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Deletion of FaeG alleviated Enterotoxigenic 
Escherichia coli F4ac-induced apoptosis 
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Abstract 

Enterotoxigenic Escherichia coli (ETEC) F4ac is a major constraint to the development of the pig industry, which is 
causing newborn and post-weaning piglets diarrhea. Previous studies proved that FaeG is the major fimbrial subunit 
of F4ac E. coli and efficient for bacterial adherence and receptor recognition. Here we show that the faeG deletion 
attenuates both the clinical symptoms of F4ac infection and the F4ac-induced intestinal mucosal damage in piglets. 
Antibody microarray analysis and the detection of mRNA expression using porcine neonatal jejunal IPEC-J2 cells also 
determined that the absence of FaeG subunit alleviated the F4ac promoted apoptosis in the intestinal epithelial cells. 
Thus, targeted depletion of FaeG is still beneficial for the prevention or treatment of F4ac infection.
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Introduction
Enterotoxigenic Escherichia coli (ETEC) F4 is the leading 
cause of diarrhea in neonatal and post-weaning piglets 
(Sugiharto et  al. 2012; Van den Broeck et  al. 2002). The 
bacteria induce the disease depending on the interaction 
between fimbriae and host receptors, while fimbriae-
mediated attachment to the intestinal epithelium is the 
initial step in these infections (Xia et al. 2015b). Among 
these three fimbrial variants, i.e., F4ab, F4ac, and F4ad, 
F4ac is the most common serotype and FaeG is the major 
subunit of F4 fimbriae (Sugiharto et  al. 2012; Van den 
Broeck et  al. 2002). Our previous study has shown that 
FaeG mediates the binding of F4ac E. coli with both por-
cine brush border cells and IPEC-J2 cells and interacts 
with the receptor of F4 fimbriae directly (Xia et al. 2016, 
2015b).

Indeed, ETEC infections always increase intestinal epi-
thelial permeability, villus atrophy, crypt hyperplasia and 

excessive cell apoptosis due to the release of toxins or 
other virulence factors (Tsai et al. 2017; Wang et al. 2011; 
Zhou et al. 2012). F4 E. coli promotes intestinal epithelial 
cell (IEC) apoptosis in piglets, which is mostly associated 
with the extrinsic pathway of apoptosis and leading to the 
activation of caspase-3 and caspase-8, resulting in intes-
tinal barrier dysfunction and prolonged diarrhea (Xia 
et al. 2018b, 2019). The present study aims to investigate 
whether the FaeG subunit has a role in F4ac-induced 
cell apoptosis and the modulation of intestinal barrier 
function.

Material and methods
Bacterial strains, cell lines, and culture conditions
F4ac+ E. coli (G205 or C83902, O8:K87: F4ac) (Willem-
sen and de Graaf 1992) and the isogenic ΔfaeG mutant 
(Xia et al. 2015a) were grown in Luria Bertani (LB) media 
(Solarbio, Beijing, China) with continuous agitation 
(178 rpm) at 37 °C. Porcine neonatal jejunal IPEC-J2 cells 
were grown in DMEM (Gibco, Australia) supplemented 
with 10% fetal bovine serum (FBS, Gibco, Australia) at 
37  °C in a humidified incubator with an atmosphere of 
6%  CO2 (Xia et al. 2016).

Open Access

*Correspondence:  ppxia@yzu.edu.cn; yzgqzhu@yzu.edu.cn
1 College of Veterinary Medicine (Institute of Comparative 
Medicine), Yangzhou University, Yangzhou 12th East Wenhui Road, 
Yangzhou 225009, China
Full list of author information is available at the end of the article



Page 2 of 8Xia et al. AMB Expr           (2021) 11:44 

Animal infection experiment
Nine of 25-day-old Landrace and Large White 2-way 
crossbred Pigs were screened according to our previous 
studies (Xia et al. 2018a, 2015a). These piglets are suscep-
tible to  F4ac+ E. coli and randomized into three groups: 
the control group without ETEC infection, F4ac infected 
group and F4acΔfaeG infected group. Piglets were fed 
with 150,000 U/kg colistin for five days to clear intesti-
nal flora. Before bacterial inoculation, the piglets from all 
groups were challenged orally with 30–60 mL 1.4% (w/w) 
 NaHCO3 to neutralize gastric acid. After that, F4ac and 
F4acΔfaeG infected groups were fed with 3–5 mg/10 mL 
(5 ×  109 CFU/mL) bacteria every day for three consecu-
tive days, while the control group was fed with 10  mL 
PBS at the same time. Bodyweight and temperature were 
measured once a day from the day before infection, and 
the development of disease in these piglets was observed 
and recorded during the infectious process. Piglets were 
sacrificed using  CO2 gas after 5 days post infection.

Histological observation
The harvested segments of the duodenum, jejunum, and 
ileum were flushed and fixed with 10% neutral-buffered 
formalin at room temperature for 24–48  h prior to the 
following preparation of paraffin block. The tissue was 
dehydrated and virtually transparent before infiltrated 
with paraffin wax. The paraffin-embedded tissue section 
is trimmed and frozen at – 20 ℃ for 24 h. The tissue wax 
was sliced by a rotary microtome and readily flatten in a 
warm water bath with a temperature of 45 ℃. 4 μm thick 
microtomed slices were mounted on microscope slides 
and dried on a hot plate at 60 °C for 3 h and then will be 
ready for staining. For Methylene Blue staining, the sam-
ple slides were flooded on 0.5% methylene blue (Solarbio, 
Beijing, China) for 2–3 min and then rinsed in distilled 
water to remove the excess stain before observing under 
a microscope.  For Hematoxylin and eosin (H&E) stain-
ing, slides were deparaffinized and re-hydrated and then 
flushing with running water before stained the nucleus 
with hematoxylin (Solarbio, Beijing, China). After rinsing 
with water again, slides were quickly differentiated in 1% 
acid alcohol for 2 s and washed in tap water before coun-
terstained with 0.5% ammonia (Solarbio, Beijing, China) 
for 1  min. Later, slides were stained in eosin solution 
for 30 s to 1 min and then washed and mounted before 
examining under the Olympus DP73 digital microscope 
(Areia et al. 2008; Fischer et al. 2008).

Antibody microarray analysis
The Phospho Explorer Antibody Array kit used in this 
study was obtained from Full Moon BioSystems (cata-
log PEX100; Sunnyvale, CA, USA) and covered 1318 

well-characterized antibodies, the phosphorylated and 
non-phosphorylated state of these proteins will be 
detected at the same time (Pulito et  al. 2016). IPEC-J2 
cells were incubated with 5  mL (1 ×  109  CFU/mL) F4ac 
or F4acΔfaeG bacterial suspension in DMEM for 1  h, 
respectively. The normal DMEM is control. After that, 
cells were harvested in Full moon lysate supplemented 
with protease and phosphatase inhibitors, and lysis beads 
were used to ensure complete cell lysis during the vortex 
process. 50 μg protein sample was diluted in 75 μL labe-
ling buffer and treated with 3 μL Biotin/DMF (10 μg/μL) 
for 2  h at room temperature. 35  μl of stop reagent was 
added into the mixture and incubated for another 30 min, 
and then the resulting biotin-labeled proteins were used 
for chip hybridization.

The PEX100 chip were mounted in the coupling cham-
ber and flooded with protein coupling mix (the biotin-
labeled protein diluted with 3% skimmed milk powder in 
6 mL coupling reagent) for 2–3 h at room temperature. 
After following the washing procedures between each 
treatment, the chip was incubated with 0.1% Cy3-strepta-
vidin solution for 20  min and processed to Shanghai 
Ouyi Biomedical Technology Co., Ltd (Shanghai, China) 
for chip scanning and analysis. The raw data were read 
by GenePix™ Pro 6.0 software and the extent of protein 
phosphorylation was calculated by a ratio of the phos-
phorylated and non-phosphorylated values. The phos-
phoproteins showed a significant change (ratio ≥ 1.5 
or ≤ 0.667, and P-value < 0.05) were included for further 
study.

Quantitative real‑time PCR analysis
1 ×  109 CFUs F4ac or F4acΔfaeG bacteria were incubated 
with IPEC-J2 cell monolayer in a 6-well culture plate 
(NEST, Shanghai, China) for 1  h at 37  °C, then rinsed 
the well with PBS three times. Total RNA was extracted 
from infected and non-infected IPEC-J2 cells using TRI-
zol (TianGen, Beijing, China), respectively (Duan et  al. 
2013). The resulting cDNA was synthesized from 1  μg 
of total RNA using PrimeScript™ 1st strand cDNA Syn-
thesis Kit (Takara Bio, Tokyo, Japan). qRT-PCR reactions 
were performed in triplicate using UltraSYBR Mixture 
(Low ROX, CWBIOtech, China) to detect the change of 
protein expression with different stimuli, and the specific 
primers used in this experiment listed in Additional file 1: 
Table  S1. All data were normalized to the endogenous 
reference gene GAPDH and analyzed using the  2−△△CT 
method (Bustin et al. 2009).

ELISA analysis
Serum of piglets were collected and the change of 
d-lactate (d-LA) and diamine oxidase (DAO) concen-
trations between different groups were detected by 
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Enzyme-linked immunosorbent assay (ELISA) according 
to the manufacturer’s protocol (Colorful-Gene Biotech, 
Wuhan, China). After 1-h incubation, the cell-free super-
natant from either non-infected and 1 ×  109  CFU/mL 
F4ac or F4acΔfaeG infected group, 1 μg/mL FaeG protein 
and LPS treated group were harvested, and the concen-
trations of caspase-3 (Colorful-Gene Biotech, Wuhan, 
China), enzymatic activities of caspase-3, -8 and -9 (Bey-
otime, Beijing, China) were detected by ELISA as well.

Statistical analyses
The fold change of protein expression was compared 
among the different stimuli and assayed by quantitative 
RT-PCR and ELISA assay. The relative value between 
different groups were analyzed with a Student’s t-test 
or one-way ANOVA analysis using GraphPad  Prism® 
8.0 software (GraphPad Prism Inc., CA, USA) and SPSS 
16.0 software (SPSS Inc., USA). A p-value of < 0.05 was 
regarded as significant (*), < 0.01 and < 0.001 were marked 
as ** and ***, respectively.

Results
Deletion of FaeG weaken the F4ac induced intestinal 
mucosa damage in piglets.
To analyze the change of intestinal barrier function in 
piglets with F4ac or F4acΔfaeG infections, we performed 
an animal experiment using F4ac receptor-positive pig-
lets. During this process, the weight of piglets in the 
control group increases steadily, while piglets in F4ac 
infected group lost weight due to severe diarrhea (Addi-
tional file  1: Fig S1). Upon infection, food intake of the 
infected piglet gradually decreased along with a rough 
coat, depressed spirit, and continually diarrhea. From the 
second day post-infection, the piglets in F4ac infected 
group were mostly dirtied with feces on their hindquar-
ters. After the piglets exposed to  CO2, the abdominal 
cavity is opened to observe the pathological changes in 
the piglet with different treatments. Intestinal edema, 
mesenteric hemorrhage, congested blood vessel wall, 
and swollen mesenteric lymph nodes were present in 
F4ac infected piglets, while there was a mild symptom 
observed in F4acΔfaeG infected group.

Meanwhile, the duodenum, jejunum, and ileum seg-
ments were harvested for further H&E and methylene 
blue staining. The intestinal mucosa from the control 
group showed intact structure with neatly and tightly 
arranged villi, clear and well-organized intestinal wall, 
compared with the control group, F4acΔfaeG infected 
group exhibited a fractured intestinal mucosa layer in 
duodenum, as well as a much higher remained intact 
villi in jejunum and ileum (Fig. 1a). In contrast, in F4ac 
infected group, the intestinal mucosa layer was severely 
damaged, the intestinal villi markedly atrophied and 

shortened in length, and even necrotic and exfoliated in 
some intestinal tract, along with atrophy occurs in the 
intestinal glands and congestion in the blood vessel of the 
intestinal wall.

The result of methylene blue staining confirmed that 
the F4ac infection leading to reduced methylene blue 
absorption, while the intestinal epithelial mucosa of both 
non-infected and F4acΔfaeG infected group were stained 
blue, with villi uniform in length and arranged in an 
orderly manner (Fig. 1b). Moreover, in order to evaluate 
intestinal permeability, both d-LA and DAO concentra-
tions were detected in the serum of piglets. Moreover, 
following the results above, the serum levels of d-LA and 
DAO increased significantly upon F4ac infection, while 
they were markedly decreased in F4acΔfaeG infected 
group (Fig. 1c), suggesting that deletion of FaeG remark-
ably alters F4ac-induced impairment of the intestinal 
mucosa morphology and barrier function.

The faeG deletion alleviated the F4ac promoted apoptosis 
in the intestinal epithelial cells.
To find out whether the faeG deletion has an effect on 
the F4ac induced apoptosis in intestinal epithelial cells, 
we conducted the Phospho Explorer antibody microar-
ray PEX100 analysis to compare changes on 584 phos-
phorylation sites of 452 key proteins between F4ac and 
F4acΔfaeG infected IPEC-J2 cells and screened out 
thirty-three proteins that exhibited significant changes 
in phosphorylation levels. Compared with F4ac infected 
group, there are 11 proteins phosphorylation upregu-
lated and 22 proteins that were significantly downregu-
lated with the faeG deletion mutants’ treatments. These 
proteins are involved in different signal transductions 
and diverse cellular functions, and most of them are 
reported to be closely associated with cell apoptosis. 
As shown in Table  1, 8 proteins belong to the intrinsic 
apoptosis pathway, and 4 proteins mainly sense extrin-
sic signals to undergo apoptosis, while BH3-interacting 
domain death agonist (BID), caspase-3, -9 and other four 
proteins participate in both intrinsic and extrinsic apop-
tosis signaling. qRT-PCR was used to validate the above 
protein expression change, the mRNA expression of BID, 
caspase-3, -9, CDK2, FOXO1, and SP1 were decreased 
in F4acΔfaeG infected IPEC-J2 cells compared to that 
in F4ac treatment (Fig.  2), which is consistent with the 
results of the antibody microarray analysis.

Compared with F4ac E. coli, F4acΔfaeG treatments 
caused a reduction of caspase-3 expression in both the 
serum of piglets and the bacterial infected IPEC-J2 cells 
(Fig. 3a, b). After that, enzymatic activities of caspase-3, 
-8 and -9 were measured in IPEC-J2 cells from both non-
infected and bacterial infected groups (Fig.  3c), and the 
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results proved that the faeG deletion leads to a significant 
decrease in the activation of these effector caspases.

Discussion
As the initial step for ETEC F4 infection, bacterial attach-
ment to IEC and the interaction between fimbriae and 
the specific receptor of the host are both crucial for the 
development of disease. FaeG is among all F4 fae operon 
encoded subunits the major one that involved in fimbrial 
biosynthesis with other minor subunits, including FaeC, 
FaeD, FaeE, FaeF, FaeH, etc. In previous study, we found 
a significant reduction in F4ac∆faeG mutants’ adherence 
to IPEC-J2 and the intestinal brush border cells com-
pared with the parent strains (Xia et  al. 2015a). Thus, 
FaeG is the major subunit of F4ac fimbriae and acts as the 
most prominent part for F4ac E. coli adherence.

As we know, F4ac infections mostly occur in the pig-
lets with the presence of F4ac receptors, and porcine 
aminopeptidase N (APN) is a newly found F4ac fimbrial 
receptor in our and other labs’ previous studies (Melke-
beek et al. 2012; Xia et al. 2018a). In the later experiment, 
we proved that the amino acids 149–161, 176–188, and 

200–218 are the determinant epitopes for F4ac FaeG to 
interact with APN directly, and further determined N209 
and L212 are the critical sites of F4ac FaeG in binding to 
the jejunum of piglets (Xia et al. 2018a, 2016). That is to 
say, FaeG is the target for receptor recognition and can 
control receptor-mediated binding capacity as well.

Cell apoptosis is a component of natural intestinal 
epithelial turnover and is involved in regulating intesti-
nal tolerance and homeostasis (Blander 2018; Delgado 
et al. 2016). Both the intrinsic and the extrinsic pathway 
of apoptosis have been reported to ultimately lead to 
the activation of downstream effector caspases, whereas 
excessive apoptosis in IEC results in increased mucosal 
permeability and mucosal barrier dysfunction that trig-
gers inflammation and diarrhea (Edelblum et  al. 2006; 
Günther et al. 2013). We first performed the animal infec-
tion experiment using the wild type F4ac and F4ac∆faeG 
strains; both the slight change of the intestinal mucosa 
morphology and the intestinal permeability in F4ac∆faeG 
infected piglets confirmed that the faeG deletion attenu-
ates the F4ac-induced impairment of intestinal barrier 
structure.

Fig. 1 Effect of FaeG deletion on intestinal mucosa morphology and barrier function in piglets. a Representative H&E staining image of the small 
intestine (duodenum, jejunum and ileum). b Methylene blue staining results. c Serum levels of d-LA (left) and DAO (right) to evalutae the intestinal 
permeability, *p < 0.05, **p < 0.01
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After that, we screened out 29 proteins closely related 
to apoptosis in cells using antibody microarray analysis. 
The decrease of caspase-3, -9, BID mRNA expression 
in F4ac∆faeG infected cells are in accordance with the 
change of their phosphorylation ratio. BID is known as 
the bridging element between intrinsic (or mitochondria-
dependent) and extrinsic apoptosis pathway, and the 
cleavage of BID is active caspase-8 mediated. Besides, it 
was reported that the activation of caspase-8 is closely 
related to F4-promoted IEC apoptosis in piglets (Kantari 
and Walczak 2011; Xia et al. 2018b, 2019). In this regard, 
we further detected the enzymatic activities of caspase-3, 

-9 and -8, and confirmed that the faeG deletion sig-
nificantly changed cell apoptosis that occurs upon F4ac 
infection.

Meanwhile, we detected the enzymatic activities of 
these caspases in F4ac∆faeG/pfaeG (the complemented 
strain of F4ac∆faeG) infected IPEC-J2 cells (data not 
shown), and found that F4ac∆faeG/pfaeG triggered a 
similar activation of caspase-3, -9 and -8 like F4ac ETEC 
and there is no significant difference between them. In 
order to understand the effect of FaeG on cell apoptosis, 
we used 1 μg FaeG protein to incubate with IPEC-J2 cells 
and detected the change of enzymatic activities of these 

Table 1 Phospho/Unphospho Ratio change in F4ac∆faeG vs F4ac infected cells

Phosphorylation site Gene symbol F4ac∆faeG Phospho/
Unphospho ratio 
(mean ± SD)

F4ac Phospho/
Unphospho ratio 
(mean ± SD)

Fold change 
(F4ac∆faeG/F4ac)

Apoptosis process or type

Abl1 (Phospho-Tyr204) ABL1 0.217 ± 0.017 0.114 ± 0.016 1.90 Intrinsic (or mitochondrial)

ASK1 (Phospho-Ser83) MAP3K5 1.347 ± 0.248 0.852 ± 0.233 1.58 Intrinsic (or mitochondrial)

XIAP (Phospho-Ser87) XIAP 0.563 ± 0.013 0.919 ± 0.050 0.61 Intrinsic

FKHR (Phospho-Ser256) FOXO1 1.039 ± 0.075 2.172 ± 1.433 0.48 Intrinsic or extrinsic

Cyclin D1 (Phospho-Thr286) CCND1 0.213 ± 0.101 0.411 ± 0.263 0.52 Intrinsic

p44/42 MAPK (Phospho-
Tyr204)

MAPK3 1.102 ± 0.003 1.775 ± 0.722 0.62 Not specific

BID (Phospho-Ser78) BID 0.418 ± 0.233 0.673 ± 0.093 0.62 Intrinsic or extrinsic

Caspase 3 (Phospho-Ser150) CASP3 0.888 ± 0.019 1.352 ± 0.037 0.66 Intrinsic or extrinsic

Caspase 9 (Phospho-Tyr153) CASP9 0.194 ± 0.079 0.333 ± 0.088 0.58 Intrinsic or extrinsic

CDK2 (Phospho-Thr160) CDK2 1.087 ± 0.017 2.234 ± 0.078 0.49 DNA damage (related to 
FOXO1)

Cortactin (Phospho-Tyr421) CTTN 1.217 ± 0.009 5.418 ± 0.196 0.22 Extrinsic

GSK3 alpha (Phospho-Ser21) GSK3A 1.147 ± 0.060 1.955 ± 0.797 0.59 Intrinsic or extrinsic

NFkB-p100/p52 (Phospho-
Ser869)

RELA 1.761 ± 0.696 0.955 ± 0.033 1.84 Not specific

Raf1 (Phospho-Ser259) RAF1 4.060 ± 0.444 2.561 ± 2.560 1.59 Intrinsic (related to ASK1)

STAT3 (Phospho-Tyr705) STAT3 0.858 ± 0.017 1.307 ± 0.566 0.66 Intrinsic or extrinsic

NFkB-p65 (Phospho-Thr435) RELA 2.020 ± 1.050 3.192 ± 0.443 0.63 Not specific

SP1 (Phospho-Thr739) SP1 1.082 ± 0.052 3.159 ± 2.783 0.34 Not specific

LYN (Phospho-Tyr507) LYN 0.134 ± 0.064 0.242 ± 0.035 0.55 Not specific

HSP27 (Phospho-Ser82) HSPB1 1.344 ± 0.084 2.209 ± 0.424 0.61 Intrinsic

Ezrin (Phospho-Thr566) EZR 0.514 ± 0.269 0.293 ± 0.004 1.75 Not specific (related to XIAP)

GRB10 (Phospho-Tyr67) GRB10 1.093 ± 0.006 0.712 ± 0.239 1.53 Not specific (related to Bim)

Synuclein alpha (Phospho-
Tyr125)

SNCA 0.993 ± 0.030 2.209 ± 1.905 0.45 Intrinsic

VEGFR2 (Phospho-Tyr1175) KDR 1.034 ± 0.097 1.924 ± 1.630 0.54 Intrinsic

PKC zeta (Phospho-Thr410) PRKCZ 0.947 ± 0.016 2.130 ± 1.783 0.44 Extrinsic (related to Fas)

Estrogen Receptor-alpha 
(Phospho-Ser104)

ESR1 2.412 ± 0.150 0.728 ± 0.285 3.31 Extrinsic

Estrogen Receptor-alpha 
(Phospho-Ser167)

ESR1 1.159 ± 0.015 2.406 ± 1.570 0.48 Extrinsic

CaMK2A (Phospho-Thr286) CAMK2A 0.318 ± 0.015 0.206 ± 0.013 1.54 Ca2+-dependent apoptosis

eEF2K (Phospho-Ser366) EEF2K 1.011 ± 0.005 0.654 ± 0.183 1.54 Intrinsic or extrinsic

Ras-GRF1 (Phospho-Ser916) RASGRF1 0.609 ± 0.071 0.396 ± 0.007 1.54 Not specific
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caspases, while 1  μg LPS used as the positive control 
in this test. As shown above, FaeG protein, as an apop-
totic inducer, also has the ability to trigger the activa-
tion of caspase-3, -9 and -8. Therefore, FaeG affects cell 

apoptosis, and the faeG deletion alleviates ETEC F4ac-
induced apoptosis in the intestine, but the molecular and 
cellular mechanisms remain to be elucidated.

Fig. 2 The change of protein expression with different treatments in IPEC-J2 cells. Data are presented as mean ± standard deviations of three 
independent experiments and normalized to gapdh expression. The asterisk indicates a statistically significant differences, *p < 0.05, **p < 0.01

Fig. 3 The secretion and enzymatic activities changes of different effector caspases in IPEC-J2 cells with or without bacterial infections. a Protein 
expression of caspase-3 in the serum of piglets. b Protein expression of caspase-3 in the bacterial infected IPEC-J2 cells. C. Enzymatic activities of 
active caspase-3, -8 and -9. The control group without ETEC infection was normalized to 100%. All experiments were repeated three times and data 
are expressed as mean ± standard deviations (*p < 0.05, **p < 0.01)
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