
Wang et al. AMB Expr           (2020) 10:16  
https://doi.org/10.1186/s13568-020-0950-y

ORIGINAL ARTICLE

Contrasting bacterial and archaeal 
distributions reflecting different geochemical 
processes in a sediment core from the Pearl 
River Estuary
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Abstract 

Microbial community structure and metabolic activities have profound impacts on biogeochemical processes in 
marine sediments. Functional bacteria such as nitrate- and sulfate-reducing bacteria respond to redox gradients by 
coupling specific reactions amenable to relevant energy metabolisms. However, similar functional patterns have not 
been observed for sedimentary archaea (except for anaerobic methanotrophs and methanogens). We coupled taxo-
nomic composition with comprehensive geochemical species to investigate the participation of distinct bacteria and 
archaea in sedimentary geochemical cycles in a sediment core (300 cm) from Pearl River Estuary (PRE). Geochemi-
cal properties (NO3

−, dissolved Mn and Fe, SO4
2+, NH4

+; dissolved inorganic carbon (DIC), δ13CDIC, dissolved organic 
carbon (DOC), total organic carbon (TOC), δ13CTOC, and fluorescent dissolved organic matter (FDOM)) exhibited strong 
depth variability of different trends. Bacterial 16S rRNA- and dsrB gene abundance decreased sharply with depth while 
archaeal and bathyarchaeotal 16S rRNA gene copies were relatively constant. This resulted in an increase in relative 
abundance of archaea from surface (11.6%) to bottom (42.8%). Network analysis showed that bacterial groups of 
Desulfobacterales, Syntrophobacterales and Gammaproteobacteria were significantly (P < 0.0001) associated with SO4

2− 
and dissolved Mn while archaeal groups of Bathyarchaeota, Group C3 and Marine Benthic Group D (MBGD) showed 
close positive correlations (P < 0.0001) with NH4

+, δ13CTOC values and humic-like FDOM. Our study suggested that 
these bacterial groups dominated in redox processes relevant to sulfate or metal oxides, while the archaeal groups are 
more like to degrade recalcitrant organic compounds in anaerobic sediments.

Keywords:  Bacterial and archaeal communities, Depth variability, Geochemical cycles, Pearl River estuarine 
sediments
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Introduction
Estuarine ecosystems are highly dynamic and one of the 
most productive environments due to enriched carbon 

and nutrients (Cai 2011). Estuarine sediments usually 
harbor considerable microbial biomass and activities 
associated with the remineralization of sedimentary 
organic carbon, which has a significant impact on bio-
geochemical cycles (Burdige 2011). Geochemically, the 
depth sequence of oxidants used in the mineralization 
of organic matter is O2, NO3

−, Mn(IV), Fe(III), SO4
2−, 

and CO2 (Froelich et  al. 1979); biologically, nitrate-, 
iron and manganese oxides- and sulfate-reducing bac-
teria are known to respond to redox gradients in the 
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oxygen-depleted environments. Accordingly, bacterial 
community compositions can be linked to the vertical 
succession of predominant terminal electron acceptors 
(Algora et al. 2015; Walsh et al. 2016).

Archaeal groups responding to redox gradients in 
the sedimentary environments can be broadly char-
acterized, with Marine Group I (ammonia-oxidizing 
archaea) occupying the surface or shallow oxic envi-
ronments and Woesearchaeota perhaps the deeper 
anoxic environments (Dang et al. 2013; Nunoura et al. 
2018). Although Bathyarchaeota and other unculti-
vated archaea are frequently found in anoxic sediments 
(Lazar et al. 2015; Zhou et al. 2018), only methanogens 
and methane-oxidizing archaea (ANMEs) can surely be 
defined as strict anaerobes, which are commonly pre-
sent at or below the sulfate-methane transition zone 
(SMTZ) (Thauer et al. 2008). Most of the sedimentary 
archaea have resisted being brought into pure culture, 
which has kept their physiology and biogeochemical 
roles elusive.

Isotopic evidence from Peru margin has shown that 
the dominating sedimentary archaea may be hetero-
trophic (Biddle et al. 2006). Bathyarchaeota and Marine 
Benthic Group D (MBGD) exhibit high abundances in 
subsurface sediments and prefer low sulfide, high TOC 
conditions (Kubo et al. 2012; Lazar et al. 2015; Pan et al. 
2019) or hydrate-bearing marine sediments (Inagaki et al. 
2006), but their involvement in methane production or 
oxidation is controversial (Biddle et al. 2006; Kubo et al. 
2012). Recent studies based on genomic analysis revealed 
a variety of metabolisms in uncultured archaea. These 
are exemplified by sulfur- or sulfate reduction in Hade-
sarchaeota, Thorarchaeota, Theionarchaea and Bathyar-
chaeota (Baker et  al. 2016; Lazar et  al. 2017; Seitz et  al. 
2016; Zhang et al. 2016), nitrate- or nitrite reduction in 
Hadesarchaeota, Bathyarchaeota and MBGD (Baker 
et  al. 2016; Lazar et  al. 2016; Zhou et  al. 2018), meth-
ane and/or short alkane metabolism in Bathyarchaeota, 
Verstratearchaeota, Hadesarchaeota, Helarchaeota and 
other TACK superphylum archaea (Evans et  al. 2015; 
Seitz et al. 2019; Vanwonterghem et al. 2016; Wang et al. 
2019), and detrital protein degradation and acetogenesis 
in most of anaerobic archaea (He et al. 2016; Lazar et al. 
2017; Lloyd et  al. 2013). Lokiarchaeota may be capable 
of iron reduction in sediments of the Arctic mid-ocean 
ridge (Jorgensen et al. 2012; Sousa et al. 2016). A lokiar-
chaeon (Candidatus Promethearchaeum syntrophicum 
strain MK-D1) was firstly cultured from methane seep 
sediments, which was able to utilize amino acids in syn-
trophy with Methanogenium (Imachi et al. 2019).

To date, most of these predicted metabolisms have 
yet to be proven except three studies of enrichment 
and pure cultures (Imachi et  al. 2019; Yu et  al. 2018; 

Vanwonterghem et al. 2016). Hence, more investigations 
are required to better understand the geochemical func-
tions of uncultured archaea.

In this study, geochemical methods were used for quan-
tifying and characterizing different chemical species, and 
molecular techniques with quantitative PCR (qPCR) and 
sequencing for different bacterial and archaeal popula-
tions along the depth of a 300-cm sediment core from 
eutrophic Pearl River Estuary (PRE). Large differences in 
distributional patterns of bacterial and archaeal groups as 
well as the functional genes were found along the envi-
ronmental profile, allowing the differentiation of their 
potential roles involved in geochemical processes.

Materials and methods
Sediment sampling
A 300-cm gravity core was collected at 21-m water depth 
in PRE (22.1315  N, 113.8055 E) in October 2017. Sam-
pling of pore water and sediment for geochemical and 
microbial analyses was conducted onboard the ship as 
quickly as possible. The core was sectioned into 5-cm 
intervals for 0–100  cm and into 10-cm intervals for 
100–300 cm below sediment surface. DNA samples were 
snap-freezed in liquid nitrogen before storage at − 80 °C. 
Pore water was extracted with Rhizon samplers (Dickens 
et  al. 2007). For sulfate measurements, 2-ml pore water 
was acidified with 50% HCl to remove volatile sulfur 
compounds and then stored at 4  °C. For total dissolved 
Mn and Fe measurements, 2-ml pore water was acidified 
with 65% HNO3 and then stored at 4 °C. Pore water sam-
ples and sediment samples were also stored in a − 20 °C 
freezer; the former samples were used for analyses of dis-
solved inorganic carbon (DIC), dissolved organic carbon 
(DOC), fluorescent dissolved organic matter (FDOM) 
and nutrients, and the latter for total organic carbon 
(TOC).

Geochemical analysis
Sulfate concentrations were diluted (1:500) and meas-
ured on an ionic chromatograph (Dionex ICS-1500, 
USA). Total dissolved Mn and Fe levels were determined 
with an inductively coupled plasma atomic emission 
spectrometry. NO3

− and NH4
+ were analyzed using an 

autoanalyzer (BRAN and LUEBBE AA3, Germany). Con-
centrations and carbon isotopic compositions of DIC 
were analyzed on a continuous-flow isotope ratio mass 
spectrometer (MAT 253, Gas Bench). The precision 
based on duplicate analysis was ± 0.2‰ for δ13CDIC. Sedi-
ments for TOC analyses were freeze-dried and ground. 
TOC content was determined on an elemental analyzer 
(Vaio EL Cube, Germany) after acid dissolution of car-
bonates from an aliquot of dried sediment powder. Stable 
carbon isotopes of TOC (δ13CTOC) were measured using 
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a Thermo Science Delta Plus isotope ratio mass spec-
trometer connected on-line to a Carlo Erba Instruments 
Flash 1112 elemental analyzer. The analytical precision 
was ± 0.1% for TOC content and ± 0.2‰ for δ13CTOC.

Spectroscopic analysis and parallel factor analysis 
(PARAFAC) for DOM
Spectroscopic analysis of DOM samples (GSD-110 and 
GSD-270 were not included) was conducted on a fluores-
cence spectrometer (Jobin–Yvon Horiba Aqualog-800-C, 
Horiba Instruments). Fluorescence excitation-emission 
matrix (EEM) spectra were generated from 240 to 450 nm 
at 2 nm increments for excitation (Ex) wavelengths, and 
from 245.90 to 829.35  nm at 1.17  nm increments for 
emission (Em) wavelengths. All the sample spectra were 
normalized to Raman peak area after corrected with the 
ultrapure water EEM spectra, and reported in Raman 
unit (R.U.) (Murphy 2011). Finally, parallel factor analysis 
(PARAFAC) was carried out in MATLAB 2013 (Math-
works, USA) with the DOM Fluor toolbox (http://www.
model​s.life.ku.dk).

DNA extraction, qPCR and amplicon sequencing
DNA was extracted from 0.2 to 0.3  g of sediment (wet 
weight) using a PowderSoil DNA Isolation kit (Mo Bio) 
according to the instruction and stored at − 20  °C until 
further analyses. Targeted genes for qPCR analyses 
included 16S rRNA genes for bacteria, archaea, Bathyar-
chaeota; dsrB gene for sulfate-reducing bacteria (SRB), 
nirS gene for denitrifying bacteria; mcrA gene for metha-
notrophic and methanogenic archaea. The primers and 
standards used in this study are shown in Additional 
file  1: Table  S1. The qPCR analyses were performed on 
a QuantStudio 5 Real-Time PCR System and the reac-
tion volume was 10 μl: 5 μl of SYBR Premix Ex Taq™ II 
(TaKaRa), 0.4  μM of each primer, 0.1  μl of 1% bovine 
serum albumin (BSA), 0.2 μl of ROXII (TaKaRa), 2.9 μl of 
ddH2O and 1 μl of template DNA. The amplification con-
ditions were as follows: 30 s denaturation at 95 °C and 40 
cycles of denaturation at 95 °C for 5 s, annealing at 55 °C 
for 45 s and extension at 72 °C for 1 min. The linear cor-
relation coefficients (R2) ranged from 0.99 to 1.00, and 
the amplification efficiencies were between 90 and 110%.

The V4 region of the prokaryotic 16S rRNA gene was 
PCR amplified with universal prokaryotic primers 515FB 
(GTG​YCA​GCMGCC​GCG​GTAA) and 806RB (GGA​CTA​
CNVGGG​TWT​CTAAT) (Caporaso et  al. 2012). The 
50 μl of PCR mixture consisted of 25 μl of 2× Premix Taq 
DNA polymerase (TaKaRa), 0.2 mM of each primer, 20 μl 
of ddH2O, and 3  μl of template DNA. Procedures for 
the PCR were as follows: 30 s denaturation at 94 °C, 30 s 
annealing at 58 °C and 30 s extension at 72 °C, repeated 
for 30 cycles in a BioRad S1000 (Bio-Rad Laboratory, 

CA). The PCR products were pooled and purified using 
the EZNA Gel Extraction Kit (Omega, USA). Sequenc-
ing was conducted on the Miseq platform (2 × 250 PE, 
lllunina) at the Guangzhou Magigene Biotechnology 
(Guangzhou, China).

Raw Miseq data were analyzed using the Quantitative 
Insights into Microbial Ecology (Qiime2, version 2018.4) 
with plugins demux, DADA2 and feature-table. Features 
with a total abundance of less than 10 and those present 
in only a single sample were filtered out. Sequence Tax-
onomy was assigned using the Silva 128 99% Operational 
Taxonomic Units (OTUs) database (https​://www.arb-
silva​.de/ngs). Shannon diversity index was calculated for 
alpha diversity analysis.

Statistical analysis
Principal coordinates analysis (PCoA) was used to eval-
uate the compositional changes of microbial commu-
nity based on Bray–Curtis distance. Species tables are 
normalized and square root transformed before PCoA 
and analysis of the similarity (ANOSIM) performed in 
PRIMER software package (Clarke and Gorley 2006). 
Linear discriminant analysis (LDA) effect size (LEfSe) 
(Segata et  al. 2011) was used to identify microbial pop-
ulations with significant difference between upper and 
deep layers. Spearman correlations between the rela-
tive abundance of OTUs and environmental parameters 
were conducted in R 3.5.0, and performed in network 
by Cytoscape 3.6.1 (Shannon et  al. 2003). OTUs related 
to environmental parameters were selected to build a 
Maximum-likelihood (ML) phylogenetic tree with their 
reference sequences from different sampling sites using 
MEGA 7.0 (Kumar et al. 2016).

Sequencing results and deposition
Source sequences are available in the GenBank nucleo-
tide sequence database under the Accession number 
PRJNA575161.

Results
Geochemistry of pore water and sediments
Geochemical profiles were described in the order of 
nitrate reduction, Mn/Fe reduction, and sulfate reduc-
tion (Fig. 1). NO3

− maintained high concentrations at all 
depths, making the nitrogenous zone ambiguous. Total 
dissolved Mn followed a typical diagenetic profile and 
reached maximum at 75-cm depth. Total dissolved Fe 
increased in the deep layers as dissolved Mn decreased, 
probably defining the shift from the manganous zone to 
the ferruginous zone. SO4

2− decreased linearly from ~ 25 
to ~ 3 mM in the upper 150 cm and then increased tem-
porarily before staying at ~ 9 mM until the bottom depth 
(300 cm). The drop in sulfate concentration from surface 

http://www.models.life.ku.dk
http://www.models.life.ku.dk
https://www.arb-silva.de/ngs
https://www.arb-silva.de/ngs


Page 4 of 14Wang et al. AMB Expr           (2020) 10:16 

value indicated an overall occurrence of microbial sulfate 
reduction within the sediment core. Dissolved oxygen 
was not determined.

NH4
+ gradually increased down-core from ~ 0.4  mM 

to higher than 1  mM. DIC and DOC concentrations 
increased downward and peaked at ~ 12  mM at 150-
cm depth and ~ 27  mg/l at 110-cm depth, respectively. 
δ13CDIC values decreased down-core to a range between 
− 18.6 and − 13.0‰. Keeling plot analysis of DIC showed 
δ13C values of around − 18.4‰ for excess DIC (Addi-
tional file  2: Fig. S1), implying that the accumulation of 
DIC was mainly derived from the respiration of organic 
matter. TOC content varied between 0.4 and 1.5% along 
the core. δ13CTOC values ranged from − 24.5 to − 22.8‰ 
and showed difference below and above 150-cm, indi-
cating a minor change of organic matter from marine 

plankton-derived to terrestrial plants-derived (Wu et al. 
1999).

PARAFAC components of DOM
Three different PARAFAC components were identified, 
including two humic-like components (C1 and C2) and 
one protein-like component (C3). Both C1 and C2 were 
identified as a combination of two EEM peaks (peak A 
and peak M for C1, peak A and peak C for C2; Additional 
file 3: Table S2). Peak A and peak C are depicted as ter-
restrially derived humic substances and peak M as the 
marine humic-like substances or products from microbial 
processes (Coble 1996; Stedmon and Markager 2005). C3 
exhibiting its emission maxima at 307  nm and its exci-
tation maxima at 274 nm, corresponded to tyrosine-like 
and/or protein-like substances (peak B; Additional file 3: 

Fig. 1  Characteristics of pore water chemistry (NO3
−, NH4

+, dissolved Mn, Fe, and SO4
2−, DIC, DOC, and fluorescent components) and sediment 

total organic carbon (TOC). Collection of pore water for geochemical analyses was conducted onboard the ship as quickly as possible using Rhizon 
samplers
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Table  S2) (Coble 1996). Overall, humic-like component 
C1 was the most abundant fraction (45.0%), followed 
by humic-like component C2 (27.7%) and protein-like 
component C3 (27.3%). C1, C2 and C3 varied differently 
from each other with increasing depth (Fig.  1). Humic-
like components (C1 and C2) showed marked increases 
downward, while the protein-like component (C3) was 
relatively constant.

Distributions of bacterial and archaeal abundances
The bacterial 16S rRNA and dsrB gene abundances 
decreased from 7.03 × 109 to 3.92 × 108  copies/g sedi-
ments and from 4.05 × 108  copies/g sediments to 
1.41 × 107  copies/g sediments, respectively (Fig.  2). 
The bacterial 16S rRNA and dsrB gene copies were in 
the same range with those reported in the eutrophic 
PRE (Jiang et  al. 2009). Both of them sharply declined 
with sediment depth. Besides, bacterial abundance was 
strongly, negatively correlated to δ13CTOC (r = − 0.75, 
P < 0.0001), and positively correlated to the C3/(C1 + C2) 
ratio (r = 0.76, P < 0.0001). DsrB gene abundance 
also exhibited high correlation with SO4

2− (r = 0.82, 
P < 0.0001), δ13CTOC (r = − 0.70, P < 0.0001) and the C3/
(C1 + C2) ratio (r = 0.80, P < 0.0001). The abundances 

of nirS gene and mcrA gene were much lower than dsrB 
gene at all depths (data not shown).

Archaeal and bathyarchaeotal 16S rRNA gene abun-
dances varied differently from that of bacteria along the 
depth (Fig.  2). Archaeal and bathyarchaeotal 16S rRNA 
gene abundances showed a slight increase down core, 
with the maximum of 1.75 × 109  copies/g sediments at 
110-cm and 2.30 × 108  copies/g sediments at 110-cm 
and 160-cm depth, respectively. The archaea-to-bacteria 
abundance ratios increased from 0.19 at 5-cm depth to 
2.51 at 300-cm depth, which were higher than that pre-
vious reported in PRE (Jiang et  al. 2011) and in South 
China Sea (Yu et al. 2017).

Distributions of the most abundant bacterial and archaeal 
phyla
Illumina sequencing of 38 sediment samples (GSD-
250 and GSD-270 were not included) yielded a total of 
2,580,094 high-quality sequences after quality control, 
ranging from 47,995 to 83,260 reads in each sample. 
Sequence numbers in each sample reduced to 38,887 
after rarefaction for further analyses. Those sequences 
covered the diversity of microbial populations in samples 
as Shannon diversity indices reached stable values (Addi-
tional file 2: Fig. S2). In total, 5553 OTUs were generated 
on the basis of 100% sequence identity, including 4164 for 

Fig. 2  Depth-variations in microbial 16S rRNA- and dsrB gene copies based on qPCR. a Bacterial 16S rRNA- and dsrB genes; b archaeal 16S 
rRNA- and bathyarchaeotal 16S rRNA genes
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bacteria, 1268 for archaea and 121 as unassigned OTUs. 
The bacterial and archaeal OTUs were classified into 47 
and 17 phyla, respectively. Ten of 47 bacterial phyla and 
five of 17 archaeal phyla had relative abundances of > 1%.

Proteobacteria, Chloroflexi, Planctomycetes and Nitro-
spirae were the top four bacterial phyla (Fig.  3a). The 
great majority of Proteobacteria could be assigned to 

Desulfobacterales, Desulfarculales, Syntrophobacterales 
(three orders of Deltaproteobacteria) and Gammapro-
teobacteria. All of them decreased with depth and exhib-
ited significantly positive correlations with SO4

2− in pore 
water (r > 0.80, P < 0.0001 of all) except for Desulfarcula-
les that increased slightly and showed a positive correla-
tion with δ13CTOC (r = 0.74, P < 0.0001). Anaerolineae and 

Fig. 3  Depth distributions of relative abundances of bacteria (a) and archaea (b). Dark blue = bacterial groups, green = total archaea and dark 
red = different archaeal groups
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Dehalococcoidia were two major classes of Chloroflexi. 
All reads of Anaerolineae were affiliated to the family 
Anaerolineaceae, exhibiting a depth profile with the rela-
tive abundance decreased after reaching its maximum 
at 140-cm depth. The relative abundance of Dehalococ-
coidia increased down-core and showed positive cor-
relation with NH4

+ (r = 0.76, P < 0.0001). In addition, an 
increase in the relative abundance of Planctomycetes was 
coincided with relatively decrease of Nitrospirae, both of 
which were known to potentially involve in the nitrogen 
cycle (Schmid et al. 2003; Ushiki et al. 2017).

The main archaeal groups included Bathyarchaeota, 
Group C3 (affiliated to Bathy-15), MBGD (a family of 
Euryarchaeota), Lokiarchaeota, Woesearchaeota, Marine 
Hydrothermal Vent Group (MHVG) and Aenigmarchae-
ota (Fig.  3b). The relative abundance of Bathyarchaeota 
increased by about 20-folds (from 1.06 to 21.3%), and 
showed positive correlations with NH4

+ and δ13CTOC val-
ues (r = 0.68, P < 0.0001 of both). Similar depth profiles 
also appeared in Lokiarchaeota, MHVG and Aenigmar-
chaeota, while MBGD and Woesearchaeota seemed to be 
constant with depth. The relative abundance of Group C3 
exhibited a depth profile with a sharp increase below 150-
cm depth. In general, the relative abundance of archaea 
increased from 11.6 to 42.8% and showed strong posi-
tive relationship with the content of humic-like FDOM 
(C1 + C2) (r = 0.72, P < 0.0001).

PCoA of microbial abundance showed clustering of 
samples along the depth (GSD-5 to GSD-100, GSD-
110 to GSD-200, GSD-210 to GSD-300) (Fig.  4a). The 
PCo1 (PCo1 explained 84.0% of the variance) showed 
high correlations with SO4

2− (r = 0.72, P < 0.0001), 
NH4

+ (r = − 0.75, P < 0.0001), dissolved Fe (r = − 0.66, 
P < 0.0001), δ13CTOC values (r = − 0.72, P < 0.0001), 
humic-like FDOM (C1 + C2) (r = − 0.77, P < 0.0001). 
Next, LEfSe confirmed the tendency that most of the 
archaeal groups and Dehalococcoidia, Desulfarculales 
and Planctomycetes were significantly abundant in deep 
layers, whereas Gammaproteobacteria, Desulfobacte-
rales, Nitrospirae, Syntrophobacterales and Anaerolineae 
were more abundant in the upper layers (Fig. 4b).

Specific linkages between environmental variables 
and bacterial or archaeal species revealed by network 
analysis
To further investigate the impacts of geochemical fac-
tors on the distribution of microbial populations, the 
top 100 OTUs of the eight bacterial groups and the top 
100 OTUs of the seven archaeal groups (Additional 
file 4: Table S3) were selected to analyze their correla-
tions with geochemical factors. These OTUs accounted 
for 38.4% of the total sequences. Network analysis was 
conducted based on positive Spearman correlation 

( ρ > 0.65, P < 0.0001) and consisted of 79 nodes and 123 
edges (Fig.  5). Geochemical parameters were roughly 
divided into two groups with different edge colors, grey 
for electron acceptors-related variables (SO4

2+, NO3
−, 

dissolved Mn and Fe, DIC, and δ13CDIC) and orange for 
electron donors-related variables (NH4

+, DOC, TOC, 
δ13CTOC, C1, C2 and C3).

SO4
2− exhibited close correlations with OTUs 

belonging to Syntrophobacterales, Desulfobacterales 
and Gammaproteobacteria. Two OTUs of MBGD and 
one of Bathyarchaeota also correlated with SO4

2−. 
Dissolved Mn showed positive correlations with four 
OTUs belonging to Desulfobacterales, Syntrophbacte-
rales and Bathyarchaeota, while dissolved Fe was more 
closely related to OTUs that were affiliated to Dehalo-
coccoidia, Anaerolineae and Planctomycetes. This result 
was different from the findings in San Pedro Basin 
(Monteverde et  al. 2018) where dissolved Fe exhibited 
close positive correlations with proteobacterial OTUs. 
Bacterial or archaeal OTUs showed few direct correla-
tions with DOC and DIC, but were closely correlated 
to δ13CTOC and NH4

+. Moreover, eighteen archaeal 
OTUs belonging to Bathyarchaeota, Group C3, MBGD 
and Lokiarchaeota and seven bacterial OTUs belong-
ing to Dehalococcoidia, Anaerolineae and Desulfarcula-
les were positively correlated with C1 and C2. Notably, 
more archaeal OTUs were related to electron donors 
than electron acceptors.

Phylogenetic analysis of 16S rRNA gene
A total of 72 OTUs significantly related to geochemical 
factors (Spearman, ρ > 0.65, P < 0.0001) were used for 
phylogenetic analysis, in which 44 belonged to bacteria 
(Fig. 6a) and 28 to archaea (Fig. 6b). The ML phyloge-
netic trees indicated that homologous sequences of the 
bacteria and archaea from Pearl River estuarine sedi-
ments were similar to those found in sediments in west 
coast of India, Aarhus Bay, White Oak River (WOR) 
estuary, East China Sea, Taiwan gas hydrate potential 
area and Shimokita Penninsula offshore. Five OTUs of 
Anaerolineae, Planctomycetes, Deltaproteobacteria and 
Gammaproteobacteria and one of Bathyarchaeota were 
similar to sequences derived from sulfate reduction 
zone (SRZ) of sediments from Aarhus Bay (Starnaw-
ski et al. 2017). Two OTUs of MBGD and two of Bath-
yarchaeota exhibited high affinity to that from SRZ or 
SMTZ of sediments from WOR (Lazar et  al. 2015) or 
anaerobic cultivation of sediments from WOR (Gagen 
et al. 2013). In addition, three OTUs of Bathyarchaeota 
were similar to those reported in methanogenic zone of 
hydrate-bearing environment (Lai et al. 2011).
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Discussion
Though uncultured archaea have been reported widely 
from marine sediments (Inagaki et  al. 2006; Jorgensen 
et al. 2012; Kubo et al. 2012; Lazar et al. 2015), their geo-
chemical functions remain unclear. In this study, depth 
distributions of archaeal groups in absolute and relative 
abundances were compared to bacterial groups, and the 
differences may indicate their distinct roles in geochemi-
cal cycles.

Organiclastic sulfate reduction appeared to be the 
main remineralization process in the sediment core, 
overlapped by manganese oxide reduction above 100-
cm depth and iron oxide reduction in the sediments 
below 100-cm depth. The total bacterial and SRB abun-
dances exponentially decreased with sediment depth, 

corresponding to the transition from oxic state to anoxic 
state and to the reduced available substrates, which was 
consistent with universal distributions (Kallmeyer et  al. 
2012; Roy et  al. 2012). Microbial abundance was sig-
nificantly correlated to TOC content in sediment cores 
from the South China Sea, Peru margin, Nankai trough, 
Black sea and Equatorial Pacific (Lipp et al. 2008; Yu et al. 
2017). The source and composition of organic matter may 
also affect the abundance of benthic bacteria (Qiao et al. 
2018). In this study, higher bacterial abundance in the 
upper layers may benefit from terrestrial plants-derived 
(lower δ13CTOC values) and protein-like organic matter 
(higher C3/(C1 + C2) ratio). The abundance of SRB was 
significantly affected by SO4

2− in pore water (r = 0.82, 
P < 0.0001) as expected. No significant correlation was 

Fig. 4  Principal coordinates analysis (PCoA) (a) and linear discriminant analysis (LDA) effect size (LEfSe) of microbial groups (b) with a LDA threshold 
of 3.5. In (b), dark red = archaeal groups and dark blue = bacterial groups
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found between archaeal abundance and measured geo-
chemical parameters. Archaeal groups may not depend 
on availabilities of labile organic matter or sulfate, which 
distinguished their vertical variability from that of bacte-
ria (Fig. 2).

Organic matter availability coupled with metabolism 
of Fe/Mn and sulfate reduction can shape bacterial com-
munity patterns in various ways, resulting in different 
depth profiles of bacterial groups (Figs.  4b, 5). Desulfo-
bacterales, Syntrophobacterales and Gammaproteobac-
teria positively corresponded to the sulfate pore-water 
profile, implying their active roles in the sulfur cycle 
(Oni et  al. 2015a; Orsi et  al. 2013). On the other hand, 

Deltaproteobacteria, Chloroflexi and Planctomycetes 
appeared to relate to metal oxides-reducing metabolisms 
(Fig. 5).

Bacterial groups such as Anaerolineaceae, Dehalococ-
coidia and Desulfarculales have been linked to the deg-
radation of recalcitrant organic compounds (Oni et  al. 
2015b). They were mainly present in the deep layers in 
previous studies (Monteverde et al. 2018; Qiao et al. 2018) 
and showed positive correlations with NH4

+, δ13CTOC 
values and humic-like FDOM in this study (Fig.  5). 
Anaerolineaceae were capable of degrading alkanes 
(Liang et  al. 2015) under methanogenic conditions and 
members of the Dehalococcoidia or Desulfarculales were 
able of growing via diverse organohalide or aromatic 

Fig. 5  Network interactions revealed relationships between microbial and geochemical factors with a threshold of 0.65 for spearman’s coefficient 
and 0.0001 for P-value. Purple lines indicated positive correlations with electron donors. Gray lines indicated positive correlations with electron 
acceptors. Circles: Archaeal OTUs; Diamonds: Bacterial OTUs; Triangles: Geochemical factors. The numbers representing generated OTU IDs were 
shown in Additional file 4: Table S3
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Fig. 6  The maximum likelihood tree of 16S rRNA gene sequences showing the phylogenetic affiliations of the bacterial (a) and archaeal (b) OTUs 
significantly related to geochemical factors (Spearman, ρ > 0.65, P < 0.0001). MHVG marine hydrothermal vent group. MBGD marine benthic group B
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Fig. 6  continued
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hydrocarbons (An and Picardal 2014; Poritz et al. 2015). 
Distributional patterns of Bathyarchaeota, Group C3, 
Lokiarchaeota, MBGD and MHVG were similar to those 
of Anaerolineaceae, Dehalococcoidia and Desulfarcula-
les (Figs. 4b, 5), suggesting that these organisms may be 
important for degradation of recalcitrant organic matter 
as well. Specifically, most of them showed preferences on 
marine-algae derived organic matter (higher δ13CTOC val-
ues) and humic-like FDOM (C1 and C2) (Fig. 5). Closely 
matched queries of C1 and C2 in OpenFluor database 
were identified from the dark ocean, Artic seawater and 
sedimentary pore water (Catala et  al. 2015; Chen et  al. 
2016, 2018). These components may accumulate from 
degradation of organic matter (Chen et  al. 2016) and 
appear to be refractory with turnover times of more than 
400  years (Catala et  al. 2015). Nevertheless, humic-like 
FDOM with high molecular weight and highly aromatic 
can also be bioavailable (Tfaily et al. 2018). In this study, 
the enriched refractory humic-like FDOM in deep lay-
ers was concurrent with the increases of archaeal relative 
abundance as well as Bathyarchaeal biomass.

Bathyarchaeota, Group C3 and MBGD have the poten-
tial in degradation of various substrates such as detri-
tal protein, polymeric carbohydrates and fatty acids/
aromatic compounds as well as acetogenesis or meth-
ane/short alkane metabolisms (Evans et  al. 2015; Lazar 
et  al. 2016; Lloyd et  al. 2013; Meng et  al. 2014; Wang 
et  al. 2019; Zhou et  al. 2018). It has been shown that 
Bathyarchaeota can grow on lignin as an energy source 
through enrichment cultivation (Yu et  al. 2018). Briefly, 
the archaeal groups, possibly similar to Anaerolineaceae, 
Dehalococcoidia and Desulfarculales, appear to use vari-
ous surviving strategies in low-energy deep layers and 
grow on complicated organic compounds.

Overall, our study demonstrated that functional bac-
terial groups (e.g., SRB) dominate in redox processes in 
the labile-carbon-rich upper layers such as metal oxides 
reduction zones and sulfate reduction zones, while 
archaeal groups become more competitive in deep lay-
ers involved in degradation of recalcitrant organic com-
pounds in the anaerobic remineralization processes 
(excluding methane-related metabolism). In organic-
carbon-rich environments, bacteria can maximize the 
energy availability with diverse metabolic capacities 
(Valentine 2007), allowing them to use a wide range of 
electron acceptors (NO3

−, metal oxides and SO4
2−). 

Gamma- and Deltaproteobacteria tend to be most 
abundant in the upper layers and correlated with sulfate 
concentrations (Oni et  al. 2015a). As labile substrates 
consumed, archaeal and bacterial groups able to degrade 
recalcitrant compound become dominant in deep lay-
ers (Oni et  al. 2015b), possibly relying on fermentation 

and acetogenesis to survive in deep subsurface (He et al. 
2016; Lazar et al. 2016).

In summary, the microbial community structure 
showed depth variations in the Pearl River estuarine 
sediments, which may be coupled with profiles of SO4

2+, 
NH4

+, dissolved Fe, δ13CTOC, or humic-like FDOM. Bac-
terial and archaeal populations showed different dis-
tributional patterns in terms of relative abundance and 
absolute abundance. Bacterial groups including Desulfo-
bacterales, Syntrophobacterales and Gammaproteobac-
teria showed strong positive correlations to SO4

2−, and 
dominated in remineralization of possibly labile organic 
matter in the upper layers. Chloroflexi and most archaeal 
populations preferred deep layers and showed close posi-
tive correlations with NH4

+, δ13CTOC and humic-like 
FDOM, suggesting their participation in degradation of 
recalcitrant organic matter. Archaea exhibited a weaker 
response to electron acceptor gradients, but a better use 
of humic-like FDOM. In future research, detailed analy-
ses of organic matter composition and enrichment of 
archaeal species in marine sediments would be neces-
sary to delineate the processes of organic matter utiliza-
tion in archaea. This study enhances our understanding 
of the distribution of microbial populations and offers 
clues for uncovering the roles of bacteria and archaea in 
biogeochemical cycles in the sediments of the estuarine 
environment.
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