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Interaction analyses based on growth 
parameters of GWAS between Escherichia coli 
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Abstract 

To accurately explore the interaction mechanism between Escherichia coli and Staphylococcus aureus, we designed 
an ecological experiment to monoculture and co-culture E. coli and S. aureus. We co-cultured 45 strains of E. coli and 
S. aureus, as well as each species individually to measure growth over 36 h. We implemented a genome wide associa-
tion study (GWAS) based on growth parameters (λ, R, A and s) to identify significant single nucleotide polymorphisms 
(SNPs) of the bacteria. Three commonly used growth regression equations, Logistic, Gompertz, and Richards, were 
used to fit the bacteria growth data of each strain. Then each equation’s Akaike’s information criterion (AIC) value 
was calculated as a commonly used information criterion. We used the optimal growth equation to estimate the four 
parameters above for strains in co-culture. By plotting the estimates for each parameter across two strains, we can 
visualize how growth parameters respond ecologically to environment stimuli. We verified that different genotypes 
of bacteria had different growth trajectories, although they were the same species. We reported 85 and 52 significant 
SNPs that were associated with interaction in E. coli and S. aureus, respectively. Many significant genes might play key 
roles in interaction, such as yjjW, dnaK, aceE, tatD, ftsA, rclR, ftsK, fepA in E. coli, and scdA, trpD, sdrD, SAOUHSC_01219 in 
S. aureus. Our study illustrated that there were multiple genes working together to affect bacterial interaction, and laid 
a solid foundation for the later study of more complex inter-bacterial interaction mechanisms.
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Introduction
There are extremely complex interactions between organ-
isms and their environment, which play a crucial role in 
nature, particularly in microbial environments (Grativol 
et al. 2017; He et al. 2017; Madsen et al. 2018; Pires et al. 
2015; van Overbeek and Saikkonen 2016). A large num-
ber of strains exist in co-cultured complexes of bacteria 
(Cairns et al. 2018), and they form diverse and dynamic 
communities with complex interaction mechanisms 

including mutualism, antagonism, parasitism, commen-
salism, and amensalism (Widder et  al. 2016; Xiao et  al. 
2017). Microbial interactions have rarely been experi-
mentally validated due to the challenges of duplicating 
ecologically relevant conditions in a laboratory environ-
ment and the limited ability to culture all members of a 
complex multispecies microbiome (Kastman et al. 2016). 
Therefore, we constructed a simplified experimental sys-
tem to simulate culture conditions.

A genome-wide association study (GWAS) with 
longitudinal phenotypes provides a novel platform 
to identify genetic variant associations and how they 
change over time (Sikorska et al. 2018). The emergence 
of GWAS has accelerated the development of bacterial 
gene function research, which enables the screening of 
interaction-associated loci (Lees et al. 2016; Ning et al. 
2017; Sheppard et al. 2013). Therefore, the application 
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of GWAS to bacteria opens new horizons for explor-
ing the interaction mechanisms of bacteria. Many 
bacterial phenotypes can be linked to the presence or 
absence of significant genes, which partly explains dif-
ferent responses to similar environmental conditions. 
There is great potential to investigate environmentally 
or industrially relevant phenotypes as well (Chen and 
Shapiro 2015). Recently bacterial GWAS have over-
came some limitations of the traditional genetic asso-
ciation studies, such as sample sizes and population 
structure, which is able to associate genetic variation 
in genomes with phenotypes to analyze genetic mech-
anisms (Lees et al. 2016). Studies on single-nucleotide 
polymorphism (SNPs) are a starting point for identify-
ing genes that may be responsible for specific pheno-
types (Hall 2014). In our lab, we have applied GWAS 
analyses to find many significant genes in E. coli and S. 
aureus and have explored the phenotypic plasticity of 
S. aureus (He et al. 2017; Jiang et al. 2018; Rong et al. 
2019). Our analyses provide a strong basis for interac-
tion experiments of bacteria in future studies.

Currently most GWAS methods are based on simple 
genotype phenotype analyses, and dynamic growth is 
treated statically. Gene–gene and gene-environment 
interactions are time dependent and temporal dynami-
cal interactions require efficient modeling (Fan et  al. 
2012). Complex phenotypes arise as a function of time, 
so we cannot capitalize on full information of pheno-
typic expression. A previous study integrated GWAS 
and functional aspects of dynamic traits, proposing 
a novel statistical approach called functional GWAS 
(fGWAS) (Das et  al. 2011). It is able to address the 
limitations of traditional GWAS methods, and uses 
growth trajectories as a phenotype to conduct GWAS, 
which remarkably increases the power for gene detec-
tion. In this way, fGWAS can capture genotypic differ-
ences at the level of phenotypic curves according to 
growth parameters (Li et al. 2015; Wei et al. 2018). On 
this basis, a previous study fit growth equations to leaf 
area and leaf area mass growth data of an individual 
recombinant inbred line (RIL), and developed a bivari-
ate model for mapping growth parameters of the two 
traits (Wei et al. 2018).

In this study, we extended the application of GWAS 
based on growth parameters to the study of bacterial 
interactions, applying functional mapping and sta-
tistical analyses to express bacterial growth phases. 
Then we simulated the living environment of E. coli 
and S. aureus to study their dynamic interactions and 
to target phenotypic traits. The aim of our study is to 
explore the genetic mechanism of bacterial interac-
tion, therefore, lay a scientific theoretical foundation 
for microbial community analyses.

Materials and methods
Experimental design
We applied statistical analyses to study the growth interac-
tions of E. coli and S. aureus in a common environment and 
explore important gene mechanisms. Based on co-cultures, 
we implemented a bivariate statistical procedure to map 
and identify SNPs. Using these SNPs, we predicted bacte-
rial growth by estimating cultivar-specific growth param-
eters and incorporating these parameters into a mapping 
framework.

All the strains of E. coli and S. aureus are from National 
Infrastructure of Microbial Resources, China, and these 
are detailed in previous work (Jiang et  al. 2018) (Addi-
tional file  1: Table  S1). We separately monocultured and 
co-cultured the strains under different conditions, although 
temperature, culture time, and environment were kept 
constant.

We investigated relationships by measuring the abun-
dance of each strain repeatedly at multiple times. We 
randomly paired 45 strains of E. coli and 45 strains of S. 
aureus, and cultured each pair in a 50 mL Erlenmeyer flask 
with three parallel treatments, following a previous study 
(Jiang et al. 2018). Then we obtained the growth data of the 
strains in monoculture and co-culture as phenotype data 
(Additional file 2: Table S2).

Whole‑genome sequencing
Whole-genome sequencing was performed on an Illumina 
HiSeq2000/2500 platform at Novogene (Novogene, Bei-
jing, China) using E. coli str. K-12 substr. MG1655 and S. 
aureus subsp. aureus NCTC 8325 as the reference strains, 
respectively. More details can be found in a previous study 
(He et al. 2017).

Data fitting
Bacterial growth follows a standard s-shaped curve. A 
typical growth curve spans three continuously connected 
phases: the lag phase (where the growth rate emerges from 
a value of zero), the exponential phase (during which the 
rate of growth accelerates to a maximal value and then 
decelerates to a minimal value, cells are typically in their 
healthiest state and thus are most desirable for enzymes or 
other cell components), and the stationary phase (growth 
rate continues to decelerate to zero and bacteria reached 
a stable state). Many mathematical equations have been 
derived to reflect the features of a growth curve, includ-
ing Gompertz, logistic, and Richards equations. Let g(t) 
denote the growth of a trait at time t. These equations are 
expressed as
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According to the mathematical equations, we used 
parameters λ (lag time), R (maximum specific growth 
rate) and A (asymptotic growth) to describe three con-
tinuous phases of bacterial growth curves, respectively. 
Moreover, these three key parameters were used as phe-
notypic data in GWAS analyses. In the Richards equation 
s is a shape parameter that describes the curvature of a 
growth curve (Wei et al. 2018).

First, we used all three growth equations to fit E. coli 
and S. aureus monoculture growth trait data at each loca-
tion using a nonlinear least squares approach. Then we 
calculated each equation’s AIC value. This procedure 
allows the choice of an optimal growth equation that 
best fits bacterial growth at a given location, dependent 
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on statistical reasoning. The three parameters men-
tioned above were estimated from the optimal equation 
and used as phenotypic traits for subsequent functional 
mapping.

GWAS model
We analyzed the associations between SNPs and micro-
bial abundances measured for bacterial populations 
reared in monocultures and co-cultures. We calculated 
the log10 (P-values) of each association, from which Man-
hattan plots were derived.

In co-cultures, we used binary correlation coefficients 
to treat the three parameters as three different periods 
of phenotypic data combined with genotype data for 
comparative analyses. We constructed two-dimensional 

Fig. 1  Fitting growth curves of E. coli and S. aureus phenotypic data under three equations. a Logistic; b Gompertz; c Richards
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Manhattan plots, thereby obtaining significant SNPs of 
interaction between the two strains under the same cul-
ture conditions.

Results
Data fitting by the growth equations
Three commonly used regression equations of growth, 
namely, Logistic, Gompertz and Richards regressions, 
were used to fit the growth curves of 45 E. coli and 45 
S. aureus strains (Fig. 1 and Additional file 3: Figure S1). 
Microbial abundance of individual strains was observed 
over 36  h. An optimal equation was chosen based on 
Akaike’s information criterion (AIC). Richards regression 
had a better goodness-of-fit to the mean growth trajecto-
ries and thus was used in analyses of phenotypic data and 
to fit co-culture bacterial growth curves.

Genetic analyses of microbial growth in monocultures
Manhattan plots were obtained by employing GWAS 
combined with functional mapping of 45 E. coli and 45 S. 
aureus strains to identify polymorphisms associated with 
different growth phenotypes. Figure  2 shows Manhat-
tan plots for significant SNPs identified in monocultures 
of each strain. In all, 85 and 97 significant SNPs were 
beyond the genome-wide critical thresholds determined 
for E. coli and S. aureus, respectively, and were anno-
tated. Of those, 71 SNPs in E. coli mapped to 67 genes, 
were associated with growth; 63 SNPs in S. aureus, were 
mapped to 45 genes (Additional file  4: Table  S3). Inter-
estingly, many of the significant SNPs detected in GWAS 
were distributed in the genomic regions involved in 
metabolism and regulation.

To demonstrate the biological relevance of the model, 
we cultured all strains individually in isolated flasks. The 
microbial abundance of each strain was fitted separately 

for two alternative genotypes at E3393816 for E. coli and 
at S994124 for S. aureus (Fig. 3). We found different phe-
notypic data for each genotype. In E. coli, G genotype 
strains grew relatively faster than A genotype strains; in 
S. aureus, T genotype strains grew faster than C geno-
type strains in the exponential phase but grew uniformly 
in the stationary phase. Therefore, differences in geno-
types affect the growth of strains, resulting in phenotypic 
diversity.

Interaction analyses based on growth parameters 
in co‑culture
In co-culture we used the Richards equation to fit bac-
terial growth and the curve fitting for growth data of 
each strain under co-culture were shown in Additional 
file 3: Figure S1. The four biologically meaningful growth 
parameters, λ, R, A and s, estimated from the Richards 
equation, were each used as a ‘phenotypic trait’ for sub-
sequent GWAS analysis. We performed GWAS based on 
growth parameters to identify significant SNPs between 
the genotype and phenotype data of E. coli and S. aureus, 
and combined with the R package to generate the two-
dimensional Manhattan plots (Fig.  4). The x-axis rep-
resents the relative SNP position of E. coli, the y-axis 
represents the relative SNP position of S. aureus, and 
the red dots in the figure represent the significant SNPs 
affecting the bacterial interaction. According to the cor-
responding positions of SNPs in the two-dimensional 
plots, their positions in the genome can be identified and 
then the significant SNPs in the interaction can be anno-
tated. The R2 value of fitting growth curves of E. coli and 
S. aureus in co-culture were shown in Additional file  5: 
Table S4.

Fig. 2  Manhattan plots of GWAS results for E. coli and S. aureus in monoculture. a E. coli; b S. aureus 
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Analyses of significant genes in E. coli
In E. coli, there were 5 significant SNPs under the lambda 
(λ) parameter and 12 under the R parameter. Thirty-four 
significant SNPs were under the A parameter and shape 
(s) parameters, respectively (Additional file 6: Table S5). 
Among the significant SNPs in E. coli, eight genes were 
associated with significant functions in bacterial growth: 
aceE encodes a pyruvate dehydrogenase E1 component 
that plays an important role in the preparation stage of 
the citric acid cycle; yjjW encodes a homolog of pyruvate 
formate lyase activating enzyme PflA; dnaK functions in 
the heat shock response; ftsK and ftsA are relevant to cell 
division; tatD encodes 3′ to 5′ ssDNA/RNA exonuclease; 
the protein which rclR encodes is a transcriptional activa-
tor, and fepA effects ferric enterobactin outer membrane 
transporter (Table 1).

Analyses of significant genes in S. aureus
Meanwhile, in S. aureus, there were three significant 
SNPs under the lambda (λ) parameter, 13 under the R 
parameter, and seventeen under the shape (s) param-
eter. A parameter SNPs were the most diverse, with 19 

significant SNPs (Additional file 6: Table S5). In S. aureus, 
we found many significant genes, such as scdA encod-
ing a cell wall biosynthesis protein, and sdrD encod-
ing a fibrinogen-binding protein. A hypothetical gene 
(SAOUHSC_01219) was predicted for the encoded cell 
wall hydrolase (Table  1). Many significant genes were 
found to have an important role in the regulation of 
metabolism and bacterial reproduction and regulation, 
which may be correlated with evolution or growth per-
formance in co-culture.

Discussion
Bacterial interaction plays a vital role in the ecosystems 
(Rivett and Bell 2018). Previous studies illustrated that 
the changes of phenotypes in bacterial interaction were 
related to complex systems (such as quorum sensing), 
and cannot be predicted from analyzing the individual 
bacteria strain (Madsen et  al. 2018). Many researches 
had used GWAS to unravel the genetic machineries of 
interspecies interactions in microbes (Berthenet et  al. 
2018; Collins and Didelot 2018; He et al. 2017; Rong et al. 
2019). Wei et al. (2018) found that identification of major 

Fig. 3  Fitting growth curves of the most significant SNPs of E. coli (E3393816) and S. aureus (S994124). a E. coli; b S. aureus 
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pleiotropic QTLs for leaf growth trajectories can be per-
formed based on a dynamic mapping model, which has 
not been applied to bacteria yet. Therefore, in this study 
we extended the application of this model, which is based 
on growth parameters of GWAS, to the study of interac-
tions between E. coli and S. aureus.

In this research, we found some significant genes 
such as yjjW, thrC, kefC, ftsA, wzc and yeiI, which were 
reported in previous studies (He et al. 2017; Jiang et al. 
2018). Besides, more significant genes were identified 
in this study including dnaK, tatD, rclR, ftsA, ftsK, aceE, 
fepA in E. coli, and sdrD, scdA in S. aureus. Gene dnaK 
encodes ATP-dependent enzyme DnaK and plays an 
important role in the heat shock response (Collet et al. 
2018). The stress response is not the only function of 

DnaK, which also has a significant role in maintain-
ing normal growth in E.coli (Ghazaei 2017). Gene tatD 
encodes DNA-repairing exonuclease that not only 
digest chromosomal DNA during apoptosis but also 
process damaged DNA during DNA repair. Chen et al. 
(2014) demonstrated that TatD-knockout strains were 
less resistant to the DNA damaging and were sensitive 
to H2O2. Gene rclR encodes RclR as a transcriptional 
activator, contributing to the ability of E. coli to survive 
HOCl stress (Parker et al. 2013). These three genes can 
regulate bacterial activities when they are in a negative 
environment. In addition, there are many genes that 
play important roles in cell growth and metabolism, 
such as ftsA and ftsK encodes FtsA and FtsK, respec-
tively. FtsK is present as a hexamers and plays a key role 

Fig. 4  Two-dimensional Manhattan plots based on growth parameters of E. coli and S. aureus in co-culture. a λ parameter; b R parameter; c A 
parameter; d s parameter
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in coordinating cell division in the late stages of chro-
mosome segregation and FtsA is an ATPase (Bisicchia 
et al. 2013; Conti et al. 2018; Galli et al. 2017), both of 
which assist FtsZ in cell division. Gene aceE encodes 
the E1 component of pyruvate dehydrogenase complex. 
The E1 component plays a role in the preparation phase 
of pyruvic acid before which enters the citric acid cycle 
and catalyzes the oxidative decarboxylation of pyruvate 
(Byung Jo et al. 2008; Nemeria et al. 2010). FepA plays a 
role in the transporter activity of the ferric enterobactin 
outer membrane, which is located in the lipid bilayer of 
the outer membrane of E. coli and belongs to the outer 
membrane protein of the cell wall. Its main function is 
to adsorb high-valent iron on the cell surface when E. 
coli is iron-deficient (Newton et  al. 2010; Turlin et  al. 
2013). In S. aureus, sdrD encodes fibrinogen-binding 
protein serine aspartate repeat containing protein D 
(SdrD) (Askarian et al. 2016). The scdA gene expresses 
a cell wall biosynthesis protein that affects cell division 
and morphogenesis (Brunskil et al. 1997).

However, significant genes reported from this inter-
action analyses based on growth parameters of GWAS 
still require functional validation in our following 
research. With the application of CRISPR/Cas9 technol-
ogy to bacteria in recent years (Banno et al. 2018; Chen 
et  al. 2017, 2018; Zerbini et  al. 2017), this study will be 
improved greatly. By constructing recombinant plasmids 
for knockout and mutation of target genes, it will assist 
in comparing phenotypic differences between wild-type 
and mutants to validate the effects of genes on growth. 
Next, we will apply CRISPR/Cas9 to verify those function 
genes explored in the interaction analyses.
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Table 1  Significantly important functional genes in co-culture

Gene ID Gene Position Mutation Affected Codon Function

E. coli

 B0114 aceE 124522 T↔C GCT↔GCC​ Pyruvate dehydrogenase E1 component

 B4379 yjjW 4614704 C↔T TTG↔TTA​ Putative glycyl-radical enzyme activating enzyme YjjW

 B0014 dnaK 12384 T↔C GGT↔GGC​ Chaperone protein DnaK

 B0094 ftsA 104986 C↔T ACC↔ACT​ Cell division protein FtsA

 B0890 ftsK 935503 G↔A CCG↔GCA​ Cell division DNA translocase FtsK

 B4483 tatD 4024120 T↔G CTT↔TTG​ 3′→5′ ssDNA/RNA Exonuclease TatD

 B0584 fepA 611271 T↔C GGA↔GGG; Ferric enterobactin outer membrane transporter

 B0305 rclR 320655 A↔T GCA↔GCT​ DNA-binding transcriptional activator RclR

S. aureus

 SAOUHSC_00299 scdA 313,151 C↔G AGC↔ACC​ Cell wall biosynthesis protein ScdA

 SAOUHSC_01368 trpD 1,313,228 T↔A TCC↔ACC​ Anthranilate phosphoribosyltransferase

 SAOUHSC_00545 sdrD 554,869 C↔T GAC↔GAT​ Fibrinogen-binding protein SdrD

 SAOUHSC_01219 - 1,169,344 G↔C GAT↔CAT​ Cell wall hydrolase
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