Goshadrou A, Karimi K, Taherzadeh MJ. Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Ind Crops Prod. 2011;34:1219–25. doi:10.1016/j.indcrop.2011.04.018.
Article
CAS
Google Scholar
Guo M, Song W, Buhain J. Bioenergy and biofuels: history, status, and perspective. Renew Sustain Energy Rev. 2015;42:712–25. doi:10.1016/j.rser.2014.10.013.
Article
CAS
Google Scholar
Halliwell G. The action of cellulolytic enzymes from Myrothecium verrucaria. Biochem J. 1961;79:185–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hahn-hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol. 2007;74:937–53. doi:10.1007/s00253-006-0827-2.
Article
CAS
PubMed
Google Scholar
Hector RE, Qureshi N, Hughes SR, Cotta MA. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol. 2008;80:675–84. doi:10.1007/s00253-008-1583-2.
Article
CAS
PubMed
Google Scholar
Hennessy RC, Doohan F, Mullins E. Generating phenotypic diversity in a fungal biocatalyst to investigate alcohol stress tolerance encountered during microbial cellulosic biofuel production. PLoS One. 2013;8:e77501. doi:10.1371/journal.pone.0077501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Himmel ME, Bayer EA. Lignocellulose conversion to biofuels: current challenges, global perspectives. Curr Opin Biotechnol. 2009;20:316–7. doi:10.1016/j.copbio.2009.05.005.
Article
CAS
PubMed
Google Scholar
Ho NWY, Chen Z, Brainard AP. Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol. 1998;64:1852–9.
CAS
PubMed
PubMed Central
Google Scholar
Hong J, Tamaki H, Yamamoto K, Kumagai H. Cloning of a gene encoding thermostable cellobiohydrolase from Thermoascus aurantiacus and its expression in yeast. Appl Microbiol Biotechnol. 2003;63:42–50. doi:10.1007/s00253-003-1379-3.
Article
CAS
PubMed
Google Scholar
Hong J, Yang H, Zhang K, Liu C, Zou S, Zhang M. Development of a cellulolytic Saccharomyces cerevisiae strain with enhanced cellobiohydrolase activity. World J Microbiol Biotechnol. 2014;30:2985–93. doi:10.1007/s11274-014-1726-9.
Article
CAS
PubMed
Google Scholar
Hopkins DW, Webster EA, Boerjan W, Pilate G, Halpin C. Genetically modified lignin below ground. Nat Biotechnol. 2007;25:168–9.
Article
CAS
PubMed
Google Scholar
Huang J, Chen D, Wei Y, Wang Q, Li Z, Chen Y, Huang R. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain hj48. Sci World J. 2014;. doi:10.1155/2014/798683.
Article
Google Scholar
Hyeon JE, Jeon WJ, Whang SY, Han SO. Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol. 2011;48:371–7. doi:10.1016/j.enzmictec.2010.12.014.
Article
CAS
PubMed
Google Scholar
Ingram L, Aldrich H, Borges A, Causey T, Martinez A, Morales F, Saleh A, Underwood S, Yomano L, York S. Enteric bacterial catalysts for fuel ethanol production. Biotechnol Prog. 1999;15:855–66. doi:10.1021/bp9901062.
Article
CAS
PubMed
Google Scholar
International Energy Agency. 2014. CO2 Emissions from fuel combustion highlights. doi: 10.1787/co2_fuel-2014-en.
International Energy Agency. 2015. Energy technology perspectives: mobilising innovation to accelerate climate action. Edition: 2015.
Jeffries TW. Utilization of xylose by bacteria, yeasts, and fungi. Adv Biochem Eng Biotechnol. 1983;27:1–32. doi:10.1007/BFb0009101.
Article
CAS
PubMed
Google Scholar
Karimi K, Emtiazi G, Taherzadeh MJ. Ethanol production from dilute-acid pretreated rice straw by simultaneous saccharification and fermentation with Mucor indicus, Rhizopus oryzae and Saccharomyces cerevisiae. Enzyme Microb Technol. 2006;40:138–44. doi:10.1016/j.enzmictec.2005.10.046.
Article
CAS
Google Scholar
Khuong LD, Kondo R, De Leon R, Kim Anh T, Shimizu K, Kamei I. Bioethanol production from alkaline-pretreated sugarcane bagasse by consolidated bioprocessing using Phlebia sp. MG-60. Int Biodeterior Biodegradation. 2014;88:62–8.
Article
CAS
Google Scholar
Kim J-H, Polish J, Johnston M. Specificity and regulation of DNA binding by the yeast glucose transporter gene repressor Rgt1. Mol Cell Biol. 2003;23:5208–16. doi:10.1128/MCB.23.15.5208-5216.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
King BC, Waxman KD, Nenni NV, Walker LP, Bergstrom GC, Gibson DM. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi. Biotechnol Biofuels. 2011;4:4. doi:10.1186/1754-6834-4-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ko KC, Lee JH, Han Y, Choi JH, Song JJ. A novel multifunctional cellulolytic enzyme screened from metagenomic resources representing ruminal bacteria. Biochem Biophys Res Commun. 2013;441:567–72. doi:10.1016/j.bbrc.2013.10.120.
Article
CAS
PubMed
Google Scholar
Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B. Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels. 2009;2:19. doi:10.1186/1754-6834-2-19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kück U, Hoff B. New tools for the genetic manipulation of filamentous fungi. Appl Microbiol Biotechnol. 2010;86:51–62. doi:10.1007/s00253-009-2416-7.
Article
CAS
PubMed
Google Scholar
Kumar P, Singh A, Schügerl K. Formation of acetic acid from cellulosic materials by Fusarium oxysporum. Appl Microbiol Biotechnol. 1991;34:570–2. doi:10.1007/BF00167900.
Article
CAS
Google Scholar
Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, Dijken JP, Pronk JT. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 2005;5:399–409. doi:10.1016/j.femsyr.2004.09.010.
Article
CAS
PubMed
Google Scholar
Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR. Advances and developments in strategies to improve strains of Saccharomyces cerevisiae and processes to obtain the lignocellulosic ethanol: a review. Appl Biochem Biotechnol. 2012;166:1908–26. doi:10.1007/s12010-012-9619-6.
Article
CAS
PubMed
Google Scholar
Leão C, Uden N. Effects of ethanol and other alkanols on the temperature relations of glucose transport and fermentation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1985;22:359–63.
Article
Google Scholar
Lee SM, Jellison T, Alper HS. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl Environ Microbiol. 2012;78:5708–16. doi:10.1128/AEM.01419-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li J, Lin J, Zhou P, Wu K, Liu H, Xiong C, Gong Y, Xiao W, Liu Z. One-pot simultaneous saccharification and fermentation: a preliminary study of a novel configuration for cellulosic ethanol production. Bioresour Technol. 2014;161:171–8. doi:10.1016/j.biortech.2014.02.130.
Article
CAS
PubMed
Google Scholar
Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38:449–67. doi:10.1016/j.pecs.2012.03.002.
Article
CAS
Google Scholar
Linger JG, Adney WS, Darzins A. Heterologous expression and extracellular secretion of cellulolytic enzymes by Zymomonas mobilis. Appl Environ Microbiol. 2010;76:6360–9. doi:10.1128/AEM.00230-10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo Z, Bao J. Secretive expression of heterologous β-glucosidase in Zymomonas mobilis. Bioresour Bioprocess. 2015;2:29. doi:10.1186/s40643-015-0053-9.
Article
Google Scholar
Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J. How biotech can transform biofuels. Nat Biotechnol. 2008;26:169–72. doi:10.1038/nbt0208-169.
Article
CAS
PubMed
Google Scholar
Lynd LR, Van Zyl WH, McBride JE, Laser M. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol. 2005;16:577–83. doi:10.1016/j.copbio.2005.08.009.
Article
CAS
PubMed
Google Scholar
Menon V, Rao M. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci. 2012;38:522–50. doi:10.1016/j.pecs.2012.02.002.
Article
CAS
Google Scholar
Millati R, Edebo L, Taherzadeh MJ. Performance of Rhizopus, Rhizomucor and Mucor in ethanol production from glucose, xylose and wood hydrolyzates. Enzyme Microb Technol. 2005;36:294–300. doi:10.1016/j.enzmictec.2004.09.007.
Article
CAS
Google Scholar
Mizuno R, Ichinose H, Honda M, Takabatake K, Sotome I, Takai T, Maehara T, Okadome H, Isobe S, Gau M, Kaneko S. Use of whole crop sorghums as a raw material in consolidated bioprocessing bioethanol production using Flammulina velutipes. Biosci Biotechnol Biochem. 2009;73:1671–3. doi:10.1271/bbb.90099.
Article
CAS
PubMed
Google Scholar
Morales M, Quintero J, Conejeros R, Aroca G. Life cycle assessment of lignocellulosic bioethanol: environmental impacts and energy balance. Renew Sustain Energy Rev. 2015;42:1349–61. doi:10.1016/j.rser.2014.10.097.
Article
CAS
Google Scholar
Mosier N, Wyman C, Dale B, Elander R, Lee Y, Holtzapple M, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–86. doi:10.1016/j.biortech.2004.06.025.
Article
CAS
PubMed
Google Scholar
Okamoto K, Nitta Y, Maekawa N, Yanase H. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta. Enzyme Microb Technol. 2011a;48:273–7. doi:10.1016/j.enzmictec.2010.12.001.
Article
CAS
PubMed
Google Scholar
Okamoto K, Sugita Y, Nishikori N, Nitta Y, Yanase H. Characterization of two acidic ß-glucosidases and ethanol fermentation in the brown rot fungus Fomitopsis palustris. Enzyme Microb Technol. 2011b;48:359–64. doi:10.1016/j.enzmictec.2010.12.012.
Article
CAS
PubMed
Google Scholar
Okamoto K, Uchii A, Kanawaku R, Yanase H. Bioconversion of xylose, hexoses and biomass to ethanol by a new isolate of the white rot basidiomycete Trametes versicolor. Springerplus. 2014;3:121. doi:10.1186/2193-1801-3-121.
Article
CAS
PubMed
PubMed Central
Google Scholar
Olofsson K, Bertilsson M, Lidén G. A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels. 2008;1:7. doi:10.1186/1754-6834-1-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ozcan S, Johnston M. Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol Cell Biol. 1995;15:1564–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panagiotou G, Christakopoulos P, Olsson L. The influence of different cultivation conditions on the metabolome of Fusarium oxysporum. J Biotechnol. 2005a;118:304–15. doi:10.1016/j.jbiotec.2005.05.004.
Article
CAS
PubMed
Google Scholar
Panagiotou G, Christakopoulos P, Olsson L. Simultaneous saccharification and fermentation of cellulose by Fusarium oxysporum F3–growth characteristics and metabolite profiling. Enz Microb Technol. 2005b;36:693–9.
Article
CAS
Google Scholar
Panagiotou G, Christakopoulos P, Villas-Boas SG, Olsson L. Fermentation performance and intracellular metabolite profiling of Fusarium oxysporum cultivated on a glucose-xylose mixture. Enz Microb Technol. 2005c;36:100–6. doi:10.1016/j.enzmictec.2004.07.009.
Article
CAS
Google Scholar
Panagiotou G, Kekos D, Macris BJ, Christakopoulos P. Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Ind Crops Prod. 2003;18:37–45. doi:10.1016/S0926-6690(03)00018-9.
Article
CAS
Google Scholar
Panagiotou G, Villas-Bôas SG, Christakopoulos P, Nielsen J, Olsson L. Intracellular metabolite profiling of Fusarium oxysporum converting glucose to ethanol. J Biotechnol. 2005d;115:425–34. doi:10.1016/j.jbiotec.2004.09.011.
Article
CAS
PubMed
Google Scholar
Panagiotou G, Topakas E, Moukouli M, Christakopoulos P, Olsson L. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw. Biomass Bioenergy. 2011;35:3727–32. doi:10.1016/j.biombioe.2011.05.005.
Article
CAS
Google Scholar
Prior B, Kilian S, Du Preez J. Fermentation of d-xylose by the yeasts Candida shehatae and Pichia stipitis: prospects and problems. Process Biochem. 1989;24:21–32.
CAS
Google Scholar
Rao M, Deshpande V, Keskar S, Srinivasan MC. Cellulase and ethanol production from cellulose by Neurospora crassa. Enzyme Microb Technol. 1983;5:133–6.
Article
CAS
Google Scholar
Rasmussen ML, Shrestha P, Khanal SK, Pometto Iii AL, van Leeuwen J. Sequential saccharification of corn fiber and ethanol production by the brown rot fungus Gloeophyllum trabeum. Bioresour Technol. 2010;101:3526–33. doi:10.1016/j.biortech.2009.12.115.
Article
CAS
PubMed
Google Scholar
Reyes LH, Almario MP, Kao KC. Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli. PLoS One. 2011;6:e17678. doi:10.1371/journal.pone.0017678.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rose A, Harrison J. The yeasts. vol. 2 and 3. Orlando: Academic Press; 1970.
Sanderson K. Lignocellulose: a chewy problem. Nature. 2011;474:S12–4. doi:10.1038/474S012a.
Article
CAS
PubMed
Google Scholar
Schmoll M, Esquivel-Naranjo EU, Herrera-Estrella A. Trichoderma in the light of day—Physiology and development. Fungal Genet Biol. 2010;47:909–16. doi:10.1016/j.fgb.2010.04.010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schuster BG, Chinn MS. Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. Bioenergy Res. 2013;6:416–35. doi:10.1007/s12155-012-9278-z.
Article
CAS
Google Scholar
Shallom D, Shoham Y. Microbial hemicellulases. Curr Opin Microbiol. 2003;6:219–28. doi:10.1016/S1369-5274(03)00056-0.
Article
CAS
PubMed
Google Scholar
Shrestha P, Khanal SK, Pometto AL, Hans van Leeuwen J. Ethanol production via in situ fungal saccharification and fermentation of mild alkali and steam pretreated corn fiber. Bioresour Technol. 2010;101:8698–705. doi:10.1016/j.biortech.2010.06.089.
Article
CAS
PubMed
Google Scholar
Silva-Rocha R, Castro LDS, Antoniêto ACC, Guazzaroni ME, Persinoti GF, Silva RN. Deciphering the cis-regulatory elements for XYR1 and CRE1 regulators in Trichoderma reesei. PLoS ONE. 2014;9:e99366. doi:10.1371/journal.pone.0099366.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh A, Kuhad RC, Kumar M. Xylanase production by a hyperxylanolytic mutant of Fusarium oxysporum. Enzyme Microb Technol. 1995;17:551–3. doi:10.1016/0141-0229(94)00074-2.
Article
CAS
Google Scholar
Singh A, Kumar PK. Fusarium oxysporum: status in bioethanol production. Crit Rev Biotechnol. 1991;11:129–47. doi:10.3109/07388559109040619.
Article
CAS
PubMed
Google Scholar
Singh A, Kumar PKR, Schugerl K. Adsorption and reuse of cellulases during saccharification of cellulosic materials. J Biotechnol. 1991;18:205–12. doi:10.1016/0168-1656(91)90248-T.
Article
CAS
Google Scholar
Singh A, Kumar PKR, Schiigerl K. Bioconversion of cellulosic materials to ethanol by filamentous fungi. Adv Biochem Eng Biotechnol. 1992;45:29–55. doi:10.1007/BFb0008753.
Article
CAS
Google Scholar
Skory CD, Freer SN, Bothast RJ. Screening for ethanol-producing fillamentous fungi. Biotecnol letter. 1997;19:203–6.
Article
CAS
Google Scholar
Slininger PJ, Bolen PL, Kurtzman CP. Pachysolen tannophilus: properties and process considerations for ethanol production from d-xylose. Enzyme Microb Technol. 1987;9:5–15. doi:10.1016/0141-0229(87)90043-3.
Article
CAS
Google Scholar
Solomon BD, Barnes JR, Halvorsen KE. Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy. 2007;31:416–25. doi:10.1016/j.biombioe.2007.01.023.
Article
Google Scholar
Stevenson DM, Weimer PJ. Isolation and characterization of a Trichodermastrain capable of fermenting cellulose to ethanol. Appl Microbiol Biotechnol. 2002;59:721–6. doi:10.1007/s00253-002-1027-3.
Article
CAS
PubMed
Google Scholar
Suihko ML. The fermentation of different carbon sources by Fusarium oxysporum. Biotechnol Lett. 1983;5:721–4. doi:10.1007/BF01386491.
Article
CAS
Google Scholar
Szczodrak J. The enzymatic hydrolysis and fermentation of pretreated wheat straw to ethanol. Biotechnol Bioeng. 1988;32(6):771–6.
Article
CAS
PubMed
Google Scholar
Taherzadeh MJ, Karimi K. Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. Bioresources. 2007;2:472–99.
CAS
Google Scholar
Tao H, Gonzalez R, Martinez A, Rodriguez M, Ingram L, Preston J, Shanmugam K. Engineering a homo-ethanol pathway in Escherichia coli: increased glycolytic flux and levels of expression of glycolytic genes during xylose fermentation. J Bacteriol. 2001;183:2979–88. doi:10.1128/JB.183.10.2979-2988.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Targonski Z, Szajer C. The dynamics of cellulase synthesis in Fusarium cultures: influence of the cellulose structure. Biotechnol Lett. 1979;1:75–80. doi:10.1007/BF01398312.
Article
CAS
Google Scholar
Tomás-Pejó E, Oliva J, González A, Ballesteros I, Ballesteros M. Bioethanol production from wheat straw by the thermotolerant yeast Kluyveromyces marxianus CECT 10875 in a simultaneous saccharification and fermentation fed-batch process. Fuel. 2009;88:2142–7. doi:10.1016/j.fuel.2009.01.014.
Article
CAS
Google Scholar
Tran DT, Lin CW, Lai CY, Wu CH. Ethanol production from lignocelluloses by native strain Klebsiella oxytoca THLC0409. Waste Biomass Valorization. 2011;2:389–96. doi:10.1007/s12649-011-9082-6.
Article
CAS
Google Scholar
Vitikainen M, Arvas M, Pakula T, Oja M, Penttilä M, Saloheimo M. Array comparative genomic hybridization analysis of Trichoderma reesei strains with enhanced cellulase production properties. BMC Genom. 2010;11:441. doi:10.1186/1471-2164-11-441.
Article
CAS
Google Scholar
Van Zyl WH, Lynd LR, Den Haan R, McBride JE. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol. 2007;108:205–35. doi:10.1007/10_2007_061.
Article
CAS
PubMed
Google Scholar
Wang TY, Chen HL, Lu MYJ, Chen YC, Sung HM, Mao CT, Cho HY, Ke HM, Hwa TY, Ruan SK. Functional characterization of cellulases identified from the cow rumen fungus Neocallimastix patriciarum W5 by transcriptomic and secretomic analyses. Biotechnol Biofuels. 2011;4:24. doi:10.1186/1754-6834-4-24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wood BE, Yomano LP, York SW, Ingram LO. Development of industrial-medium-required elimination of the 2,3-butanediol fermentation pathway to maintain ethanol yield in an ethanologenic strain of Klebsiella oxytoca. Biotechnol Prog. 2005;21:1366–72. doi:10.1021/bp050100e.
Article
CAS
PubMed
Google Scholar
Wright JD, Wyman CE, Grohmann K. Simultaneous saccharification and fermentation of lignocellulose. Appl Biochem Biotechnol. 1988;18:75–90. doi:10.1007/BF02930818.
Article
CAS
Google Scholar
Wu JF (1989) Process for producing ethanol from plant biomass using the fungus Paecilomyces sp. US Patent 4,840,903.
Wyman CE. Ethanol from lignocellulosic biomass: technology, economics, and opportunities. Bioresource Technol. 1994;50:3–15. doi:10.1016/0960-8524(94)90214-3.
Article
CAS
Google Scholar
Xiros C, Christakopoulos P. Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol Biofuels. 2009;2:4. doi:10.1186/1754-6834-2-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu Q, Singh A, Himmel ME. Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol. 2009;20:364–71. doi:10.1016/j.copbio.2009.05.006.
Article
CAS
PubMed
Google Scholar
Xu L, Shen Y, Hou J, Peng B, Tang H, Bao X. Secretory pathway engineering enhances secretion of cellobiohydrolase I from Trichoderma reesei in Saccharomyces cerevisiae. J Biosci Bioeng. 2014;117:45–52. doi:10.1016/j.jbiosc.2013.06.017.
Article
CAS
PubMed
Google Scholar
Zerva A, Savvides AL, Katsifas EA, Karagouni AD, Hatzinikolaou DG. Evaluation of Paecilomyces variotii potential in bioethanol production from lignocellulose through consolidated bioprocessing. Bioresour Technol. 2014;162:294–9. doi:10.1016/j.biortech.2014.03.137.
Article
CAS
PubMed
Google Scholar
Zha J, Shen M, Hu M, Song H, Yuan Y. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilising Saccharomyces cerevisiae through evolutionary engineering. J Ind Microbiol Biotechnol. 2014;41:27–39. doi:10.1007/s10295-013-1350-y.
Article
CAS
PubMed
Google Scholar