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Genome‑wide identification of the GATA 
transcription factor family and their expression 
patterns under temperature and salt stress 
in Aspergillus oryzae
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Abstract 

GATA transcription factors (TFs) are involved in the regulation of growth processes and various environmental stresses. 
Although GATA TFs involved in abiotic stress in plants and some fungi have been analyzed, information regarding 
GATA TFs in Aspergillus oryzae is extremely poor. In this study, we identified and functionally characterized seven GATA 
proteins from A. oryzae 3.042 genome, including a novel AoSnf5 GATA TF with 20-residue between the Cys-X2-Cys 
motifs which was found in Aspergillus GATA TFs for the first time. Phylogenetic analysis indicated that these seven 
A. oryzae GATA TFs could be classified into six subgroups. Analysis of conserved motifs demonstrated that Aspergil-
lus GATA TFs with similar motif compositions clustered in one subgroup, suggesting that they might possess similar 
genetic functions, further confirming the accuracy of the phylogenetic relationship. Furthermore, the expression pat-
terns of seven A. oryzae GATA TFs under temperature and salt stresses indicated that A. oryzae GATA TFs were mainly 
responsive to high temperature and high salt stress. The protein–protein interaction network of A. oryzae GATA TFs 
revealed certain potentially interacting proteins. The comprehensive analysis of A. oryzae GATA TFs will be beneficial 
for understanding their biological function and evolutionary features and provide an important starting point to fur-
ther understand the role of GATA TFs in the regulation of distinct environmental conditions in A. oryzae.
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Introduction
GATA transcription factors (TFs) constitute a family pro-
teins that is characterized by the presence of one or two 
highly conserved type-IV zinc fingers (Cys-X2-Cys-X17-20-
Cys-X2-Cys) and a DNA-binding domain that recognizes 
the conserved (A/C/T)-G-A-T-A- (A/G) sequence in the 
promoter sequence of target genes (Scazzocchio 2000; 
Lowry and Atchley 2000). In fungi, GATA TFs are mainly 
involved in nitrogen regulation and light responses, 

regulation of sexual and/or asexual reproduction, and 
secondary metabolism. GATA TFs AreB and AreA are 
not only involved in nitrogen and carbon metabolism, 
but also in the control of several complex cellular pro-
cesses such as transport and secondary metabolism (SM) 
(Pfannmüller et  al. 2017; Chudzicka-Ormaniec et  al. 
2019). SreA is involved in the regulation of siderophore 
biosynthesis and iron uptake (Oberegger et  al. 2010; 
Schrettl et  al. 2008), and NsdD regulates sexual and/or 
asexual reproduction and the production of SMs (Lee 
et al. 2014, 2016; Niehaus et al. 2017). Furthermore, few 
fungal GATA TFs also play important roles in response 
to abiotic stresses. Alternaria alternata SreA is related to 
the maintenance of cell wall integrity (Chung et al. 2020), 
while Blastomyces dermatitidis SreB strongly expresses 
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and contributes to filamentous growth at 22 ℃ via lipid 
metabolism (Marty et al. 2015). Additionally, GLN3 and 
GAT1 have been shown to be involved in salt tolerance in 
Saccharomyces cerevisiae (Crespo et al. 2001). However, 
reports regarding the function of GATA TFs filamentous 
fungi in response to abiotic stress factors are limited.

Aspergillus oryzae is an important filamentous fungus, 
which is widely used in East Asian traditional fermented 
food products (Kitamoto 2015). During fermentation, 
A. oryzae is exposed to various environmental stress 
factors. Temperature is the most important environ-
mental factor affecting the growth and activity of micro-
organisms and can directly affect the activity of enzymes 
involved in substrate digestion during fermentation pro-
cess (Chen et al. 2011; Bechman et al. 2012). In addition, 
high sodium chloride concentration, which inhibits the 
growth of spoilage bacteria in soy sauce mash, also affects 
the growth of A. oryzae (Wang et  al. 2013; Fernandes 
et  al. 2018). Therefore, the ability of A. oryzae to adapt 
to different temperatures and high salt concentrations 
have attracted attention, although the molecular mecha-
nisms underlying their response to these stress factors 
still remain unclear. Previous studies have demonstrated 
that GATA TFs are mainly involved in regulation of vari-
ous temperature and salt stress stimuli in few fungi (Sca-
zzocchio 2000; Crespo 2001; Marty et al. 2015). Although 
the Fungal Transcription Factor Database (FTFD) and 
Kobayashi et  al. have publicized six A. oryzae GATA 
TFs, which are involved in nitrogen regulation, light 
responses, regulation of sexual and/or asexual reproduc-
tion, and SM (Kobayashi et  al. 2007), studies regarding 
a comprehensive analysis of A. oryzae 3.042 GATA TFs 
are lacking. Therefore, the aim of this study was to ana-
lyze the structural characteristics, evolutionary features, 
conserved motifs, and expression patterns of A. oryzae 
GATA TFs under temperature and salt stress. Further-
more, the expression patterns and the results of protein–
protein interaction (PPI) can establish a good foundation 
for further studies on the function and the mechanism of 
A. oryzae GATA TFs in abiotic stress responses.

Materials and methods
Identification of A. oryzae GATA TFs
The A. oryzae 3.042 genome was downloaded from 
NCBI database (https://​www.​ncbi.​nlm.​nih.​gov/​genom​e/?​
term=​Asper​gillus+​oryzae). The BLASTP program, with 
a threshold e-value of 1e-10, was used to predict GATA 
TFs in the A. oryzae 3.042 genome, using gene sequences 
from Aspergillus as query sequences. All potential A. 
oryzae GATA TFs were identified using HMMER3.1 and 
were predicted if they contained ZnF-GATA domains 
(PF00320). The sequences that generated hits with 
GATA-type zinc finger genes encoding GATA zinc-finger 

domains (PF00320) were considered as GATA TFs. CDD 
and PFAM databases were used to validate all the poten-
tial A. oryzae GATA TFs. Finally, seven query sequence 
IDs of Ao3042_00752, Ao3042_04581, Ao3042_01136, 
Ao3042_04436, Ao3042_04150, Ao3042_05944, and 
Ao3042_05500 contain ZnF-GATA domains.

To determine the chromosomal locations of the seven 
identified A. oryzae GATA TFs, locus coordinates were 
downloaded from the A. oryzae RIB40 genomics data-
base. The distribution of seven A. oryzae TFs on the 
chromosomes was drawn using MG2C (mg2c.iask.in/
mg2c_v2.0/) and visualized using MapChart  2.2 (Voor-
rips 2002).

Multi sequence alignment and phylogenetic analysis
ClustalW was used to align A. oryzae GATA TF proteins. 
The protein sequences of known GATA TFs in all other 
Aspergillus were downloaded from fungal transcrip-
tion factor databases (FTFD, http://​ftfd.​snu.​ac.​kr/​index.​
php?a=​view). The sequences of GATA TFs in A. oryzae 
and other Aspergillus species were also aligned using 
ClustalW to analyze the phylogenetic relationships of 
all Aspergillus GATA TFs. A neighbor-joining (NJ) tree 
was constructed based on alignment results in MEGA6.0 
with bootstrap replications of 1000. The sequence IDs of 
GATA TFs used to construct the phylogenetic NJ tree is 
shown in Additional file 1: Table S1.

Motif analysis of A. oryzae and other Aspergillus GATA 
transcription factors
MEME was used to predict and analyze motifs of A. ory-
zae GATA proteins, which were visualized using TBtools 
(Chen et  al. 2011). The parameters were set to zero or 
one of a contributing motif site per sequence, and the 
numbers of motifs chosen was five; motif widths were set 
to 6 and 50 (Wu et al. 2016). The other parameters were 
set to default values. Each motif was individually checked 
so that only motifs with e-value of < 1e-10 were retained 
for motif detection in A. oryzae GATA proteins.

Effects of temperature and salinity treatment on A. oryzae 
growth
A. oryzae 3.042 (CICC 40,092), the main fermentation 
strain used in industry, was selected to test the growth 
of A. oryzae under temperature and salt stress. A. ory-
zae conidia were inoculated in fresh potato dextrose agar 
(PDA) medium and cultured at 22, 25, 30, 35 and 42  °C 
for 72 h to investigate the effects of temperature; the opti-
mum growth temperature of A. oryzae, 30  °C, was used 
as the control temperature. PDA media with final salt 
concentration of 5.0, 10.0, 12.5 and 15.0 g/100 mL NaCl 
were prepared to assess the effects of salinity stress on 
A. oryzae. Medium without salt was used as the control 

https://www.ncbi.nlm.nih.gov/genome/?term=Aspergillus+oryzae
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medium. Two microliters of freshly prepared A. oryzae 
suspension containing 1 × 107 conidia were inoculated 
on the medium to analyze phenotypes. To determine 
the effect of these two abiotic stresses on fungal viability, 
100 µL of 1 × 107 conidia suspension was inoculated per 
plate covered with cellophane (Solarbio, Beijing, China); 
the fungal mycelia were collected after 72  h of incuba-
tion. The fungal mycelia were then dried overnight, and 
the dry biomass was tested. Material for RNA extraction 
was also collected simultaneously. The experiments were 
performed in triplicate.

Quantitative real‑time polymerase chain reaction 
(qRT‑PCR) for analyzing the expression of A. oryzae GATA 
TFs in response to temperature and salinity stress
Total RNA was extracted using an Omega plant RNA 
kit (Omega Bio-Tek, Georgia, USA) according to the 
manufacturer’s instructions. One microgram of RNA 
was reverse-transcribed into cDNA using PrimeScript™ 
RT reagent with the gDNA Eraser kit (TaKaRa, Dalian, 
China). A. oryzae GATA TF primers were designed using 
the Primer-BLAST tool (https://​www.​ncbi.​nlm.​nih.​gov/​
tools/​primer-​blast) (Additional file  2: Table  S2). Gene 
expression levels were determined by perfoming qRT-
PCR on a Bio-rad CFX96 Touch instrument (Bio-Rad, 
USA) using TB Premix Ex Taq II (TaKaRa) according 
to the manufacturer’s instructions. Data were analyzed 
using Bio-rad CFX96 software and the 2−△△CT method 
(Livak and Schmittgen 2001). The histone  H1  gene was 
used as the reference gene in qRT-PCR analysis.

Construction of protein–protein interaction network
Protein–protein interaction (PPI) data were obtained 
from the online database of STRING (https://​string-​db.​
org/), which is an open source software for predicting and 
visualizing complex networks. These interactions were 
derived from literature regarding experimental validation 
of physical interactions and enzymatic reactions associ-
ated with signal transduction pathways. The PPI net-
works were visualized in biological graph-visualization 

tool Cytoscape with the nodes representing proteins/
genes (Pathan et al. 2015).

Results
Characteristics of A. oryzae GATA TFs
BLASTP analysis was used to check predicted the GATA 
TFs from the A. oryzae 3.042 genome. All potential A. 
oryzae GATA proteins were used to identify ZnF_GATA 
domains (PF00320) using HMMER3.1. In total, seven 
A. oryzae GATA TFs were identified, and were named 
AoAreA, AoAreB, AoLreA, AoLreB, AoNsdD, AoSnf5 and 
AoSreA corresponding to the names of fungal orthologs 
(Table 1). The lengths of the A. oryzae GATA TFs ranged 
from 313 (AoAreB) to 867 (AoAreA) amino acid. The 
details of these A. oryzae GATA TFs, such as ZnF_GATA 
motif type, number of ZnF_GATA domains, sizes of the 
deduced peptides, and their homologous gene IDs, are 
listed in Table 1.

The GATA DNA binding domain is a conserved type-
IV zinc-finger motif containing the Cys-X2-Cys-X17-20-
Cys-X2-Cys motif. The zinc-finger motifs of Cys-X2-Cys 
-X17-20-Cys -X2-Cys differed among the seven A. oryzae 
GATA proteins. Six A. oryzae GATA domains contained 
the Cys-X2-Cys-X17/ 18-Cys-X2-Cys motif as reported in 
other fungi, while 20 residues were present in the zinc-
finger loop of AoSnf5 between the Cys-X2-Cys motifs, 
which has rarely been found in fungi (Teakle and Gilmar-
tin 1998; Scazzocchio 2000) (Table  1; Fig.  1a). Interest-
ingly, AoSreA harbored two highly conserved type-IV 
zinc-finger motifs with Cys-X2-Cys-X17-Cys-X2-Cys 
(Table 1; Fig. 1a), which usually occur in animals (Patient 
and Mcghee 2002). Apart from the ZnF_GATA domain, 
additional domains such as TFIIB zinc-binding domain, 
AreA-N, SNF5/INI1, and PAS were also characterized 
(Table  1; Fig.  1b). Previous studies have demonstrated 
that the PAS domain mainly functions in sensing envi-
ronmental or physiological signals including oxidative 
and heat stress (Nan et  al. 2011; Corrada et  al . 2016). 
Therefore, extra domains present in A. oryzae GATA may 
also play the same role in diverse environmental stresses 

Table 1  The characteristics of A. oryzae GATA TFs

Name Protein ID Peptide (aa) ZnF_GATA Motif type Number domain of 
ZnF_GATA​

Homologous ID Extra domain

AoSreA EIT82081.1 567 Cys-X2-Cys-X17-Cys- X2-Cys 2 KOC08900.1 TFIIB zinc-binding

AoAreB EIT79032.1 313 Cys-X2-Cys-X17-Cys- X2-Cys 1 XP_002379623.1 TFIIB zinc-binding

AoAreA EIT72728.1 867 Cys-X2-Cys-X17-Cys- X2-Cys 1 RAQ50831.1 AreA_N

AoLreB EIT79273.1 496 Cys-X2-Cys-X18-Cys- X2-Cys 1 RAQ50386.1 PAS

AoNsdD EIT79449.1 504 Cys-X2-Cys-X18-Cys- X2-Cys 1 KOC07076.1 -

AoLreA EIT77832.1 283 Cys-X2-Cys-X18-Cys- X2-Cys 1 XP_002384232.1 PAS

AoSnf5 EIT78280.1 570 Cys-X2-Cys-X20-Cys- X2-Cys 1 XP_022385751.1 SNF5/INI1

https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://www.ncbi.nlm.nih.gov/tools/primer-blast
https://string-db.org/
https://string-db.org/


Page 4 of 13Jiang et al. AMB Expr           (2021) 11:56 

and may facilitate the functional analysis of A. oryzae 
GATA TFs.

In addition, the chromosomal location of A. oryzae 
GATA TFs revealed their random distribution in the A. 
oryzae genome. Here, the seven GATA TFs of A. oryzae 
3.042 were mapped to the first complete genome of A. 
oryzae strain RIB40. The chromosomal distribution of 
A. oryzae GATA TFs was visualized using the MapChart 
program. The seven A. oryzae GATA TFs were randomly 
distributed on chromosomes 1, 3, 4, and 6 (Fig. 1c). Inter-
estingly, AoAreB, AoSreA, and AoSnf5 clustered into 
the same subgroup in the NJ tree (Fig. 1b) and were dis-
tributed on the same chromosome, which indicates a 

close evolutionary relationship among them. The chro-
mosomal location of A. oryzae GATA TFs may assist in 
determining the exact sequence of events.

Phylogenetic analysis of the Aspergillus GATA TFs
A NJ_tree was constructed using MEGA6.0 for mul-
tiple sequence alignment of all Aspergillus GATA TFs 
with 1000 bootstrap replications to analyze phyloge-
netic relationships between the A. oryzae GATA TFs and 
other Aspergillus GATA TFs with ZnF_GATA domains. 
All the Aspergillus GATA TFs were divided into seven 
subgroups in the NJ tree based on the number of ZnF_
GATA domains and zinc finger motifs of GATA domain 

Fig. 1  Alignment of conserved domain, prediction of functional domains, and chromosomal location of A. oryzae GATA TFs. a Alignment of the 
DNA interacting domain of A. oryzae GATA TFs. Cysteines from the Cys-X2-Cys-X17/18/20-Cys-X2-Cys domain are indicated by an asterisk above the 
sequence alignment. The 17, 18, and 20 numbers indicate the amino acid residues between Cys-X2-Cys. b Seven A. oryzae GATA proteins were 
aligned and clustered using MEGA6.0, and their ZnF_GATA domains are shown in red beside the neighbor-joining tree. c The distribution of A. 
oryzae GATA TFs on chromosomes. The vertical columns represent chromosomes; gene names are shown at the side of chromosomes
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sequences with other Aspergillus GATA TFs from FTFD, 
including six known subgroups of WC1, WC2, NSDD, 
SRP, ASD4, NIT2 and one unknown function subgroup 
(Fig.  2). Seven A. oryzae GATA TFs were scattered in 
the six subgroups with other Aspergillus GATA TFs, 
functions of which have been reported, while the novel 
AoSnf5 GATA TF also clustered in the NSDD subgroups 
together with AoNsdD. The function of the different 

GATA subgroups vary. For example, the GATA TFs of 
WC1 and WC2 subgroups are mainly involved in the 
regulation of blue- and red-light responses (Purschwitz 
et  al. 2008; Purschwitz et  al. 2013). Nitrogen regulation 
is regulated by the process of nitrogen catabolite repres-
sion which controls gene expression via GATA TFs of 
the NIT2 and ASD4 subgroup in yeasts and filamentous 
fungi (Pfannmüller et  al. 2017; Pomraning et  al. 2017; 

Fig.2  Phylogenetic analysis of A. oryzae and other Aspergillus TFs. GATA protein sequences were aligned using ClustalW in MEGA6.0 software using 
default parameters. The consensus NJ tree represents 1000 bootstrap replications. Bootstrap values are displayed as nodes. The protein sequences 
of Aspergillus GATA TFs were downloaded from FTFD. The Aspergillus GATA TFs are classified into seven subgroups in the NJ tree, including one 
group with unknown function. Seven A. oryzae GATA TFs are scattered in six known subgroups, and the novel AoSnf5 also clustered in the NSDD 
subgroups together with AoNsdD
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Michielse et  al. 2014). Therefore, the AoLreA, AoLreB, 
AoAreA, and AoAreB divided into WC1, WC2, NIT2, 
and ASD4 subgroups, respectively, might also be involved 
in light responses or nitrogen regulation as reported. In 
addition, NsdD has been shown not only to affect sexual 
and asexual reproduction, but also secondary metabo-
lism in Aspergillus (Lee et  al. 2014, 2016), which could 
help in determining the function of AoNsdD and Aosnf5 
assigned to the NSDD subgroup.

Analysis of conserved motifs in A. oryzae GATA TFs
To obtain insights regarding the diversity of motif com-
positions in A. oryzae GATA TFs, the conserved motifs 
in the A. oryzae and other Aspergillus GATA TFs were 
predicted using the MEME4.11.4 online software. In 
total, five conserved motifs were identified. The relative 
locations of these motifs within the protein are shown 
in Fig.  3. The identified consensus sequence of the five 
motifs is shown in Additional file 4: Figure S1. A typical 
zinc-finger structure composed of motif 1 and motif 2 
was observed in all Aspergillus GATA TFs; however, the 

compositions of GATA TF motifs also contained differ-
ent variable regions. As expected, GATA members that 
had similar motif compositions could be clustered into 
one subgroup, which suggested they may perform similar 
genetic functions within the same subgroups. In addition, 
the motif distribution further confirmed the accuracy of 
the phylogenetic relationship of Aspergillus GATA TFs. 
The distribution of motifs in different subgroups indi-
cated functional differentiation in GATA TFs during 
evolution.

Effects of different temperature and salinity treatments 
on the growth of A. oryzae
Temperature and salt concentration are two of the most 
important environmental factors affecting the growth 
and fermentation of A. oryzae during fermentation 
(Chen et al. 2011; Bechman et al. 2012; Wang et al. 2013). 
Therefore, we investigated the growth of A. oryzae under 
different temperature and salt concentration stresses. 
The optimum temperature for A. oryzae growth usu-
ally ranges from 30 to 35 °C. Low and high temperatures 

Fig.3  The conserved motif arrangement of A. oryzae and other Aspergillus GATA TFs based on their phylogenetic relationships. A NJ tree was 
predicted from the amino acid sequences of GATA TFs using ClustalW and MEGA6.0 with 1, 000 bootstrap replications. The conserved motifs in the 
GATA TFs were identified using MEME. In total, five conserved motifs were identified and are shown in different colors



Page 7 of 13Jiang et al. AMB Expr           (2021) 11:56 	

significantly inhibited mycelial growth, especially at the 
temperature of 22 and 42 ℃ (Fig. 4a(a–e), b). In addition, 
high salt concentration also significantly inhibited hyphal 
growth and differentiation of A. oryzae, and the inhibi-
tory effect increased with salt concentration (Fig. 4a(f–j), 
c). Furthermore, the formation and development of A. 
oryzae spores, which shows yellow-green color in the 
middle of the fungal colony, were also inhibited under 
low- and high-temperature and high salinity stresses 
(Fig. 4a, d and e).

Expression patterns of A. oryzae GATA TFs in response 
to temperature and salinity stresses
To determine the roles of A. oryzae GATA TFs in 
response to abiotic stresses, we analyzed the expres-
sion level of the seven A. oryzae GATA TFs using qRT-
PCR in A. oryzae that grew at different temperatures 
and salt concentrations (Fig. 5). and observed that their 
expression varied under different temperatures and salt 
stresses. With the exception of the AoSnf5, the six other 
A. oryzae GATA TFs strongly responded to low or high 
temperatures (Fig. 5a). AoSreA and AoNsdD showed the 
same expression trend, as they were significantly induced 
at low temperature (22 ℃) and inhibited at high tem-
perature (42 ℃) compared with CK (30 ℃). In addition, 
AoAreB, AoLreA, and AoLreB, especially AoAreB, were 
remarkably upregulated at high temperature compared to 
CK (30 ℃) (Fig. 5a). Interestingly, only AoAreA was inhib-
ited at both low and high temperature. Furthermore, 
AoAreA, AoSreA, and AoAreB were significantly down-
regulated under high-salt concentration stress, while 
AoLreA, AoNsdD, and AoSnf5 were upregulated in the 
presence of 5.0 and 10.0 g/100 mL NaCl (Fig. 5b). In addi-
tion, we compared the results of qRT-PCR analysis with 
the transcriptional data of the seven TFs in response to 
salt stress. We observed strong correlation between the 
results of qRT-PCR and those obtained using RNA-seq 
(Pearson correlation, R2 = 0.9044 (Additional file  5: Fig-
ure S2). Together, the results highlighted the importance 
of A. oryzae GATA TFs in response to temperature and 
high salt stresses and provided a basis for future studies 
into the function of A. oryzae GATA in abiotic stresses.

PPI network of A. oryzae GATA TFs
To analyze the functions of A. oryzae GATA TFs, a 
PPI network was constructed using the data from the 
STRING database, and only two independent PPI net-
work of AoAreA and AoSreA was obtained (Fig.  6a, 
b). Furthermore, we observed that both AoAreA and 
AoSreA interacted with CreA, and that CreA deletion 
mutants showed less conidiation than the wild type and 
sensitivity to salt stress (Hou et al. 2018). Therefore, the 
expression levels of AoAreA, AoSreA, and AoCreA were 

analyzed under temperature and salt stresses. AoSreA 
and AoCreA showed the same expression patterns under 
both low and high temperature stresses, while AoAreA 
and AoCreA exhibited opposite expression level at 22 
℃ (Fig.  6c). Interestingly, these three genes showed the 
same expression patterns under high salt concentration 
stress (Fig. 6d), which demonstrates that AoCreA may be 
positively coregulated by both AoAreA and AoSreA under 
salt stresses. Additionally, glutathione S-transferase 
(CADAORAP00007152), which is critical to abiotic 
stress was also found in the network of AoAreA (Favaloro 
et al. 2000). These results will be beneficial for identifying 
important proteins and biological modules that interact 
with A. oryzae GATA TFs and understanding the roles of 
A. oryzae GATA TFs in response to abiotic stresses. The 
detailed information regarding the proteins in the PPI 
network is listed in Additional file 3: Table S3.

Discussion
Transcription factors (TFs) regulate expression of genes 
that mediate growth processes and environmental 
response and are employed as a principal source of the 
diversity and change that underlie evolution (Riechmann 
and Ratcliffe 2000). Fungal GATA TFs are mainly involved 
in nitrogen metabolism (Michielse et al. 2014; Pfannmül-
ler et  al. 2017), light responses (Purschwitz et  al. 2008; 
Fuller et al. 2013), siderophore biosynthesis and mating-
type switching (Jung and Kronstad 2011). Few fungal 
GATA TFs, such as the SreA, SreB, LreA, LreB, GLN3, 
and GAT1, also participate in response to abiotic stresses, 
(Chung et al. 2020; Crespo et al. 2001; Purschwitz et al. 
2008; Fuller et al. 2013; Marty et al. 2015). In this study, 
we focused on the GATA TF family in A. oryzae 3.042 to 
define the genetic characteristics and improve our under-
standing regarding their role in response to temperature 
and salinity stresses. Seven GATA TFs were identified 
from the A. oryzae 3.042 genome using an HMM model, 
which was similar to the number of GATA TFs identified 
in the model fungi, Fusarium graminearum and Botrytis 
cinerea, which contain 7 and 7 GATA TFs, respectively 
(Zhang et al. 2014). The number of the GATA TFs is con-
served among A. clavatus, A. flavus, A. fumigatus, A. nid-
ulans, and A. niger that possess six GATA TFs, suggesting 
that the composition of GATA TFs in filamentous fungi 
is identical (Kim et al. 2006; Kobayashi et al. 2007). Inter-
estingly, A. oryzae contains one more GATA TF (AoSnf5) 
compared to these Aspergillus. Furthermore, we also 
detected the homologous gene of AoSnf5 in the genomes 
of Aspergillus species, which was annotated as unnamed 
or hypothetical protein; however, AoSnf5, encoding a 
GATA protein with 20 residues between the Cys-X2-Cys 
motifs, was identified as an Aspergillus GATA TF for the 
first time.
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Fig. 4  A. oryzae hyphal growth and differentiation under different stress factors for 72 h. a The phenotypes of A. oryzae under temperature and 
salinity stress. (a–e) Phenotypes of A. oryzae exposed to different temperature stresses (22, 25, 30, 35, and 42 ℃ from left to right). (f-j) 0.0, 5.0, 10.0, 
12.5, and 15.0 g/100 mL NaCl was used for salinity stress. b and c Colony diameter was determined by measuring diameter under different stress 
conditions. d and e Spore numbers were counted under temperature and salinity stresses. The spores were collected from colonies and suspended 
in sterile distilled water to obtain the spore suspension, and then the spore numbers were counted using a hemocytometer. The optimum growth 
temperature of A. oryzae (30 ℃), was used as the control temperature in the experiment. The PDA medium without NaCl used as the control in the 
salt treatment experiments. Results represent the average of three repetitions ± SEM (n = 3). Different letters in the bar chart represent significant 
differences (p < 0.01, Duncan’s multiple range test); the same letters in the bar chart represent absence of significant difference when compared to 
the control
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Although most GATA domains harbor a class-IV 
zinc-finger motif, their structure varies among king-
doms (Lowry and Atchley 2000). In plants, most GATA 
domains have a single Cys-X2-Cys-X18-Cys-X2-Cys motif, 
but some harbor more than two zinc-finger motifs or 
20 residues within zinc-finger loops (Reyes et  al. 2004; 
Behringer and Schwechheimer 2015). In animals, the 
GATA domain harbors two zinc-finger motifs with Cys-
X2-Cys-X17-Cys-X2-Cys, but only the C-terminal finger 
is associated with DNA binding (Patient and Mcghee 
2002). Fungal GATA TFs are combination of both ani-
mal and plant GATA TFs in terms of the amino acid 
residues present in the zinc-finger loop (Teakle and 
Gilmartin 1998). The majority of fungal GATA TFs con-
tain a single zinc-finger domain and fall into two different 
categories: animal-like with 17-residue loops (Cys-X2-
Cys-X17-Cys-X2-Cys), and plant-like with 18-residue 
loops (Cys-X2-Cys-X18-Cys-X2-Cys) (Teakle and Gilmar-
tin 1998; Scazzocchio 2000; Patient and Mcghee 2002). 
Nineteen- and 20-residue zinc-finger loops (Cys-X2-Cys-
X19-20-Cys-X2-Cys) are also found in fungi, albeit rarely 
(Scazzocchio 2000; Maxon and Herskowitz 2001). With 
the exception of the 17- and 18-residue zinc-finger loops 
in A. oryzae GATA TFs, the novel AoSnf5 contains 20 res-
idues in the zinc-finger loops (Cys-X2-Cys-X20-Cys-X2-
Cys), which are rarely found in fungi (Table1 and Fig. 1). 
To the best of our knowledge, this is the first study to 
identify GATA TFs with 20-residue zinc-finger loops in 
Aspergillus. In addition, AoSreA harbors two ZnF-GATA 
domains of Cys-X2-Cys-X17-Cys-X2-Cys type, which is 
the typical GATA characteristic of animals (Lowry and 
Atchley 2000; Patient and Mcghee 2002). Therefore, 

the features of A. oryzae GATA TFs demonstrated that 
A. oryzae GATA TFs might be the combination of both 
plant and animal GATA TFs, which is consistent with the 
report showing that fungal GATA TFs are combinations 
of both plant and animal GATA TFs in terms of the num-
bers of ZnF-GATA domains and amino acid residues pre-
sent in the zinc-finger loop.

In the phylogenetic tree, seven A. oryzae GATA pro-
teins and other Aspergillus GATA TFs were classified 
into seven subgroups. Consistent with the report of 
Kobayashi et al. (2007), six known A. oryzae GATA TFs 
were classified into six functional subgroups based on the 
number of ZnF_GATA domains and zinc finger motifs of 
GATA domain sequences with other Aspergillus GATA 
TFs from FTFD in the phylogenetic NJ tree. In addi-
tion, 11 Aspergillus GATA TFs clustered together in an 
unnamed subgroup (Fig.  2). The phylogenetic positions 
of fungal GATA TFs are different from those of animal 
and plant GATA TFs, and most fall into independent 
clusters. Fungal GATA TFs can be divided into seven 
phylogenetic subgroups named SRP, NIT2, ASD4, WC1, 
WC2, NSSDD, and SFH1(Kim et al. 2006; Yu et al. 2019). 
In this study, all the Aspergillus GATA TFs were divided 
into seven subgroups consistent with the phylogenetic 
analysis of fungal GATA TFs, and the unnamed subgroup 
of Aspergillus GATA TFs might correspond to the SNF1 
subgroup in the NJ tree. The GATA TFs of the SFH1 sub-
group contain a SNF5/SMARCB1/INI1 domain charac-
teristic of the Swi/Snf family of chromatin remodeling 
complex in S. cerevisiae (Klochendler-Yeivin and Yaniv 
2001). The biological functions of SFH1 GATA factors in 
filamentous ascomycetes have not yet been characterized. 

Fig. 5  Expression levels of A. oryzae GATA TFs in response to temperature and salt stresses. a The relative expression levels of A. oryzae GATA TFs 
responding to low- and high-temperature stresses. b The expression patterns of A. oryzae GATA TFs under different salt concentration stresses. The 
optimum growth temperature of A. oryzae (30 ℃) was used as the control temperature (CK) in the experiment. PDA medium without NaCl was used 
as the control (CK) under salt stress. Results show the average of three repetitions ± SEM (n = 3). Different letters represent significant differences 
(p < 0.01, Duncan’s multiple range test); same letters represent lack of significant difference when compared to the control
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Interestingly, AoSnf5, a newly identified GATA TF in our 
study, also contained a SNF5 domain similar to that pre-
sent in the SFH1 subgroup GATA TFs; however, AoSnf5 
clustered in NSDD subgroup together with AoNsdD 
(Fig.  2). Although we cannot explain this phenomenon 
yet, the identification of AoSnf5 GATA TF enriches the 
Aspergillus GATA TF family. Additionally, conserved 
motifs demonstrated that GATA TF members with simi-
lar motif compositions could be clustered into one sub-
group (Fig. 3), indicating that they may perform similar 

genetic functions within the same subgroups. In addition, 
the motif distribution further confirms the accuracy of 
the phylogenetic relationship of Aspergillus GATA TFs. 
The analyses of the phylogenetic tree and conserved 
motifs demonstrated that the GATA TFs among different 
Aspergillus were evolutionarily conserved and performed 
similar function within the same subgroups.

Although the GATA motif and DNA binding specificity 
were conserved, the rest of the protein was not, thereby 
leading to the same motif serving different purposes 

Fig. 6  Protein–protein interaction (PPI) network of A. oryzae GATA TFs. a, b The PPI network of AoAreA and AoSreA. (C, D) The relative expression 
levels of AoAreA and AoSreA were consistent with that of the interaction partner, AoCreA (p < 0.01, n = 3). The optimum growth temperature of A. 
oryzae (30 ℃) was used as the control temperature (CK) in the experiment. PDA medium without NaCl was used as the control (CK) under salt stress. 
The same letters represent lack of significant difference compared to the control when assessed using Duncan’s multiple range test
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in various contexts. Deletion of A. nidulans AreB has 
significant phenotypic effects on the utilization of spe-
cific carbon sources, confirming its role in the regula-
tion of carbon metabolism. AreB is shown to regulate 
the expression of AreA regulatory gene suggesting AreB 
has a range of indirect regulatory effects (Chudzicka-
Ormaniec et al. 2019). The functional difference between 
AreB and AreA mainly because of the difference in the 
component of conserved motifs (Fig. 3). The deletion of 
GATA gzf1 did not display a growth defect on any of the 
nitrogen sources tested in Yarrowia lipolytica, which is 
homologous to nitrogen starvation response gene A. nid-
ulans AreA (Pomraning et  al. 2017). Therefore, specific 
motif and structures contained in A. oryzae might per-
form functions related to special biological processes.

TFs are the key transcriptional regulators that exhibit 
different expression profiles under distinct physiological 
and environmental conditions and synchronize stimuli 
and response. Many studies have revealed the GATA TFs 
are involved in the regulation of various abiotic stress 
responses in plants (Peng et al. 2015; Gupta et al. 2017; 
Nutan et  al. 2019) and few fungi (Crespo et  al. 2001; 
Fuller et  al. 2013; Marty et  al. 2015; Chung et al. 2020). 
Temperature and salt concentration are two of the most 
important environmental factors affecting the growth of 
A. oryzae during fermentation (Machida et al. 2018; Chen 
et al. 2011; Bechman et al. 2012; Wang et al. 2013). AreA 
and AreB function as positive and negative transcrip-
tional regulators that regulat nitrogen and carbon metab-
olism in Fusarium fujikuroi and A. nidulans (Michielse 
et al.2014; Pfannmüller et al. 2017; Chudzicka-Ormaniec 
et al. 2019). The expression level of AoAreA and AoAreB 
showed opposite trends at high temperature (42 ℃) com-
pared to that of CK (30 ℃) in A. oryzae (Fig. 5a), which 
indicated AoAreA and AoAreB might also act as negative 
and positive transcriptional regulators under high-tem-
perature stress, respectively. The clustering of AoNsdD 
and AoSnf5 in the NSDD subgroup in the NJ tree (Fig. 2) 
was strongly induced under high salt stress. NsdD has 
been reported to be a key repressor affecting the quan-
tity of asexual spores in Aspergillus (Lee et  al. 2014, 
2016), although studies regarding the response of NsdD 
to adversity stress in Aspergillus are lacking. In addition 
to the regulation of siderophore biosynthesis and iron 
metabolism, SreA is also related to the maintenance of 
cell wall integrity and negatively impacts resistance, as 
ΔsreA increases resistance to H2O2, calcofluor white, and 
Congo red (Chung et al. 2020). AoSreA was significantly 
downregulated at 42 ℃ and under high salt stress, which 
indicates that AoSreA might negatively impact high 
temperature and high salt resistance. In contrast, AoS-
reA was significantly upregulated at 22 ℃, and a report 
shows that the SreB strongly expresses and contributes to 

filamentous growth at 22 ℃ via lipid metabolism in Blas-
tomyces dermatitidis (Marty et al. 2015). The ZnF_GATA 
domain is conserved in AoSreA and SreB (Additional 
file  6: Figure S3), which demonstrates that overexpres-
sion AoSreA in A. oryzae might also enhance the growth 
of mycelium at 22 ℃. Furthermore, AoCreA, protein of 
which interacts with AoSreA in the PPI network, has the 
same expression pattern as AoSreA, indicating that AoS-
reA might positively regulate AoCreA under temperature 
and high salt stresses. Interestingly, AoCreA expression 
was suppressed under high salt stress in A. oryzae, which 
is in contrast to the results of a previous study showing 
that ΔcreA mutants of Fusarium graminearum are sen-
sitive to salt stress (Hou and Wang 2018). However, the 
results provide insights regarding the critical role of 
SreA in resistance to different temperatures and high salt 
stresses in A. oryzae.

LreA and LreB, the GATA TFs of WC1 and WC2 sub-
groups, are involved in the regulation of blue- and red-
light responses (Purschwitz et al. 2008; Fuller et al.2013). 
AoLreA and AoLreB, belonging to WC1 and WC2 sub-
groups in the NJ tree (Fig. 2), act as a dimer and contain 
typical PAS dimerization domains shown in Table 1 and 
Fig.  1b. Previous studies have demonstrated that the 
PAS domain also functions in sensing environmental or 
physiological signals including oxidative and heat stress 
(Nan et al. 2011; Corrada et al. 2016). Therefore, except 
for the regulation of blue- and red-light responses, the 
PAS domains present in AoLreA and AoLreB may facili-
tate the environmental response of A. oryzae GATA 
TFs. Additionally, LreA and LreB is a regulatory com-
plex of the global regulator VeA, which plays a critical 
role in environmental stress response in A. cristatus; 
indeed, the ΔveA mutants are more sensitive to high salt, 
osmotic pressure, and temperature stress (Calvo 2008; 
Tan et al. 2018). In our study, AoLreA and AoLreB expres-
sion increased under high-temperature (42 ℃) stress, 
and AoLreA expression was significantly induced in the 
presence of 5.0 and 10.0  g/100  mL NaCl. These results 
demonstrated that AoLreA and AoLreB might act as a reg-
ulatory complex of the global regulator VeA in response 
to temperature and high salt stresses in A.oryzae.

In summary, we identified and functionally charac-
terized seven GATA TFs proteins from A. oryzae 3.042 
genome. Compared to the previous reports, A. oryzae 
contains one more GATA TF (AoSnf5), which encodes 
a GATA protein with 20 residues between the Cys-X2-
Cys motifs. To the best of our knowledge, this is the 
first study to identify GATA TFs with 20-residue zinc-
finger loops in Aspergillus. Our results may be useful 
for elucidating the evolutionary relationships, expres-
sion patterns, and functional divergence of GATA 
TFs in A. oryzae and enrich the Aspergillus GATA TF 



Page 12 of 13Jiang et al. AMB Expr           (2021) 11:56 

family. In addition, the expression patterns of these A. 
oryzae GATA TFs under distinct environmental condi-
tions provided useful information for further analysis 
of the function of A. oryzae GATA TFs in regulation of 
various abiotic stress responses in Aspergillus.
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