Banks MK, Schultz KE: Comparison of plants for germination toxicity tests in petroleum-contaminated soils. Water Air Soil Pollut 2005, 167: 211–219.
Article
CAS
Google Scholar
Beattie SE, Torrey GS: Toxicity of methanethiol produced by Brevibacterium linens toward Penicillium expansum . J Agr Food Sci 1986, 34: 102–104.
Article
CAS
Google Scholar
Bitas V, Kim H-S, Bennett J, Kang S: Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 2013, 26: 835–843.
Article
CAS
PubMed
Google Scholar
Borjesson T, Stollman U, Schnurer J: Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on stored cereals. Appl Environ Microbiol 1992, 58: 2599–2605.
PubMed Central
CAS
PubMed
Google Scholar
Bradow JM, Connick WJ: Volatile seed germination inhibitors from plant residues. J Chem Ecol 1990, 16: 645–666.
Article
CAS
PubMed
Google Scholar
Chiron N, Michelot D: Odeurs de champignons: chimie et rôle dans les interactions biotiques- une revue. Cryptogam Mycol 2005, 26: 299–364.
Google Scholar
Cho IH, Namgung H-J, Choi H-K, Kim YS: Volatiles and key odorants in the pileus and stipe of pine-mushroom ( Tricholoma matsutake Sing). Food Chem 2008, 106: 71–76.
Article
CAS
Google Scholar
Claeson AS, Levin JO, Blomquist G, Sunesson AL: Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit 2002, 4: 667–672.
Article
CAS
PubMed
Google Scholar
Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK: Microbial volatile emissions as insect semiochemicals. J Chem Ecol 2013, 39: 840–859.
Article
CAS
PubMed
Google Scholar
Farag MA, Ryu CM, Sumner LW, Paré PA: GC-MS SPME profiling or rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 2006, 67: 2262–2268.
Article
CAS
PubMed
Google Scholar
Fraatz MA, Zorn H: Fungal Flavours. In The Mycota X: Industial Applications. 2nd edition. Edited by: Hofrichter M. Springer-Verlag, Berlin; 2010:249–264.
Google Scholar
French RC, Gale AW, Graham CL, Latterell FM, Schmitt CG, Marchetti MA, Rines HW: Differences in germination response of spores of several species of rust and smut fungi to nonanal, 6-methyl-5-hepten-2-one, and related compounds. J Agric Food Chem 1975, 23: 766–770.
Article
CAS
PubMed
Google Scholar
Herrmann A: The chemistry and biology of volatiles. Wiley, Chichester; 2010.
Book
Google Scholar
Holm RE: Volatile metabolites controlling germination in buried weed seeds. Plant Physiol 1972, 30: 293–297.
Article
Google Scholar
Hung R, Lee S, Bennett JW: The effect of low concentrations of the semiochemical 1-octen-3-ol on Arabidopsis thaliana . Fungal Ecol 2013, 6: 19–26.
Article
Google Scholar
Hung R, Lee S, Bennett JW: The effects of low concentrations of the enantiomers of mushroom alcohol (1-octen-3-ol) on Arabidopsis thaliana . Mycology: Int J Fungal Biol 2014, 5: 73–80.
Article
CAS
Google Scholar
Jelen HH, Wasowicz E: Volatile fungal metabolites and their relation to the spoilage of agricultural commodities. Food Rev Int 1998, 14: 391–426.
Article
CAS
Google Scholar
Jing H, Sturre MJG, Hille J, Dijkwel PP: Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J 2002, 32: 51–63.
Article
CAS
PubMed
Google Scholar
Kinderlerer J: Volatile metabolites of filamentous fungi and their role in food flavor. J Appl Bacteriol Symp Suppl 1989, 67: 133S-144S.
Article
Google Scholar
Kishimoto K, Matsui K, Ozawa R, Takabayashi J: Volatile 1-octen-3-ol induces a defensive response in Arabidopsis thaliana . J Gen Plant Pathol 2007, 73: 35–37.
Article
CAS
Google Scholar
Koornneef M, Bentsink L, Hilhorst H: Seed dormancy and germination. Curr Opin Plant Biol 2002, 5: 33–36.
Article
CAS
PubMed
Google Scholar
Korpi A, Jarnberg J, Pasanen A-L: Microbial volatile organic compounds. Crit Rev Toxicol 2009, 39: 139–193.
Article
CAS
PubMed
Google Scholar
Kuske M, Romain A-C, Nicolas J: Microbial volatile organic compounds as indicators of fungi. Can an electronic nose detect fungi in indoor environments? Build Environ 2005, 40: 824–831.
Article
Google Scholar
Lee S, Hung R, Schink A, Mauro J, Bennett JW: Phytotoxicity of volatile organic compound. Plant Grow Reg 2014.
Google Scholar
Lugtenberg B, Kamilova F: Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 2009, 63: 541–556.
Article
CAS
PubMed
Google Scholar
Macias-Rubalcava ML, Hernandez-Bautista BE, Oropeza F, Duarte G, Gonzalez MC, Glenn AE, Hanlin RT, Anaya AL: Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis , a tropical endophytic fungus from Bursera simaruba . J Chem Ecol 2010, 36: 1122–1131.
Article
CAS
PubMed
Google Scholar
Matysik S, Herbarth O, Mueller A: Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J Microbiol Methods 2008, 75: 182–187.
Article
CAS
PubMed
Google Scholar
Mburu DM, Ndung’u MW, Maniania NK, Hassanali A: Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellency toward the termite Macrotermes michaelseni . J Exp Biol 2011, 214: 956–962.
Article
CAS
PubMed
Google Scholar
Minerdi D, Bossi S, Gullino ML, Garibaldi A: Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 2009, 11: 844–854.
Article
CAS
PubMed
Google Scholar
Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A: Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol 2011, 76: 342–351.
Article
CAS
PubMed
Google Scholar
Morath SU, Hung R, Bennett JW: Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 2012, 26: 73–83.
Article
Google Scholar
Ogura T, Sunairi M, Nakajima M: 2-Methylisoborneol and geosmin, the main sources of soil odor, inhibit the germination of Brassicaceae seeds. Soil Sci 2000, 46: 217–227.
CAS
Google Scholar
Palta JP: Leaf chlorophyll content. Remote Sens Rev 1990, 5: 207–213.
Article
Google Scholar
Paul D, Park KS: Identification of volatiles produced by Cladosporium cladosporioides CL-1, a fungal biocontrol agent that promotes plant growth. Sensors 2013, 13: 13969–13977.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rohlfs M, Obmann BR, Petersen R: Competition with filamentous fungi and its implication for a gregarious lifestyle in insects living on ephemeral resources. Ecol Entomol 2005, 30: 556–563.
Article
Google Scholar
Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW: Bacterial volatiles promote growth in Arabidopsis . Proc Natl Acad Sci U S A 2003, 100: 4927–4932.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sahlberg B, Gunnbjörnsdottir M, Soonc A, Jogi R, Gislason T, Wieslander G, Janson C, Norback D: Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three North European cities in relation to sick building syndrome (SBS). Sci Total Environ 2013, 444: 433–440.
Article
CAS
PubMed
Google Scholar
Schnürer J, Olsson J, Borjesson T: Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 1999, 27: 209–217.
Article
PubMed
Google Scholar
Splivallo R, Novero M, Bertea CM, Bossi S, Bonfante P: Truffle volatiles inhibit growth and induce an oxidative burst in Arabidopsis thaliana . New Phytol 2007, 175: 17–24.
Article
Google Scholar
Steinkraus KH: Industrial Applications of Oriental Fungal Fermentations. In The Filamentous Fungi Vol. 4 Fungal Technology. Edited by: Smith JE, Berry DR, Kristiansesn B. Edward Arnold, London; 1983:171–189.
Google Scholar
Strobel GA, Dirkse E, Sears J, Markworth C: Volatile antimicrobials from Muscodor albus , a novel endophytic fungus. Microbiology 2001, 147: 2943–2950.
Article
CAS
PubMed
Google Scholar
Sunesson A-L, Vaes WHJ, Nilsson C-A, Blomquist GR, Andersson B, Carlson R: Identification of volatile metabolites from five fungal species cultivated on two media. Appl Environ Microbiol 1995, 61: 2911–2918.
PubMed Central
CAS
PubMed
Google Scholar
Takken W, Knols BG: Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 1999, 44: 131–157.
Article
CAS
PubMed
Google Scholar
Thakeow P, Angeli S, Weißbecker B, Schütz S: Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa . Chem Senses 2008, 33: 379–387.
Article
CAS
PubMed
Google Scholar
Turner WB, Aldridge DC: Fungal Metabolites II. Academic Press, London; 1983.
Google Scholar
Van Loon LC, Bakker PAHM, Pieterse CMJ: Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 1998, 36: 453–483.
Article
CAS
PubMed
Google Scholar
Vespermann A, Kai M, Piechulla B: Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana . Appl Environ Microbiol 2007, 73: 5639–5641.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X, Sun C, Gao S, Wang L, Shuokui H: Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus . Chemosphere 2001, 44: 1711–1721.
Article
CAS
PubMed
Google Scholar
Wenke K, Kai M, Piechulla B: Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 2010, 231: 499–506.
Article
CAS
PubMed
Google Scholar
Wenke K, Weise T, Warnke R, Valverde C, Wanke D, Kai M, Piechulla B: Bacterial Volatiles Mediating Information Between Bacteria and Plants. In Biocommunication of Plants. Edited by: Witzany G, Baluska F. Springer-Verlag, Berlin; 2012:327–347.
Chapter
Google Scholar