Anselme MJ, Tedder DW (1987) Characteristics of immobilized yeast reactors producing ethanol from glucose. Biotechnol Bioeng 30:736–745
Article
CAS
PubMed
Google Scholar
Bangrak P, Limtong S, Phisalaphong M (2011) Continuous ethanol production using immobilized yeast cells entrapped in loofa-reinforced alginate carriers. Braz J Microbiol 42:676–684
Article
PubMed Central
CAS
PubMed
Google Scholar
Boersma JG, Vellenga K, de Wilt HGJ, Joosten GEH (1979) Mass-transfer effects on the rate of isomerization of d-glucose into d-fructose, catalyzed by whole-cell immobilized glucose isomerase. Biotechnol Bioeng 21:1711–1724
Article
CAS
PubMed
Google Scholar
Borovikova D, Scherbaka R, Patmalnieks A, Rapoport A (2014) Effects of yeast immobilization on bioethanol production. Biotechnol Appl Biochem 61:33–39
Article
CAS
PubMed
Google Scholar
Cascaval D, Galaction AI, Turnea M (2012) Influences of internal diffusion on the lipids bio-degradation with immobilized Bacillus sp. cells in fixed bed of basket type. Rev Med Chir Soc Med Nat Iasi 116:228–232
CAS
PubMed
Google Scholar
Cha HG, Kim YO, Lee HY, Choi WY, Kang DH, Jung KH (2014) Ethanol Production from Glycerol by the Yeast Pachysolen tannophilus Immobilized on Celite during Repeated-Batch Flask Culture. Mycobiology 42:305–309
Article
PubMed Central
PubMed
Google Scholar
Chen XH, Wang XT, Lou WY, Li Y, Wu H, Zong MH et al (2012) Immobilization of Acetobacter sp. CCTCC M209061 for efficient asymmetric reduction of ketones and biocatalyst recycling. Microb Cell Fact 11:119
Article
PubMed Central
PubMed
Google Scholar
Chien NK, Sofer SS (1985) Flow rate and bead size as critical parameters for immobilized-yeast reactors. Enzyme Microb Technol 7:538–542
Article
CAS
Google Scholar
Converti A, Perego P, Lodi A, Parisi F, Del Borghi M (1985) A kinetic study of Saccharomyces strains: performance at high sugar concentrations. Biotechnol Bioeng 27:1108–1114
Article
CAS
PubMed
Google Scholar
De Bari I, De Canio P, Cuna D, Liuzzi F, Capece A, Romano P (2013) Bioethanol production from mixed sugars by Scheffersomyces stipitis free and immobilized cells, and co-cultures with Saccharomyces cerevisiae. N Biotechnol 30:591–597
Article
PubMed
Google Scholar
de Jong B, Siewers V, Nielsen J (2012) Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels. Curr Opin Biotechnol 23:624–630
Article
PubMed
Google Scholar
Duarte JC, Rodrigues JA, Moran PJ, Valenca GP, Nunhez JR (2013) Effect of immobilized cells in calcium alginate beads in alcoholic fermentation. AMB Express 3:31
Article
PubMed Central
PubMed
Google Scholar
Engasser JM, Horvath C (1973) Effect of internal diffusion in heterogeneous enzyme systems: evaluation of true kinetic parameters and substrate diffusivity. J Theor Biol 42:137–155
Article
CAS
PubMed
Google Scholar
Galaction AI, Lupăşteanu AM and Caşcaval D (2010) Kinetic studies on alcoholic fermentation under substrate inhibition conditions using a bioreactor with stirred bed of immobilized yeast cells. Open Syst Biol J 3:9–20
Article
CAS
Google Scholar
Galaction AI, Rotaru R, Kloetzer L, Vlysidis A, Webb C, Turnea M et al (2011) External and internal glucose mass transfers in succinic acid fermentation with stirred bed of immobilized Actinobacillus succinogenes under substrate and product inhibitions. J Microbiol Biotechnol 21:1257–1263
Article
CAS
PubMed
Google Scholar
Galaction AI, Kloetzer L, Turnea M, Webb C, Vlysidis A, Cascaval D (2012) Succinic acid fermentation in a stationary-basket bioreactor with a packed bed of immobilized Actinobacillus succinogenes: 1. Influence of internal diffusion on substrate mass transfer and consumption rate. J Ind Microbiol Biotechnol 39:877–888
Article
CAS
PubMed
Google Scholar
Gòdia F, Casas C, Castellano B, Solà C (1987) Immobilized cells: behaviour of carrageenan entrapped yeast during continuous ethanol fermentation. Appl Microbiol Biotechnol 26:342–346
Article
Google Scholar
Hussain A, Kangwa M, Abo-Elwafa AG, Fernandez-Lahore M (2015) Influence of operational parameters on the fluid-side mass transfer resistance observed in a packed bed bioreactor. AMB Express 5:015–0111
Article
Google Scholar
Klaewkla R, Arend M, Hoelderich WF (2011) A review of mass transfer controlling the reaction rate in heterogeneous catalytic systems. InTech 29:667–684
Google Scholar
Lee SE, Lee CG, Kangdo H, Lee HY, Jung KH (2012) Preparation of corncob grits as a carrier for immobilizing yeast cells for ethanol production. J Microbiol Biotechnol 22:1673–1680
Article
CAS
PubMed
Google Scholar
Lei J, Bi Y, Shen L (2011) Performance and emission characteristics of diesel engine fueled with ethanol-diesel blends in different altitude regions. J Biomed Biotechnol 417421:27
Google Scholar
Matsushika A, Inoue H, Kodaki T, Sawayama S (2009) Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol 84:37–53
Article
CAS
PubMed
Google Scholar
Nikolić S, Mojović L, Rakin M, Dušanka P (2009) Bioethanol production from corn meal by simultaneous enzymatic saccharification and fermentation with immobilized cells of Saccharomyces cerevisiae var. ellipsoideus. Fuel 88:1602–1607
Article
Google Scholar
Nunez MJ, Lema JM (1987) Cell immobilization: application to alcoholic production: a review. Enzym Microb Technol 9:642–661
Article
CAS
Google Scholar
Perego C, Peratello S (1999) Experimental methods in catalytic kinetics. Catal Today 52:133–145
Article
CAS
Google Scholar
Pilkington PH, Margaritis A, Mensour NA, Russell I (1998) Fundamentals of immobilised yeast cells for continuous beer fermentation: a review. J Inst Brew 104:19–31
Article
Google Scholar
Prasad B, Mishra I (1995) On the kinetics and effectiveness of immobilized whole-cell batch cultures. Bioresour Technol 53:269–275
Article
CAS
Google Scholar
Rao BS, Pundle AV, Prabhune AA, Shankar V, SivaRaman H (1986) Ethanol production by yeast cells immobilized in open-pore agar. Appl Biochem Biotechnol 12:17–24
Article
CAS
Google Scholar
Rivaldi JD, Sarrouh BF, da Silva SS (2008) An evaluation of different bioreactor configurations with immobilized yeast for bioethanol production. Int J Chem React Eng 6
Rotaru R, Kloetzer L, Galaction AI, Cascaval D (2011) Succinic acid production using mobile bed of immobilized Actinobacillus succinogenes in alginate. Rev Med Chir Soc Med Nat Iasi 115:264–268
PubMed
Google Scholar
Salmon PM, Robertson CR (1987) Mass transfer limitations in gel beads containing growing immobilized cells. J Theor Biol 125:325–332
Article
CAS
PubMed
Google Scholar
Shafaghat H, Najafpour GD, Rezaei PS, Sharifzadeh-Baei M (2011) Ethanol production with natural carbon sources in batch and continuous fermentation using free and immobilized Saccharomyces cerevisiae. J Sci Ind Res India 70:162–169
CAS
Google Scholar
Talebnia F, Taherzadeh MJ (2007) Physiological and morphological study of encapsulated Saccharomyces cerevisiae. Enzyme Microb Technol 41:683–688
Article
CAS
Google Scholar
Terada A, Yuasa A, Kushimoto T, Tsuneda S, Katakai A, Tamada M (2006) Bacterial adhesion to and viability on positively charged polymer surfaces. Microbiology 152:3575–3583
Article
CAS
PubMed
Google Scholar
Warnock J, Bratch K, Al-Rubeai M (2005) Packed bed bioreactors. Bioreactors for Tissue Engineering. Springer, New York, pp 87–113
Book
Google Scholar
Zhao Y, Delancey GB (2000) A diffusion model and optimal cell loading for immobilized cell biocatalysts. Biotechnol Bioeng 69:639–647
Article
CAS
PubMed
Google Scholar