Abdel-Mawgoud AM, Lépine F, Déziel E: Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 2010, 86: 1323–1336. 10.1007/s00253-010-2498-2
Article
CAS
PubMed Central
PubMed
Google Scholar
Amara AA, Rehm BH: Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa -mediated synthesis of a new polyester: identification of catalytic residues. Biochem J 2003, 374: 413–421. 10.1042/BJ20030431
Article
CAS
PubMed Central
PubMed
Google Scholar
Anderson AJ, Dawes EA: Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 1990, 54: 450–472.
CAS
PubMed Central
PubMed
Google Scholar
Braunegg G, Sonnleitner B, Lafferty RM: A rapid method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 1978, 6: 29–37. 10.1007/BF00500854
Article
CAS
Google Scholar
Camilios-Neto D, Bugay C, de Santana-Filho AP, Joslin T, de Souza LM, Sassaki GL, Mitchell DA, Krieger N: Production of rhamnolipids in solid-state cultivation using a mixture of sugarcane bagasse and corn bran supplemented with glycerol and soybean oil. Appl Microbiol Biotechnol 2010, 89: 1395–1403.
Article
PubMed
Google Scholar
Camilios Neto D, Meira JA, Tiburtius E, Zamora PP, Bugay C, Mitchell DA, Krieger N: Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils. Biotechnol J 2009, 4: 748–755. 10.1002/biot.200800325
Article
CAS
PubMed
Google Scholar
Campos-Garcia J, Caro AD, Najera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G: The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent beta-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 1998, 180: 4442–4451.
CAS
PubMed Central
PubMed
Google Scholar
Chakrabarty AM: Genetically manipulated microorganisms and their products in the oil service industries. Trends Biotechnol 1985, 3: 32–38. 10.1016/0167-7799(85)90056-3
Article
CAS
Google Scholar
Choi MH, Xu J, Gutierrez M, Yoo T, Cho YH, Yoon SC: Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa : comparative 13
C NMR analysis of the products in wild-type and mutants. J Biotechnol 2011, 151: 30–42. 10.1016/j.jbiotec.2010.10.072
Article
CAS
PubMed
Google Scholar
Chwalek M, Lalun N, Bobichon H, Ple K, Voutquenne-Nazabadioko L: Structure-activity relationships of some hederagenin diglycosides: haemolysis, cytotoxicity and apoptosis induction. Biochim Biophys Acta 2006, 1760: 1418–1427.
Article
CAS
PubMed
Google Scholar
Dawes EA: Microbial energetics. Blakie & Son Limited, Bishopbriggs, Glasgow; 1986.
Google Scholar
Déziel E, Lépine F, Dennie D, Boismenu D, Mamer OA, Villemur R: Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1999, 1440: 244–252.
Article
PubMed
Google Scholar
Déziel E, Lépine F, Milot S, Villemur R: rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa : 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 2003, 149: 2005–2013. 10.1099/mic.0.26154-0
Article
PubMed
Google Scholar
Déziel E, Paquette G, Villemur R, Lépine F, Bisaillon J: Biosurfactant production by a soil pseudomonas strain growing on polycyclic aromatic hydrocarbons. Appl Environ Microbiol 1996, 62: 1908–1912.
PubMed Central
PubMed
Google Scholar
Fiske CH, SubbaRow Y: The colorimetric determination of phosphorus. J Biol Chem 1925, 66: 375–400.
CAS
Google Scholar
Füchtenbusch B, Wullbrandt D, Steinbüchel A: Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 2000, 53: 167–172. 10.1007/s002530050004
Article
PubMed
Google Scholar
Griebel R, Smith Z, Merrick JM: Metabolism of poly-beta-hydroxybutyrate. I. Purification, composition, and properties of native poly-beta-hydroxybutyrate granules from Bacillus megaterium . Biochemistry 1968, 7: 3676–3681. 10.1021/bi00850a047
Article
CAS
PubMed
Google Scholar
Guerra-Santos L, Kappeli O, Fiechter A: Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl Microbiol Biotechnol 1986, 24: 443–448.
CAS
Google Scholar
Haba E, Pinazo A, Jauregui O, Espuny MJ, Infante MR, Manresa A: Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol Bioeng 2003, 81: 316–322. 10.1002/bit.10474
Article
CAS
PubMed
Google Scholar
Hauser G, Karnovsky ML: Studies on the production of glycolipide by Pseudomonas aeruginosa. J Bacteriol 1954, 68: 645–654. 10.1002/path.1700680242
CAS
PubMed Central
PubMed
Google Scholar
Hauser G, Karnovsky ML: Studies on the biosynthesis of L-rhammose. J Biol Chem 1958, 233: 287–291.
CAS
PubMed
Google Scholar
Hori K, Marsudi S, Unno H: Simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa . Biotechnol Bioeng 2002, 78: 699–707. 10.1002/bit.10248
Article
CAS
PubMed
Google Scholar
Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B: Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 1992, 58: 536–544.
CAS
PubMed Central
PubMed
Google Scholar
Huisman GW, de Leeuw O, Eggink G, Witholt B: Synthesis of poly-3-hydroxyalkanoates is a common feature of fluorescent Pseudomonads . Appl Environ Microbiol 1989, 55: 1949–1954.
CAS
PubMed Central
PubMed
Google Scholar
Itoh S, Suzuki T: Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffinutilizing ability. Agric Biol Chem 1972, 36: 1233–1235.
Article
Google Scholar
Koch AK, Kappeli O, Fiechter A, Reiser J: Hydrocarbon assimilation and biosurfactant production in Pseudomonas aeruginosa mutants. J Bacteriol 1991, 173: 4212–4219.
CAS
PubMed Central
PubMed
Google Scholar
Kulaev IS: Some aspects of environmental regulation of microbial phosphorus metabolism. FEMS Syrnp 1985, 23: 1–25.
CAS
Google Scholar
Lee SY: Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 1996, 49: 1–14. 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.3.CO;2-1
Article
CAS
PubMed
Google Scholar
Lee SY, Wong HH, Choi J, Lee SH, Lee SC, Han CS: Production of medium-chain-length polyhydroxyalkanoates by high-cell-density cultivation of Pseudomonas putida under phosphorus limitation. Biotechnol Bioeng 2000, 68: 466–470. 10.1002/(SICI)1097-0290(20000520)68:4<466::AID-BIT12>3.0.CO;2-T
Article
CAS
PubMed
Google Scholar
Lee H-J, Rho JK, Noghabi KA, Lee SE, Choi MH, Yoon SC: Channeling of intermediates derived from medium-chain fatty acids and de novo-synthesized fatty acids to polyhydroxyalkanoic acid by 2-bromooctanoic acid in Pseudomonas fluorescens BM07. J Microbiol Biotechnol 2004, 14: 1256–1266.
CAS
Google Scholar
Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA: Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Colloids Surf B Biointerfaces 2010, 81: 397–405. 10.1016/j.colsurfb.2010.06.026
Article
CAS
PubMed
Google Scholar
Maier RM, Soberón-Chávez G: Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 2000, 54: 625–633. 10.1007/s002530000443
Article
CAS
PubMed
Google Scholar
Maneerat S: Production of biosurfactants using substrates from renewable resources. Songklanakarin J Sci Technol 2005, 27: 675–683.
Google Scholar
Marsudi S, Unno H, Hori K: Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2008, 78: 955–961. 10.1007/s00253-008-1388-3
Article
CAS
PubMed
Google Scholar
Mata-Sandoval JC, Karns J, Torrents A: High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J Chromatogr A 1999, 864: 211–220. 10.1016/S0021-9673(99)00979-6
Article
CAS
PubMed
Google Scholar
Monteiro SA, Sassaki GL, de Souza LM, Meira JA, de Araujo JM, Mitchell DA, Ramos LP, Krieger N: Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 2007, 147: 1–13. 10.1016/j.chemphyslip.2007.02.001
Article
CAS
PubMed
Google Scholar
Mulligan CN: Environmental applications for biosurfactants. Environ Pollut 2005, 133: 183–198. 10.1016/j.envpol.2004.06.009
Article
CAS
PubMed
Google Scholar
Mulligan CN, Gibbs BF: Factors influencing the economics of biosurfactants. In Biosurfactants, production, properties, applications. Edited by: Kosaric N. New York: Marcel Dekker; 1993.
Google Scholar
Ochsner UA, Reiser J: Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 1995, 92: 6424–6428. 10.1073/pnas.92.14.6424
Article
CAS
PubMed Central
PubMed
Google Scholar
Pantazaki AA, Dimopoulou MI, Simou OM, Pritsa AA: Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl Microbiol Biotechnol 2010, 88: 939–951. 10.1007/s00253-010-2802-1
Article
CAS
PubMed
Google Scholar
Pantazaki AA, Ioannou AK, Kyriakidis DA: A thermostable beta-ketothiolase of polyhydroxyalkanoates (PHAs) in Thermus thermophilus : purification and biochemical properties. Mol Cell Biochem 2005, 269: 27–36. 10.1007/s11010-005-2992-5
Article
CAS
PubMed
Google Scholar
Pantazaki AA, Papaneophytou CP, Pritsa AG, Liakopoulou-Kyriakides M, Kyriakidis D: Production of polyhydroxyalkanoates from whey by Thermus thermophilus HB8. Process Biochem 2009, 44: 847–853. 10.1016/j.procbio.2009.04.002
Article
CAS
Google Scholar
Pantazaki AA, Tambaka MG, Langlois V, Guerin P, Kyriakidis DA: Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus : purification and biochemical properties of PHA synthase. Mol Cell Biochem 2003, 254: 173–183. 10.1023/A:1027373100955
Article
CAS
PubMed
Google Scholar
Pearson JP, Pesci EC, Iglewski BH: Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997, 179: 5756–5767.
CAS
PubMed Central
PubMed
Google Scholar
Price NP, Ray KJ, Vermillion K, Kuo TM: MALDI-TOF mass spectrometry of naturally occurring mixtures of monorhamnolipids and dirhamnolipids. Carbohydr Res 2009, 344: 204–209. 10.1016/j.carres.2008.10.013
Article
CAS
PubMed
Google Scholar
Qi Q, Steinbüchel A, Rehm BH: In vitro synthesis of poly(3-hydroxydecanoate): purification and enzymatic characterization of type II polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2000, 54: 37–43. 10.1007/s002530000357
Article
CAS
PubMed
Google Scholar
Rahim R, Ochsner UA, Olvera C, Graninger M, Messner P, Lam JS, Soberón-Chávez G: Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Mol Microbiol 2001, 40: 708–718. 10.1046/j.1365-2958.2001.02420.x
Article
CAS
PubMed
Google Scholar
Reddy CS, Ghai R, Rashmi Kalia VC: Polyhydroxyalkanoates: an overview. Bioresour Technol 2003, 87: 137–146. 10.1016/S0960-8524(02)00212-2
Article
CAS
PubMed
Google Scholar
Rehm BH: Polyester synthases: natural catalysts for plastics. Biochem J 2003, 376: 15–33. 10.1042/BJ20031254
Article
CAS
PubMed Central
PubMed
Google Scholar
Rehm BH, Mitsk A, Steinbüchel A: Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads : establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli . Appl Environ Microbiol 2001, 67: 3102–3109. 10.1128/AEM.67.7.3102-3109.2001
Article
CAS
PubMed Central
PubMed
Google Scholar
Rehm BH, Steinbüchel A: Biochemical and genetic analysis of PHA synthases and other proteins required for PHA synthesis. Int J Biol Macromol 1999, 25: 3–19. 10.1016/S0141-8130(99)00010-0
Article
CAS
PubMed
Google Scholar
Ren Q, De Roo G, Kessler B, Witholt B: Recovery of active medium-chain-length-poly-3-hydroxyalkanoate polymerase from inactive inclusion bodies using ion-exchange resin. Biochem J 2000, 349: 599–604. 10.1042/0264-6021:3490599
Article
CAS
PubMed Central
PubMed
Google Scholar
Robert M, Mercade ME, Bosch MP, Parra JL, Espiny MJ, Manresa MA, Guinea J: Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44 T1. Biotechnol Lett 1989, 11: 871–874. 10.1007/BF01026843
Article
CAS
Google Scholar
Rooney AP, Price NP, Ray KJ, Kuo TM: Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol Lett 2009, 295: 82–87. 10.1111/j.1574-6968.2009.01581.x
Article
CAS
PubMed
Google Scholar
Rosenberg E, Ron EZ: High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 1999, 52: 154–162. 10.1007/s002530051502
Article
CAS
PubMed
Google Scholar
Rusendi D, Sheppard JD: Hydrolysis of potato processing waste for the production of poly-β-hydroxybutyrate. Bioresour Technol 1995, 54: 191–196. 10.1016/0960-8524(95)00124-7
Article
CAS
Google Scholar
Schenk T, Schuphan I, Schmidt B: High-performance liquid chromatographic determination of the rhamnolipids produced by Pseudomonas aeruginosa . J Chromatogr A 1995, 693: 7–13. 10.1016/0021-9673(94)01127-Z
Article
CAS
PubMed
Google Scholar
Sim L, Ward OP, Li ZY: Production and characterization of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 1997, 19: 232–238. 10.1038/sj.jim.2900450
Article
CAS
PubMed
Google Scholar
Soberón-Chávez G, Lépine F, Déziel E: Production of rhamnolipids by Pseudomonas aeruginosa . Appl Microbiol Biotechnol 2005, 68: 718–725. 10.1007/s00253-005-0150-3
Article
PubMed
Google Scholar
Syldatk C, Lang S, Matulovic U, Wagner F: Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomon as species DSM 2874. Z Naturforsch C 1985, 40: 61–67.
CAS
PubMed
Google Scholar
Valappil SP, Misra SK, Boccaccini AR, Roy I: Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 2006, 3: 853–868. 10.1586/17434440.3.6.853
Article
CAS
PubMed
Google Scholar
Wagner F, Bock H, Kretschmer A, Lang S, Syldatk C: Production and chemical characterization of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons. In Microbial enhanced oil recovery. Tucson, Arizona Edited by: Zajic JE, Cooper DG, Jack TR, Kosaric N. 1983, 55–60.
Google Scholar
Zgola-Grzéskowiak A, Kaczorek E: Isolation, preconcentration and determination of rhamnolipids in aqueous samples by dispersive liquid-liquid microextraction and liquid chromatography with tandem mass spectrometry. Talanta 2011, 83: 744–750. 10.1016/j.talanta.2010.10.037
Article
PubMed
Google Scholar
Zinn M, Witholt B, Egli T: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 2001, 53: 5–21. 10.1016/S0169-409X(01)00218-6
Article
CAS
PubMed
Google Scholar