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Abstract 

In the last years, the acidothermophilic red microalga Galdieria sulphuraria has been increasingly studied for industrial 
applications such as wastewater treatment, recovery of rare earth elements, production of phycobilins. However, even 
now it is not possible an industrial cultivation of this organism because biotechnological research on G. sulphuraria 
and allied species is relatively recent and fragmented. Having in mind a possible scale-up for commercial applications, 
we have compared the growth and photosynthetic performance of G. sulphuraria in four suspended systems (Inclined 
bubble column, Decanter Laboratory Flask, Tubular Bioreactor, Ultra-flat plate bioreactor) and one immobilized system 
(Twin Layer Sytem). The results showed that G. sulphuraria had the highest growth, productivity and photosynthetic 
performance, when grown on the immobilized system, which also offers some economics advantages.
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Introduction
Cyanidiophyceae are a class of red microalgae living in 
extreme environments (Albertano et al. 2000; Pinto et al. 
2003; Yoon et  al. 2004). They prevalently thrive in geo-
thermal volcanic areas at temperatures around 40 °C and 
at high sulfuric acid concentrations, with ambient pH 
values between 1 and 3 (Albertano et al. 2000; Pinto et al. 

2007; Toplin et al.2008; Castenholz and Mcdermott 2010; 
Ciniglia et al. 2014; Ciniglia et al. 2017)

These extreme environmental conditions strongly limit 
contaminations that are prevalent in open microalgal 
mass cultivation systems. In consequence, these organ-
isms are of considerable interest for commercial applica-
tions (Carfagna et al. 2018; Carbone et al. 2019).

Cyanidiophyceae are divided into three genera, Cya-
nidium, Galdieria, and Cyanidioschyzon (Gross 2000; 
Heilmann and Gross 2001; Ciniglia et  al. 2004; Del 
Mondo et al.2019) but only Galdieria is known to grow 
heterotrophically, also achieving a higher biomass density 
(Gross et al. 1998; Gross and Schnarrenberger 1995; Gra-
ziani et  al. 2013, Vítová et  al. 2016); therefore it is con-
sidered a promising candidate for industrial applications.

Indeed, Galdieria has been the subject of different 
studies in algal biotechnology. It was used for wastewa-
ter treatment (Ju et  al. 2016; Henkanette-Gedera et  al. 
2016; da Silva et  al. 2016; Carbone et  al. 2018; Galasso 
et  al. 2019; Alalwan et  al. 2019; Sosa-Hernández et  al. 
2019) and for recovery of rare earth elements (Minoda 
et al. 2015). Moreover, this organism produces high levels 
of phycobiliproteins that are used in diverse medical and 
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cosmetic products (Schmidt et  al. 2005; Graverholt and 
Eriksen 2007; Sørensen et al. 2013; Eriksen 2018) and in 
different compounds with antioxidant properties (Carf-
agna et al. 2016).

However, biotechnological research on Galdiera is rel-
atively recent. The data around the growth of this micro-
alga are still fragmentary and even now it is not possible 
an industrial cultivation of this organism.

Therefore, having in mind a possible scale-up and com-
mercial applications of G. sulphuraria, in this paper, 
the growth and the photosynthetic performance of this 
microalga were systematically compared in five different 
types of cultivation systems (one immobilized and four 
suspended) at the same conditions of temperature and 
irradiance.

Materials and methods
Algal strain and stock cultures
Galdieria sulphuraria strain 064 from ACUF collection 
(D’elia et  al. 2018 http://www.acuf.net) was chosen. The 
stock culture was cultivated in Galdieria medium (Gross 
and Schnarrenberger 1995) acidified by sulfuric acid 
at pH 1.5. Stock cultures were grown in 1 l Erlenmeyer 
flasks and were exposed to an adaptive light intensity 
of 30 μmol photons m−2  s−1 with a light/dark cycle of 
14/10 h. The temperature was 35 °C.

Analysis of growth
We consider several parameters to analyse growth. 
These parameters are depending variables of time, the 
only independent variable. Some depending variables, 
denoted with the term “specific”, are normalized by divid-
ing by the initial values, to take the different inocula into 
account (conversely, the non-normalized depending vari-
ables can be obtained multiplying the normalized ones 
by the initial values). We explicitly observe that normali-
zation is necessary because Twin-Layer S needs inocula 
concentrations very different from those used for sus-
pended systems.

The considered variables are: coefficient of determina-
tion, specific weight increase, specific light yield, growth 
rate.

Coefficient of determination
The coefficient of determination (r2) is a measure of how 
close the data are to the regression line. It was used to 
compare the different bioreactor systems.

Specific weight increase (SWI)
The specific weight increase (SWI) was used to analyse 
the trend of growth in the different bioreactors.

This is the formula defining SWI:

where w(t) is the dry weight at day t (more exactly, t is the 
number of the day when the sampling is taken and meas-
ured) and w(0) the dry weight at day 0 (g).

Specific light yield (SLY)
To consider the light energy necessary for the growth, we 
used the standard light yield and normalized it. The for-
mula for the specific light yield (SLY) (photons mol−1) is 
the following:

where SWI(x) is the specific weight increase, A the area 
of surface of the bioreactor exposed to the light (m2), t 
is the number of days, s is the number of seconds of illu-
mination per day (s) (in our case, this number, 50,400, is 
obtained multiplying the number of illuminations hours, 
14, by the number of seconds in a hour, 3600), pm is the 
number of the given moles of photosynthetically active 
photons per second and per square meter (photons mol 
s−1 m−2) (in our case, pm is the number of the given PAR, 
100, multiplied by 10−6).

Growth rate (GR)
The growth rate in the time period is calculated thanks to 
the growth rate GR (day−1) with this formula:

where Ln is the natural logarithm, w(t+h) is the dry 
weight at day t+ h, w(t) is the dry weight at day t, h is the 
number of days between two consecutive measures (in 
our case, h is equal to 3).

Determination of biomass
In liquid cultivation systems, 2 ml of the culture was har-
vested every three days in triplicate with a sterile syringe 
for dry mass determinations and then filtered on a poly-
carbonate disc using a vacuum pump. In Twin Layer 
System, the polycarbonate discs were taken off from the 
bioreactor and biomass in the inoculated area was con-
sidered, while the rest was scraped off.

All samples were lyophilized in a freeze dryer for two 
hours and weighed with an analytical balance (Sartorius 
Bovenden, Germany).

SWI(t) =
w(t)− w(0)

w(0)

SLY (t) =
SWI(t)

A ∗ t ∗ s ∗ pm

GR(t) =
Lnw(t+h)

w(t)

h

http://www.acuf.net
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Analysis of the photosynthetic state of microalgae
Pigment concentration: microalgae were harvested and 
lyophilised then they were mixed with quartz sand to 
obtain homogeneous powder.

Photosynthetic pigments were extracted overnight with 
acetone (Costache et al. 2012). Chlorophyll a and carot-
enoids were analysed by spectrophotometry (Shimadzu 
UV-2450) (Tomitani et al. 1999).

Pigment concentration
Different formulae were considered to compare the pho-
tosynthetic state of each culture.

These equations were used:

where Chl a is the concentration of chlorophyll a (mg 
l−1), Carotenoids is the concentration of total carotenoids 
(mg l−1), and A is the absorbance at different wavelengths 
(662, 645,470 nm) (Costache et al. 2012).

Specific pigments increase
The trend of pigment concentration during growth tests 
was calculated according to the formula:

where p(t) is the concentration of the pigment (chloro-
phyll or carotenoids) at time t (mg ml−1 for liquid sys-
tems and g m−2 for Twin Layer System) and p(0) is the 
concentration of the pigment at time 0 (mg ml−1 for liq-
uid systems and g m−2 for Twin Layer System), obtained 
by the previous formulae.

Normalized photosynthesis efficiency (NPE)
NPE is the efficiency of solar light energy captured and 
stored in biomass. Therefore it is used to estimate the 
productivity. We normalized the standard formula for 
photosynthetic efficiency (De Vree et  al. 2015) by using 
the dry weight at time 0. The formula for NPE (g−1) is the 
following:

where �H0

C is the standard enthalpy of combustion (22.5 
kJ g−1), w(x + h) the biomass dry weight at day t + h (g), 
w(x) the biomass dry weight at day t (g), w(0) the biomass 
dry weight at time 0 (g), h the number of days between 

Chl a = 11.75 ∗ (A662)− 2.350 ∗ (A645)

Carotenoids =
1000 ∗ (A470)− (2.270Chl a)

227

SP(t) =
p(t)− p(0)

p(0)

NPE(t) =
�H0

C ∗ (w(t + h)− w(t))

w(0) ∗ h ∗ A ∗ s ∗ pm ∗ N ∗ e

two consecutive measures (in our case, h is equal to 3), A 
the area of surface of the bioreactor exposed to the light 
(m2), s is the number of seconds of illumination per day 
(s) (in our case, this number, 50.400, is obtained multiply-
ing the number of illuminations hours, 14, by the num-
ber of seconds in a hour, 3.600), pm is the number of the 
given moles of photosynthetically active photons per sec-
ond and per square meter (photons mol s−1 m−2) (in our 
case, pm is the number of the given PAR, 100, multiplied 
by 10−6), N is the Avogadro number, e is the approximate 
energy of a photon of 400 nm 173 wave length (kJ) (this 
value is around 4 * 10−22).

In this formula, we normalized by w(0) to highlight 
the relevant differences between the TL-S system and 
suspended systems. Moreover, we acknowledge that it 
can also be significant to normalize by dividing by w(t) 
be evidence possible differences between consecutive 
measurements.

This variable is linked to the productivity of bioreactors 
and represents the efficiency with which solar energy is 
captured and stored in biomass (De Vree et al. 2015).

Photobioreactors and bottle design set up
The experiments were set up at the same light intensity 
of 100 μmol photons m−2 s −1 with a light/dark cycle of 
14/10 h in presence of atmospheric CO2 and at constant 
temperature of 35 °C. The systems used for the experi-
ments are four suspension systems and one where cells 
are immobilized on photobioreactor (Fig.  1). In sus-
pension systems the volume of the culture is invari-
able, because after the sampling of 2 ml water loss was 
replaced and the growth was influenced only very weakly. 
At the beginning of the experiment, the culture had an 
optical density of 0.4 and a dry weight of 0.4 g/l while in 
the Twin Layer System the culture had a dry weight of 20 
g m−2.

•	 The Twin Layer System (Twin Layer-S) consisted 
of an immobilized photobioreactor where micro-
algae are inoculated on a polycarbonate disk that is 
attached on a hydrophilic substrate by self-adhe-
sion, separating the algal biomass from the bulk of 
the medium (Nowack et  al. 2005; Melkonian and 
Podola 2010; Li et  al. 2017). The algae were placed 
on the Twin Layer-S only when the liquid culture 
achieved a sufficient density in suspension (optical 
density around 0.4). Then the algae were harvested 
by centrifugation for 30 minutes at 2000 rpm (Sor-
vall, RC5C), filtered onto polycarbonate membranes 
(PC40, 0.4 μm pore size, 25 mm diameter, Whatman, 
Dassel, Germany) and subsequently attached to the 
hydrophilic substrate (Fig. 1a). This system was cho-
sen because it reproduces the natural habitat of this 
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species, generally growing on substrates like soil and 
rocks (Gross et  al. 1998; Ciniglia et  al. 2004; Pinto 
et al. 2007).

•	 The Decanter laboratory flask (Decanter-LF) had 
a lighted surface area of 10,201 cm2 and was placed 
on a platform shaker with at a speed of 50 rpm. The 
total volume of the Decanter-LF was 1000 ml and the 

working volume was 250 ml (Fig. 1b). The Decanter-
LF is not a bioreactor and there isn’t air flux but it 
was selected because it is the most common system 
used in Galdieria growth test (e.g., Iovinella et  al. 
2020).

•	 The Ultra-flat plate bioreactor (Flat-UPB) had a 
lighted surface area of 715 cm2 and was composed of 

Fig. 1  a Twin-layer system (Twin Layer-S): alg immobilized microalgae, pcm polycarbonate membrane as a carrier for microalgae, gf glass fiber 
material, air membrane pump for air supply, cm culture medium (figure reproduced and modified from Carbone et al. 2017a, b); b Decanter 
(Decanter-LF); c A side view of Ultraflate photobioreactor (UP-B) (Gifuni et al. 2018 d Tubular bioreactor (Tubular-B); e Inclined bubble column 
(Inclined Bubble-C) (Olivieri et al. 2012)
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three plexiglass panels spaced by two silicone sheets. 
Four 1 mm orifices from the bottom of the photo-
bioreactor aerated the system with a gas stream. The 
total volume was 700 ml and working volume was 
400 ml (Fig. 1c). This reactor was chosen because it 
has a high surface area to volume ratio (Gifuni et al. 
2018; Zuccaro et al. 2020).

•	 The Tubular bioreactor (Tubular-B) was a glass col-
umn photobioreactor, with a lighted surface area of 
275 cm2 and a glass pipe with a membrane pump 
equipped with a sterile filter at the bottom of the col-
umn aerating the system. The total volume was 350 
ml, the working volume was 200 ml (Fig.  1d). This 
type of system was chosen because mixing of the sus-
pension is optimal (Aslanbay Guler et al. 2019; Car-
bone et al. 2019; Dupré et al. 2020).

•	 The Inclined bubble column bioreactor (Inclined 
Bubble-C) was a prism of 2 litres with a rectangular 
base and a lighted surface area of 300 cm2. On the 
bottom of the bioreactor, the gas stream was sparged 
by multiple orifices of a Teflon tube. The working 
volume was 400 ml (Fig 1e). This system was chosen 
because it has a good ratio between the photic and 
the dark zone and the microalgae are not exposed to 
an excess of light or darkness (Olivieri et al. 2013).

Results
Algal growth in different cultivation systems
During the  experiment,  G. sulphuraria showed  differ-
ences in growth in the cultivation systems.

The slowest growth was observed in Decanter-LF 
where, at the end of the experiment, G. sulphuraria was 
only at the beginning of the exponential growth phase 
(Fig. 2; Table 1).

In the Inclined Bubble-C, the microalgae achieved the 
stationary growth phase on day 27 but the growth perfor-
mance was lower than those observed in the others bio-
reactors (Fig. 2; Table 1).

Also, the Tubular -B and Flat-UPB achieved the sta-
tionary growth phase on the day 27 but showed a dif-
ferent behaviour (Fig.  2; Table  1). Indeed, the flat-UPB 
showed highest values of SWI compared to the other 
suspension-based bioreactors (around 6.5), while the SLY 
values were lower than those in the Tubular-B, in which 
the maximum value was around 0.752 mol−1 on day 24 
(Fig. 2; Table 1). The maximum GR value was similar  in 
the two bioreactors (approximately 140 day−1; Table 1).

In the Twin Layer-S, the SWY maximum values were 
similar to those of the Flat-UPB while SLY were signifi-
cantly higher during the first 21 days of cultivation than 
the values obtained in the other bioreactors (maximally 
1.7 mol−2 on day 6, Fig. 2; Table 1). The values declined 

only in the last time of the tests when SLY values fell 
below 1.0 (Fig.  2b). Also, the maximum GR was higher 
in the Twin Layer-S than in the other bioreactors (0.222 
day−1). Instead, the r2 was the lowest of all photobioreac-
tors (Fig. 3; Table 1).

Photosynthetic activity
Characterization of photosynthetic pigments
The photosynthetic pigments were analysed at the same 
time as biomass growth. Specifically, chlorophyll a and 
carotenoids were considered.

As in the case of biomass growth, the Decanter-LF 
showed the lowest chlorophyll SP levels (Fig. 4a; Table 2). 
Indeed, the SP(x) achieved a maximum value of 2 only on 
the last day of the experiment.

In the Inclined Bubble-C, chlorophyll a achieved the 
maximum SP value on day 30 (around 5.4) where in the 
Tubular B, the maximum SP value was observed on day 
27 (around 7.5 Fig. 4a; Table 2).

Compared to the other suspension-based cultivation 
systems, the flat-UPB showed the highest SP(x) level of 
chlorophyll a (around 10) on day 24, and then decreasing 
around 9 on day 30 (Fig. 4a; Table 2).

In the Twin Layer-S, the chlorophyll a SP maximum 
value was on day 21, when it reached a value of 15 
(Fig. 4a; Table 2).

In all systems, the chlorophyll a percentage was around 
0.6% of the total weight(Fig. 5a).

The carotenoids had a different trend from chlorophyll 
a except for the Decanter-LF, in which SP values were 
similar to those of chlorophyll a (around 1) but the maxi-
mum percentage value was 0.3% of total weight (Figs. 4b, 
5b; Table 2).

The SP values for carotenoids were higher in the 
Inclined Bubble-C(14) than in the Tubular-B (9) and con-
sequently also the maximum percentage value was higher 
in the Inclined Bubble-C (0.3% and 0.15% respectively) 
(Figs. 4b, 5b; Table 2).

In the Flat-UPB, the percentage maximum value was 
around 0.3% (day 27) and the SP values were higher than 
in the other suspension-based photobioreactors, achiev-
ing a maximum value around 28 on the day 27.

In the Twin Layer-S, SP for carotenoids displayed a 
lower value than that in the Flat-UPB (around 20 on day 
30) and the percentage maximum value was only 0.1% 
(Figs. 4b, 5b; Table 2).

Normalized photosynthesis efficiency (NPE)
When the normalized photosynthetic efficiency was 
calculated, the Decanter-LF showed the lowest level of 
NPE(x), that never exceeded 0.096 g−1. The Flat-UPB 
and the Inclined Bubble-C showed a similar maximum 
level of NPE (0.109 g−1 and 0.094 g−1, respectively). 
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Fig. 2  a Specific weight increase (SWI) values in the different systems during 30th days. b Specific light yield (SLY) values in the different systems 
during 30th days
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In the Tubular-B, NPE was lower than 1 g−1 until day 
15; then it increased, with a maximum value of 0.188 
g−1(Fig. 6).

In contrast, the Twin Layer-S, showed higher values 
of NPE during the first nine days of the experiment, 
resulting in a maximum of 0.208 g−1 on day 6; then the 
value decreased to about 0.1 g−1 (Fig. 6).

Discussion
For the experiment, a light intensity of 100 μmol pho-
tons m−2  s −1 was chosen because G. sulphuraria 
generally grows at low light intensities in the natu-
ral environment (Pinto et  al. 2007; Eren et  al. 2018) 
and also showed promising results in both liquid and 
immobilized cultivation systems with respect to its 

Table 1  Growth parameters of microalgae in different systems

DAYS Decanter laboratory flask 
(DLF)

Inclined bubble column 
(IB-C)

Tubular bioreactor 
(T-B)

Ultra-flat plate bioreactor 
(UP-B)

Twin layer 
system 
(TW-S)

Specific weight increase (SWI)

 0 0 0 0 0 0

 3 0 0.0625 0.075 0.625 1

 6 0.0625 0.517 0.5357 1.025 2.29

 9 0.305 0.7 0.625 1.5 3.25

 12 0.45 0.903 0.7 2.65 3.51

 15 0.5 1.033 0.8 3 4.2

 18 0.52 1.044 1.4 3.69 4.84

 21 0.541 1.0566 2.39 4.9 5.4

 24 0.55 1.3 3.57 6.1 6.2

 27 0.65 1.5 3.75 6.5 5.7

 30 0.7 1.5 3.72 6.5 4.7

Specific light yield (SLY) Mol−1

 0 0 0 0 0 0

 3 0 0.137 0.194 0.608 1.4

 6 0.017 0.321 0.697 0.498 1.66

 9 0.269 0.501 0.626 0.527 1.57

 12 0.248 0.593 0.546 0.644 1.27

 15 0.265 0.606 0.593 0.622 1.22

 18 0.233 0.551 0.615 0.639 1.15

 21 0.205 0.516 0.887 0.683 1.12

 24 0.185 0.620 1.05 0.752 1.19

 27 0.191 0.670 1.08 0.702 1.03

 30 0.181 0.606 0.966 0.632 0.87

Growth rate (GR) day−1

 0 0 0 0 0 0

 3 0.020 0.020 0.024 0.140 0.221

 6 0.068 0.06 0.119 0.073 0.178

 9 0.034 0.101 0.018 0.07 0.100

 12 0.011 0.085 0.015 0.126 0.083

 15 0.006 0.044 0.019 0.03 0.019

 18 0.003 0.0035 0.095 0.053 0.047

 21 0.0018 0.0035 0.115 0.077 0.020

 24 0.0020 0.0694 0.099 0.06 0.029

 27 0.02 0.0477 0.0136 0.014 − 0.014

 30 0.09 0 − 0.007 0 − 0.04
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physiology and in relation to applications in biotech-
nology (e.g. Sano et  al. 2001; Oesterhelt et  al. 2007; 
Carbone et  al. 2020). For the latter, exposition at this 
light intensity leads to an increase of phycobiliprotein 
production: Carbone et  al. (2020) e.g. showed, in an 
experiment with a Twin Layer-S using different light 
intensities that 100 μmol photons m−2 s−1 was the opti-
mal light intensity for production of phycobiliproteins, 
also Hirooka and Miyagishima (2016) obtained good 
production of phycocyanin at this light intensity in a 
suspended cultivation system using hot spring water 
supplemented with NH4

+ as culture medium.

By comparing growth, productivity and photosyntesis 
performances, the Decanter LF showed the lowest level 
of biomass growth and photosynthetic performance, 
despite it is the most common system used for G. sul-
phuraria growth (Iovinella et  al. 2018; Carfagna et  al. 
2018) it. Indeed, it was placed on a plate shaker; the 
absence of bubbling didn’t allow a good mixing of the 
culture for gas exchange, although the Decanter ensures 
a good mixing of nutrients around each cell surface (Rod-
riguez-Maroto et al. 2005; Mata et al. 2010).

In literature, better performances are commonly 
reported for microalgae in the Inclined Bubble-C and 

Fig. 3  Biomass trends and equation of the line and R2 values in the different systems
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Fig. 4  a Specific chlorophyll a increase in different systems during the course of experiment. b Specific total carotenoids increase in different 
systems during the course of experiment
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the Flat-UPB than in the Tubular-B. For example, Olivieri 
et  al. (2011) showed that the green alga Stichococcus 
bacillaris grows better in the Inclined Bubble-C than in 
the Tubular-B; and De Vree et  al. (2015) reported that 
Nannochloropsis sp. achieved higher biomass concen-
trations and enhanced photosynthesis performance in a 
flat panel cultivation system very similar to the Flat-UPB 
compared to other cultivation systems including a Tubu-
lar-B. Also, a number of studies found very high biomass 
levels were obtained with different microalgal genera 
such as Nannochloropsis, Chlorococcum, Scenedesmus 
and Arthrospira in a Flat UPB (Zhang et al. 2002; Koller 
et  al. 2018; Hu et  al.  1998; De Vree et  al. 2015; Safafar 
et al. 2016; Tredici and Zitelli 1997).

In our experiments, G. sulphuraria had better perfor-
mances in the Tubular-B among the suspended cultiva-
tion systems tested; these differences are probably linked 
to the particular physiology of this microalga. Indeed, G. 
sulphuraria is an extremophile organism that can survive 
in the dark up to five months (Gross et al. 1998) achiev-
ing very high biomass densities under heterotrophic con-
ditions (Gross and Schnarrenberger 1995; Graverholt and 

Eriksen 2007; Eriksen 2018; Sloth et al. 2006). Generally, 
heterotrophy is not typical for red algae, and presumably, 
this is a strategy of G.sulphuraria to survive in extreme 
environments (Gross et al. 1998; Gaignard et al. 2019).

Therefore, the high illumination area of the Flat-UPB 
and high radial macroscopic circulation of the Inclined 
Bubble-C represent a drawback for an organism that 
lives in a cryptoendolithic condition, under which light 
is scarce or absent for days (Thangaraj et al. 2011; Gross 
et al. 1998; Janssen et al. 2003).

The Tubular-B has a low radial macroscopic circula-
tion that causes a shadow effect, due to external micro-
algal biomass that capture most of the incident light, thus 
creating a low-light environment for inner cells of the 
suspension (González-Camejo et al. 2019; Hu et al. 1998; 
Kiperstok et al. 2017; Zuccaro et al. 2020; Carbone et al. 
2019). In this way a condition similar to the endolithic 
state is generated.

Whereas the Inclined Bubble- C displayed lower 
growth and photosynthetic performance than the Tubu-
lar-B, the Flat-UPB had similar growth performance but 
lower photosynthetic activity than the Tubular-B.

Table 2  Specific increase of pigments in different systems

DAYS Decanter laboratory flask 
(DLF)

Inclined bubble column 
(IB-C)

Tubular bioreactor 
(T-B)

Ultra-flat plate bioreactor 
(UP-B)

Twin layer 
system 
(TW-S)

Specific pigment increase (SP) chlorophyll a

 0 0 0 0 0 0

 3 0.04 0.86 0.32 0.86 1.2

 6 0.16 1 1.4 1.6 1.49

 9 0.33 1.66 1.62 1.73 1.62

 12 0.36 2 1.66 2.86 4.26

 15 0.4 3 1.98 5.26 6.89

 18 0.7 3.66 3.8 6.26 12.4

 21 1.06 3.9 5.3 8.2 15.1

 24 1.4 4.66 8.2 9.6 12.68

 27 1.66 5 7.6 9.6 10.8

 30 1.8 5.4 6.3 9 9.5

Specific pigment increase (SP) carotenoids

 0 0 0 0 0 0.64

 3 0.033 0.66 0.66 0.81 2.65

 6 0.56 1.3 1.8 3.43 3.45

 9 0.63 2.3 2.3 4.5 5.49

 12 0.8 6.4 3 5 7.98

 15 1.4 7.3 3.6 6.4 11.92

 18 1.43 9 5 14.4 12.3

 21 1.56 11 6.6 18.3 14.23

 24 1.66 12.3 8 22.33 16.2

 27 1.7 15 9 28.3 18.9

 30 1.76 14 9 26.6 18.8



Page 11 of 14Carbone et al. AMB Expr          (2020) 10:170 	

The Tubular-B and the Flat-UPB had high chlorophyll 
contents, and as reported in the literature, this is directly 
connected to the photochemical performance of PSII, 
and, as a consequence, of photosynthetic activity and 
indirectly also to growth performance (Schreiber et  al. 
1998; Zuccaro et al. 2019).

However, algae grown in the Flat-UPB revealed higher 
percentage levels of carotenoids compared to those 
grown in the Tubular-B, indicating a stressful condi-
tion of the alga. Indeed, carotenoids perform an essen-
tial photoprotective role by quenching the triplet state 
chlorophyll molecules, scavenging toxic oxygen species 
formed during light stress, dissipating harmful excess 
excitation energy under light stress (Pisal and Lele 2005; 
Galasso et  al. 2017; Takaichi 2011; González-Fernández 
et al. 2012; Sosa-Hernández et al. 2019; Sun et al. 2016).

Moreover, despite the good growth performance of 
the Flat UPB, the productivity is lower than that in the 

Tubular-B. Indeed, normalized photosynthesis perfor-
mance is lower in the Flat-UPB.

Although the Tubular-B seems to be the best of the dif-
ferent suspended cultivation systems tested, the results 
obtained in this system are not comparable with the Twin 
Layer-S, in which G. sulphuraria exhibited best growth, 
photosynthetic performance and productivity. This result 
is not surprising: in natural environments, these microal-
gae generally live attached to substrates like soil or rocks 
and the Twin Layer-S partly reproduces conditions sim-
ilar to the natural habitat of this species (Li et  al. 2017; 
Melkonian and Podola 2010; Moreno Osorio 2018).

Moreover, in the Twin Layer-S the lower cell layers of 
the biofilm are permanently shaded by the upper cell 
layers due to immobilization of the cells, thus mini-
mizing photoinhbition (Gross et  al. 1998; Schultze 
et al. 2015; Piltz and Melkonian 2018; Langenbach and 
Melkonian 2019; Kim et  al. 2019). In consequence, 

Fig. 5  a Chlorophyll a percentage during the course of the experiments. b Carotenoids percentage during the course of the experiments
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G. sulphuraria achieves high growth and photosyn-
thetic performance also at light intensities that inhibit 
growth and photosynthetic performance in suspended 
cultures, such as 200 μmol photons m−2  s−1 (Carbone 
et al. 2020).

Eventually, Twin Layer-S offers also some econom-
ics advantages for mass cultures of G. sulphuraria (Car-
bone et al. 2017a; Podola et al. 2017; Pierobon et al. 2018; 
Zhuang et al. 2018). Many high costs linked to suspended 
cultivation systems are eliminated: for example, the bio-
mass is harvested directly by scraping, without a precon-
centration step; there are lower water consumption and 
space utilization. Furthermore, the system is modular, 
thus easily scalable. However, in comparison with sub-
merged photobioreactor, which have been sufficiently 
tested and analysed also at pilot and industrial scale, 
the Twin-layer-S has still to be completely validated at 
a relevant and demonstrative scale. Thus, while techno-
economic analysis of closed photobioreactor are already 
available in literature, an representative and meaning-
full economic analysis of the Twin-layer-S has still to be 
performed.
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