Arli SD, Trivedi UB, Patel KC: Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates. World J Microbiol Biotechnol 2011, 27: 1415–1422. 10.1007/s11274-010-0593-2
Article
CAS
PubMed
Google Scholar
Bueno SM, Cruz CHG: Optimization of polysaccharides production by bacteria isolated from soil. Braz J Microbiol 2006, 37: 296–301. 10.1590/S1517-83822006000300018
Article
CAS
Google Scholar
Chen PS, Toribara TY, Warner H: Microdetermination of phosphorus. Anal Biochem 1956, 28: 1756–1758.
CAS
Google Scholar
Harada T, Fujimori K, Hirose S, Masada M: Growth and β-glucan 10C3K production by a mutant of Alcaligenes faecalis var. myxogenes in defined medium. Agr Biol Chem 1966, 30: 764–769. 10.1271/bbb1961.30.764
Article
CAS
Google Scholar
Jung D-Y, Cho Y-S, Chung C-S, Jung D-I, Kim K, Lee J-W: Improved Production of Curdlan with Concentrated Cells of Agrobacterium sp. Biotechnol Bioprocess Eng 2001, 6: 107–111. 10.1007/BF02931955
Article
CAS
Google Scholar
Kataoka K, Muta T, Yamazaki S, Takeshige K: Activation of Macrophages by Linear (1→3)-β-D-Glucans. J Biol Chem 2002, 277: 36825–36831. 10.1074/jbc.M206756200
Article
CAS
PubMed
Google Scholar
Kenyon WJ, Buller CS: Structural Analysis of the curdlan-like exopolysaccharide produced by Cellulomonas flavigena KU. J Ind Microbiol Biotechnol 2002, 29: 200–203. 10.1038/sj.jim.7000277
Article
CAS
PubMed
Google Scholar
Kim MK, Lee IY, Ko JH, Rhee YH, Park YH: Higher intracellular levels of uridinemonophosphate under nitrogen limited-conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol Bioeng 1999, 62: 317–323. 10.1002/(SICI)1097-0290(19990205)62:3<317::AID-BIT8>3.0.CO;2-7
Article
CAS
PubMed
Google Scholar
Kim MK, Lee IY, Lee JH, Kim KT, Rhee YH, Park YH: Residual phosphate concentration under nitrogen-limiting conditions regulates curdlan production in Agrobacterium sp. J Ind Microbiol Biotechnol 2000, 25: 180–183. 10.1038/sj.jim.7000053
Article
CAS
Google Scholar
Kim MK, Ryu KE, Choi WA, Rhee YH, Lee IY: Enhanced production of (1→3) –β-D-glucan by a mutant strain of Agrobacterium species. Biochem Eng J 2003, 3730: 1–6. 10.1016/S1369-703X(03)00032-9
Google Scholar
Ko YT, Lin YL: 1, 3-β- Glucan Quantification by a Fluorescence Microassay and Analysis of its Distribution in Foods. J Agric Food Chem 2004, 52: 3313–3318. 10.1021/jf0354085
Article
CAS
PubMed
Google Scholar
Kogan G, Alfoldi J, Master L: Carbon-13 NMR spectroscopic investigation of two yeast cell wall β-D-glucans. Biopolymers 1988, 27: 1055–1063. 10.1002/bip.360270702
Article
CAS
Google Scholar
Kumari J, Sahoo PK: Dietary β 1,3 glucan potentiates innate immunity and disease resistance of Asian catfish, Clarias batrachus (L.). J Fish Dis 2006, 29: 95–101. 10.1111/j.1365-2761.2006.00691.x
Article
CAS
PubMed
Google Scholar
Lee JH, Park YH: Optimal production of curdlan by Agrobacterium sp. with feedback inferential control of optimal pH profile. Biotechnol Lett 2001, 23: 525–530. 10.1023/A:1010374519891
Article
CAS
Google Scholar
Lee I-Y, Seo WT, Kim GJ, Kim MK, Park CS, Park YH: Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. J Ind Microbiol Biotechnol 1997, 18: 255–259. 10.1038/sj.jim.2900378
Article
CAS
Google Scholar
Lee JH, Lee IY, Kim MK, Park YH: Optimal pH control of batch processes for production of curdlan by Agrobacterium species. J Ind Microbiol Biotechnol 1999, 23: 143–148. 10.1038/sj.jim.2900714
Article
CAS
PubMed
Google Scholar
Lee MC, Chen YC, Peng TC: Two-stage culture method for optimized polysaccharide production in Spirulina platensis. J Sci Food Agric 2001, 92: 1562–1569. 10.1002/jsfa.4743
Article
Google Scholar
Miller GL: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959, 31: 426–428. 10.1021/ac60147a030
Article
CAS
Google Scholar
Nakanishi I, Kimura K, Kusui S, Yamazaki E: Complex formation of gel-forming bacterial (1,3)-β-D- glucans (curdlan-type polysaccharides) with dyes in aqueous solution. Carbohydr Res 1974, 32: 47–52. 10.1016/S0008-6215(00)82462-3
Article
CAS
Google Scholar
Nakanishi I, Kimura K, Suzuki T, Ishikawa M, Banno I, Sakane T, Harada T: Demonstration of curdlan-type polysaccharide and some other β-1,3-glucan in microorganisms with aniline blue. J Gen Appl Microbiol 1976, 22: 1–11. 10.2323/jgam.22.1
Article
CAS
Google Scholar
Nakata M, Kawaguchi T, Kodaky Y, Kono A: Characterization of curdlan in aqueous sodium hydroxide. Polymer Sci 1998, 39: 1475–1481.
CAS
Google Scholar
Robert JF, White BJ: Chromatographic techniques. In Biochemical techniques: theory and practice. Waveland Press, Prospect Heights 1987, 87: 73–128.
Google Scholar
Saito H, Ohki T, Sasaki T: A 13C-nuclear magnetic resonance study of gel-forming (1–3)-β-D-glucans. Evidence of the presence of single-helical confirmation in a resilient gel of a curdlan-type polysaccharide 13140. Biochemistry 1977, 16: 908–914. 10.1021/bi00624a015
Article
CAS
PubMed
Google Scholar
Saito H, Ohki T, Sasaki T: A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1–3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide. Carbohydr Res 1979, 74: 227–240. 10.1016/S0008-6215(00)84779-5
Article
CAS
Google Scholar
Srienc F, Annold B, Bailey JE: Characterization of intracellular accumulation of poly-β-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol Bioeng 1984, 26: 982–987. 10.1002/bit.260260824
Article
CAS
PubMed
Google Scholar
Ssaki T, Abiko N, Sugino Y, Nitta K: Dependence on chainlength of antitumor activity of (1→3)-β-D-glucan from Alcaligenes faecalis var. myxogenes, IFO 13140, and its acid-degraded products. Cancer Res 1978, 38: 379–383.
Google Scholar
Sutherland IW: Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 2001, 11: 663–674. 10.1016/S0958-6946(01)00112-1
Article
CAS
Google Scholar
Vukojevic J, Stajic M, Lausevic SD, Simonic J: Effect of medium pH and cultivation period on mycelial biomass, polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum from Montenegro. Arch Biol Sci 2006,58(3):179–182. 10.2298/ABS0603179V
Article
Google Scholar
Wong S-S, Ngiam ZRJ, Kasapis S, Huang D: Novel sulfation of curdlan assisted by ultrasonication. Int J Biol Macromol 2010, 46: 385–388. 10.1016/j.ijbiomac.2009.12.011
Article
CAS
PubMed
Google Scholar
Wu J, Zhan X, Liu H, Zheng Z: Enhanced Production of Curdlan by Alcaligenes faecalis by Selective Feeding with Ammonia Water during the cell growth Phase of Fermentation. Chin J Biotech 2008,24(6):1035–1039. 10.1016/S1872-2075(08)60049-7
Article
CAS
Google Scholar
Zhang L, Zhang M, Dong J, Guo J, Song YY, Cheung PCK: Chemical structure and chain confirmation of the water insoluble glucan isolated from Pleurotus tuber-regium. Biopolymers 2001, 59: 457–464. 10.1002/1097-0282(200111)59:6<457::AID-BIP1050>3.0.CO;2-I
Article
CAS
PubMed
Google Scholar
Zhang H-T, Zhan X-B, Zheng Z-Y, Wu J-R, English N, Yu X-B, Lin C-C: Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Appl Microbiol Biotechnol 2012, 93: 367–379. 10.1007/s00253-011-3448-3
Article
PubMed
Google Scholar