Ahring BK, Westermann P, Mah RA: Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by methanosarcina-thermophila Tm-1. Arch Microbiol 1991, 157(1):38–42.
CAS
Google Scholar
Baker GC, Smith JJ, Cowan DA: Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 2003, 55(3):541–555.
CAS
PubMed
Google Scholar
Barbosa MJ, Rocha JM, Tramper J, Wijffels RH: Acetate as a carbon source for hydrogen production by photosynthetic bacteria. J Biotechnol 2001, 85(1):25–33.
CAS
PubMed
Google Scholar
Basak N, Das D: The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art. World J Microb Biot 2007, 23(1):31–42.
CAS
Google Scholar
Bretschger O, Osterstock JB, Pinchak WE, Ishii S, Nelson KE: Microbial fuel cells and microbial ecology: applications in ruminant health and production research. Microb Ecol 2010, 59(3):415–427.
PubMed Central
CAS
PubMed
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. P Natl Acad Sci USA 2011, 108: 4516–4522.
CAS
Google Scholar
Chae KJ, Choi MJ, Kim KY, Ajayi FF, Chang IS, Kim IS: Selective inhibition of methanogens for the improvement of biohydrogen production in microbial electrolysis cells. Int J Hydrogen Energ 2010, 35(24):13379–13386.
CAS
Google Scholar
Cord-Ruwisch R, Lovley DR, Schink B: Growth of geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 1998, 64(6):2232–2236.
PubMed Central
CAS
PubMed
Google Scholar
Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G: Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biot 2008, 78(6):1045–1055.
CAS
Google Scholar
Dowd SE, Sun Y, Secor PR, Rhoads DD, Wolcott BM, James GA, Wolcott RD: Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol 2008, 8: 43.
PubMed Central
PubMed
Google Scholar
Fedorovich V, Knighton MC, Pagaling E, Ward FB, Free A, Goryanin I: Novel electrochemically active bacterium phylogenetically related to arcobacter butzleri, isolated from a microbial fuel cell. Appl Environ Microbiol 2009, 75(23):7326–7334.
PubMed Central
CAS
PubMed
Google Scholar
Ferguson TJ, Mah RA: Effect of H2-Co2 on methanogenesis from acetate or methanol in methanosarcina Spp. Appl Environ Microbiol 1983, 46(2):348–355.
PubMed Central
CAS
PubMed
Google Scholar
Gross R, Simon J: The hydE gene is essential for the formation of wolinella succinogenes NiFe-hydrogenase. Fems Microbiol Lett 2003, 227(2):197–202.
CAS
PubMed
Google Scholar
Hillmer P, Gest H: H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J Bacteriol 1977, 129(2):732–739.
PubMed Central
CAS
PubMed
Google Scholar
Huse SM, Huber JA, Morrison HG, Sogin ML, Mark Welch D: Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol 2007, 8(7):R143.
PubMed Central
PubMed
Google Scholar
Iino T, Mori K, Uchino Y, Nakagawa T, Harayama S, Suzuki K: Ignavibacterium album gen. nov., sp nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria. Int Syst Evol Micr 2010, 60: 1376–1382.
CAS
Google Scholar
Jia J, Tang Y, Liu B, Wu D, Ren N, Xing D: Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresour Technol 2013, 144: 94–99.
CAS
PubMed
Google Scholar
Juang DF, Yang PC, Chou HY, Chiu LJ: Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett 2011, 33(11):2147–2160.
CAS
PubMed
Google Scholar
Kim BS, Kim BK, Lee JH, Kim M, Lim YW, Chun J: Rapid phylogenetic dissection of prokaryotic community structure in tidal flat using pyrosequencing. J Microbiol 2008, 46(4):357–363.
CAS
PubMed
Google Scholar
Kimura Z, Okabe S: Acetate oxidation by syntrophic association between geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen. Isme J 2013a, 7(8):1472–1482.
CAS
Google Scholar
Kimura Z, Okabe S: Hydrogenophaga electricum sp nov., isolated from anodic biofilms of an acetate-fed microbial fuel cell. J Gen Appl Microbiol 2013, 59(4):261–266.
CAS
PubMed
Google Scholar
Kumar S, Nei M, Dudley J, Tamura K: MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 2008, 9(4):299–306.
PubMed Central
CAS
PubMed
Google Scholar
Lee HS, Torres CI, Parameswaran P, Rittmann BE: Fate of H-2 in an upflow single-chamber microbial electrolysis cell using a metal-catalyst-free cathode. Environ Sci Technol 2009, 43(20):7971–7976.
CAS
PubMed
Google Scholar
Lee TK, Doan TV, Yoo K, Choi S, Kim C, Park J: Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Appl Microbiol Biot 2010, 87(6):2335–2343.
CAS
Google Scholar
Liu W, Wang A, Sun D, Ren N, Zhang Y, Zhou J: Characterization of microbial communities during anode biofilm reformation in a two-chambered microbial electrolysis cell (MEC). J Biotechnol 2012, 157(4):628–632.
CAS
PubMed
Google Scholar
Logan BE: Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 2009, 7(5):375–381.
CAS
PubMed
Google Scholar
Logan BE, Regan JM: Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 2006, 14(12):512–518.
CAS
PubMed
Google Scholar
Lovley DR: Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 2006, 4(7):497–508.
CAS
PubMed
Google Scholar
Lovley DR, Phillips EJP: Novel mode of microbial energy-metabolism - organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microb 1988, 54(6):1472–1480.
CAS
Google Scholar
Lu L, Xing D, Ren N: Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res 2012, 46(7):2425–2434.
CAS
PubMed
Google Scholar
Lu L, Xing DF, Ren NQ, Logan BE: Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol 2012b, 124: 68–76.
CAS
Google Scholar
McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rohlin L, Gunsalus RP: Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 2008, 1125: 58–72.
CAS
PubMed
Google Scholar
McKinlay JB, Harwood CS: Carbon dioxide fixation as a central redox cofactor recycling mechanism in bacteria. P Natl Acad Sci USA 2010, 107(26):11669–11675.
CAS
Google Scholar
Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K: Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Adv 2012, 2(4):1248–1263.
CAS
Google Scholar
Pham TH, Boon N, Aelterman P, Clauwaert P, De Schamphelaire L, Vanhaecke L, De Maeyer K, Hofte M, Verstraete W, Rabaey K: Metabolites produced by pseudomonas sp enable a gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biot 2008, 77(5):1119–1129.
CAS
Google Scholar
Pisciotta JM, Zaybak Z, Call DF, Nam JY, Logan BE: Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes. Appl Environ Microb 2012, 78(15):5212–5219.
CAS
Google Scholar
Rabaey K, Rozendal RA: Microbial electrosynthesis - revisiting the electrical route for microbial production. Nat Rev Microbiol 2010, 8(10):706–716.
CAS
PubMed
Google Scholar
Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH: Microbial ecology meets electrochemistry: electricity-driven and driving communities. Isme J 2007, 1(1):9–18.
CAS
PubMed
Google Scholar
Rey FE, Heiniger EK, Harwood CS: Redirection of metabolism for biological hydrogen production. Appl Environ Microb 2007, 73(5):1665–1671.
CAS
Google Scholar
Sakai S, Imachi H, Sekiguchi Y, Tseng IC, Ohashi A, Harada H, Kamagata Y: Cultivation of methanogens under low-hydrogen conditions by using the coculture method. Appl Environ Microb 2009, 75(14):4892–4896.
CAS
Google Scholar
Sleutels THJA, Ter Heijne A, Buisman CJN, Hamelers HVM: Bioelectrochemical systems: an outlook for practical applications. Chemsuschem 2012, 5(6):1012–1019.
CAS
PubMed
Google Scholar
Sun Y, Wei J, Liang P, Huang X: Microbial community analysis in biocathode microbial fuel cells packed with different materials. AMB Express 2012, 2(1):21.
PubMed Central
CAS
PubMed
Google Scholar
Watson VJ, Logan BE: Power production in MFCs inoculated with shewanella oneidensis MR-1 or mixed cultures. Biotechnol Bioeng 2010, 105(3):489–498.
CAS
PubMed
Google Scholar
Willems A, Busse J, Goor M, Pot B, Falsen E, Jantzen E, Hoste B, Gillis M, Kersters K, Auling G, Deley J: Hydrogenophaga, a New genus of hydrogen-oxidizing bacteria that includes hydrogenophaga-flava comb-Nov (formerly pseudomonas-flava), hydrogenophaga-palleronii (formerly pseudomonas-palleronii), hydrogenophaga-pseudoflava (formerly pseudomonas-pseudoflava and pseudomonas-carboxydoflava), and hydrogenophaga-taeniospiralis (formerly pseudomonas-taeniospiralis)N. Int J Syst Bacteriol 1989, 39(3):319–333.
CAS
Google Scholar
Wong TY, Graham L, Ohara E, Maier RJ: Enrichment for hydrogen-oxidizing acinetobacter spp in the rhizosphere of hydrogen-evolving soybean root-nodules. Appl Environ Microb 1986, 52(5):1008–1013.
CAS
Google Scholar
Xing D, Zuo Y, Cheng S, Regan JM, Logan BE: Electricity generation by rhodopseudomonas palustris DX-1. Environ Sci Technol 2008, 42(11):4146–4151.
CAS
PubMed
Google Scholar
Xing D, Cheng S, Regan JM, Logan BE: Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light. Biosens Bioelectron 2009, 25(1):105–111. http://dx.doi.org/10.1016/j.bios.2009.06.013
CAS
PubMed
Google Scholar
Xing D, Cheng SA, Logan BE, Regan JM: Isolation of the exoelectrogenic denitrifying bacterium comamonas denitrificans based on dilution to extinction. Appl Microbiol Biot 2010, 85(5):1575–1587.
CAS
Google Scholar
Yong P, Farr JPG, Harris IR, Macaskie LE: Palladium recovery by immobilized cells of desulfovibrio desulfuricans using hydrogen as the electron donor in a novel electrobioreactor. Biotechnol Lett 2002, 24(3):205–212.
CAS
Google Scholar
Yu J, Park Y, Cho H, Chun J, Seon J, Cho S, Lee T: Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates. Water Sci Technol: J Int Assoc Water Pollut Res 2012, 66(4):748–753.
CAS
Google Scholar
Yuan H, Ge T, Chen C, O’Donnell AG, Wu J: Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol 2012, 78(7):2328–2336.
PubMed Central
CAS
PubMed
Google Scholar