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Microbiome and metabolic changes in milk 
in response to artemisinin supplementation 
in dairy cows
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Abstract 

This study aimed to explore the effects of artemisinin (ART) on the milk microbiome and metabolites of dairy cow. 
A total of 12 mid-lactation Holstein dairy cows with similar parity, days in milk were randomly divided into 2 groups 
receiving either a total mixed ration (TMR) as the control group or this TMR and 120 g/d/head ART as the ART group. 
The milk samples were collected weekly to determine the contents, and end-of-trial (week 8) milk samples were used 
to identify microbial species and metabolite profiles by 16S rRNA sequencing and LC–MS analyses, respectively. We 
observed that the milk fat content significantly increased by ART treatment (P < 0.05). The bacterial community rich-
ness was significantly lower in the ART group (P < 0.05), while the diversity showed no difference (P > 0.05). Compared 
with its abundance in the control (CON) group, Firmicutes was significantly decreased, whereas Proteobacteria was 
significantly increased. Furthermore, in the ART group, the relative abundances of the genera Aerococcus, Staphy-
lococcus, Corynebacterium_1 and Facklamia were significantly lower (P < 0.01). Metabolomics analysis revealed that 
ART significantly increasing the concentrations of glycerophospholipids, glycerolipids and flavonoids compared with 
those in the CON group. An enrichment analysis of the different metabolites showed that ART mainly affected glycer-
ophospholipid metabolism and the pantothenate and CoA biosynthesis pathways. These findings revealed that ART 
supplementation could affect the milk microbiota and metabolites, that glycerophospholipids and glycerolipids could 
be potential biomarkers in the milk response to ART feed in dairy cows, and that ART changes substances in milk by 
maintaining lipid metabolism in the mammary gland.
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Introduction
Milk serves not only as an important medium for nutri-
tion but also as an indicator of the metabolic status of 
dairy cows. Insights from recent investigations of milk 
biosynthesis suggest that the microbiota can provide a 
great reference for the evaluation of milk quality (Guan 
et  al. 2014). Members of the milk microbiota could 
directly affect the quality of milk, such as lactic acid bac-
teria, Lactobacillus, and Lactococcus (Guan et  al. 2014; 

Vanderhaeghen et al. 2014; Ganda et al. 2017). In particu-
lar, some specific dominant bacteria play an important 
role in udder homeostasis, which guarantees high milk 
quality (Tong et al. 2019).

To a certain extent, microbial diversity and richness 
reflect the mammary gland health of dairy cows (Guan 
et  al. 2014), and there is an interesting report of the 
udder microbiota having a lower diversity in quarters 
with a history of clinical mastitis than in healthy quarters 
(Hélène et al. 2016). Additionally, 16S rRNA sequencing 
technology has become an important technique to study 
the composition and structure of sample microbial com-
munities (Caporaso et  al. 2011). Through comparison 
with databases, the diversity of the milk microbiome was 
analyzed with high speed, high flux and high accuracy 
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(Kuehn et  al. 2013). In particular, the udder commen-
sal mammary microbiota has recently attracted much 
attention to the milk microbiota differences between 
the colostrum and milk from healthy quarters or masti-
tis quarters of dairy cows (Guan et al. 2014; Hélène et al. 
2016). In addition, the administration of antibiotics for 
mastitis treatment and antimicrobial resistance also 
reveal the effects of the milk microbiome response to 
udder defense mechanisms as determined by 16S rRNA 
sequencing or metagenomic investigations (Ganda et al. 
2017).

With variations in the microbial community structure 
in milk, metabolites also change. Milk quality is regulated 
by different metabolic pathways, resulting in differences 
in milk production and nutrients such as fat, protein, and 
lactose. Furthermore, a complex array of bioactive mol-
ecules such as immunoglobulins, lysozyme, and lactofer-
rin are the major immunoregulatory components of milk 
(Korhonen et al. 2000). Metabolomics has received much 
attention because it can amplify tiny changes in gene 
and protein expression at the metabolite level and more 
fully reflect the functional level of cells than other tech-
niques can (Mansor 2012). In addition, metabolomics is 
also used to quantitatively measure metabolic status in 
milk, including the levels of metabolic biomarkers dur-
ing lactation (Sun et  al. 2017a), alterations in metabo-
lites resulting from mastitis (Tong et  al. 2019), and 
changes in metabolic profiles resulting from antibiotic 
treatment (Junza et al. 2016). Nontarget metabolic tech-
niques based on liquid chromatography/mass spectrom-
etry (LC–MS) could identify a large number of complete 
metabolites with the advantages of high flux and high 
sensitivity (Gowda and Djukovic 2013). Therefore, LC–
MS can provide a comprehensive overview of changes in 
milk metabolites in response to artemisinin supplemen-
tation in dairy cows.

Artemisinin (ART), a sesquiterpene lactone with a 
peroxy-bridge structure, has multiple actions including 
antibacterial, anti-inflammatory, antitumor and antivi-
ral pharmacological effects (Shi et  al. 2015). Because of 
its effectiveness as an anti-malarial drug, artemisinin was 
labeled as “the greatest hope for treating malaria” by the 
WHO, and Chinese scientist Tu You-you won the Nobel 
Prize in Physiology or Medicine in 2015 for her discover-
ies. Moreover, artemisinin has great potential in the poul-
try industry. Previous studies have shown that adding 
appropriate amounts of ART or its derivatives to the diet 
improved the performance of laying hens, increased egg 
weight and yolk color and had anticoccidial effects (Bris-
ibe et  al. 2008). In addition, ART can effectively allevi-
ate declines in broiler performance caused by heat stress 
and reduce intestinal inflammation (Song et  al. 2017). 
ART feeding trials have shown promising bacteriostatic 

activity especially with regard to its potential role in the 
bovine rumen which houses a complex microbiota and 
plays an important role in digestion. However, the appli-
cation of ART in dairy farming has rarely been reported. 
We hypothesized that ART would affect dairy cow per-
formance and trigger changes in milk microbiota and 
metabolites, providing a theoretical basis of traditional 
Chinese herbal medicine for animal welfare.

Our goal was to appraise the effects of ART on the 
performance and milk microbial diversity and metabo-
lites of dairy cows. We aimed to explore the changes in 
the species composition of the milk microbial profile by 
using 16S rRNA sequencing and to detect the metabo-
lites in milk by untargeted metabolic techniques. We also 
identified correlations between the milk microbiota and 
metabolites by ART supplementation.

Materials and methods
The Artemisia annua extract (brown powder form) used 
in these experiments was purchased from Shaanxi Sci-
phar Natural Products Co., Ltd. (Shanxi, China). The 
active ingredients in the Artemisia annua extract were 
analyzed by UV spectroscopy, resulting in the follow-
ing contents: ART 39%, crude ash 5%, crude fiber 27.9%, 
crude protein 6.3%, water 5%, ash 8.0%, polysaccharide 
8.3% and volatile oil 0.5% (Additional file 1).

Animals and experimental design
All experimental procedures were approved by the Ani-
mal Care Committee, Beijing University of Agriculture 
(Beijing, China). A feeding experiment was performed 
in a commercial dairy farm in Yanqing District, Beijing. 
Twelve lactating Chinese Holstein dairy cows with simi-
lar weight (590 ± 15.5  kg; P = 0.96), parity (3.65 ± 0.78; 
P = 0.82), days in milk (183.2 ± 16.8 d; P = 0.65), and 
milk yield (30.47 ± 3.23 kg/d; P = 0.88) were selected and 
divided into two groups. The cows were fed either a total 
mixed ration (TMR) as the control group (CON, n = 6) 
or this TMR with ART supplementation of 120 g/d/head 
(ART, n = 6). The ART dosage for dairy cows used in the 
present study was based on the dosage from an in vitro 
study and an in vivo study in dairy cows (Xue et al. 2004; 
Hou et al. 2019). The animals were housed individually in 
stalls bedded with sawdust, feed was available for ad libi-
tum consumption, and free access to water was given. 
The ingredients and nutrient composition of the TMR 
were presented in Table 1. Feeding and milking occurred 
3 times per day (07:00, 14:00 and 20:00). The experiment 
lasted for 8  weeks, with 2  weeks for feeding with the 
TMR and 6 weeks of treatments. Milk samples were col-
lected weekly, and production was recorded at each milk-
ing. A total of 15 ml of composite milk from each animal, 
with approximately equal volumes from each lactating 
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udder quarter, was transferred to a sterile plastic bot-
tle (Corning Inc., Corning, NY, United States), kept on 
ice until transport to the laboratory and then stored at 
−80 °C for further analysis.

Milk sampling and analyses
The daily milk production was recorded during the 
experiment. The somatic cell count (SCC) in milk was 
detected by a somatic cell counting instrument (Fos-
somatic 5000, FOSS, Denmark). The milk fat rate, milk 
protein rate and milk lactose rate were determined by a 
milk composition analyzer (Bentley Instruments, Chaska, 
MN). Milk samples were collected weekly to measure 

the contents, and the end-of-trial (week 8) milk samples 
were used to identify the microbial species and metabo-
lite profiles by 16S rRNA gene sequencing and LC–MS, 
respectively. All the samples were stored in liquid nitro-
gen for further analysis.

16S rRNA high‑throughput sequencing analysis
Genomic DNA extraction for 12 milk samples was per-
formed using a Power Soil DNA Isolation Kit (Qiagen, 
Crawley, United Kingdom) following the manufacturer’s 
instructions. The concentration of DNA was determined 
by spectrophotometry, and the purity of DNA was esti-
mated according to the ratio of the UV absorption values 
of DNA at 260 nm and 280 nm (OD260/OD280). Ampli-
con libraries covering the V3-V4 hypervariable regions 
of the microbial 16S rDNA gene were amplified using 
the primers 341F (5′-ACT​CCT​ACG​GGR​SGCA​GCA​
G-3′) and 806R (5′-GGA​CTA​CVV GGG​TAT​CTA​ATC​
-3′). The reactions were performed on a thermocycler 
(GeneAmp 9700, ABI, USA). PCR amplification products 
were further purified by the AxyPrep DNA Gel Extrac-
tion Kit (Axygen Biosciences, Union City, CA, USA) and 
then quantified using QuantiFluor™-ST (Promega, USA). 
Finally, high-throughput sequencing analysis of bacterial 
rRNA genes was performed on purified pooled samples 
using the Illumina HiSeq platform (Illumina, San Diego, 
CA, USA) for paired-end reads of 300  bp at Major-
bio Bio-Pharm Technology Co. Ltd. (Shanghai, China) 
according to standard protocols.

Sequence processing and analysis
Analyses were conducted with FLASH version 1.2.11 and 
Quantitative Insights into Microbial Ecology (QIIME) ver 
1.9.1. These versions gave similar data(Tong et al. 2019). 
The reads were clustered as operational taxonomic units 
(OTUs) by scripts in USEARCH (ver 7.1) with a 97% sim-
ilarity threshold(Edgar, 2013). The OTU sequences were 
categorized by taxa by BLAST in the Ribosomal Database 
Project Classifier (ver 2.2) and Silva (SSU123) 16S rRNA 
database. OTUs were normalized to relative abundance 
and bacterial composition was determined by Majorbio 
I-Sanger.

Within-sample diversity (alpha diversity) was assessed 
through bacterial community enrichment (ACE and 
Chao indices) and diversity (Shannon and Simpson indi-
ces) that were measured in a stochastic subset of the 
OTUs. Between-sample microbial diversity (beta diver-
sity) was measured by phylogenetically-based weighted 
UniFrac distances (Wang et  al. 2018). The predominant 
clades in the milk microbiome were acquired by filtering 
OTUs for those with relative abundance of  ≥ 1% one or 
more samples.

Table 1  Composition and nutrient levels of the basal diet

a  Church and Dwight Co., Inc., Princeton, NJ, USA
b  Formulated to provide (per kg of DM) 4,560 mg of Cu, 3,000 mg of Fe, 
12,100 mg of Zn, 4,590 mg of Mn, 60 mg of Co, 200 mg of Se, 270 mg of I, 
10,000 IU of vitamin E, 450,000 IU of vitamin D, 2,000,000 IU of vitamin A, and 
3,000 mg of nicotinic acid
c  Chemical composition based on chemical analysis of the total mixed ration 
(TMR), as described

Item Content,  %

Ingredient

 Ground corn 9.58

 Corn silage 46.62

 Corn bran 3.70

 Steam-flaked corn 4.40

 Alfalfa hay 6.90

 Oat grass 2.50

 Soybean meal 5.00

 Dried distiller grains with solubles (DDGS) 4.40

 MEGALACa 0.90

 Extruded soybean 3.00

 Barley 2.76

 Wheat bran 2.76

 Sodium cyclamate 2.20

 Oats 1.30

 Canola meal 1.17

 Cottonseed meal 1.17

 NaHCO3 0.59

 Limestone 0.48

 NaCl 0.27

 Premixb 0.30

Chemical compositionc

 Crude protein (CP) 18.4

 Neutral detergent fiber (NDF) 31.1

 Acid detergent fiber (ADF) 15.6

 Ether extract 5.00

 Ca 0.77

 P 0.43

NEL, Mcal/kg 1.76
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Nucleotide sequence accession number
All raw sequences were submitted to the NCBI 
Sequence Read Archive (SRA: http://www.ncbi.nlm.
nih.gov/Trace​s/sra/) under accession number SRP 
254006.

Metabolomics analysis
Milk samples were analyzed for specific components 
using an LC–MS platform (Thermo, Ultimate 3000 LC, Q 
Exactive), and sample preparation was performed as per 
our previously published procedure (Wang et  al. 2018; 
Tong et  al. 2019). The following steps were conducted 
by Majorbio Bio-Pharm Technology Co., Ltd. Analysis 
of metabolomics data was performed with Progenesis 
QI (Waters Corporation, Milford, USA) to match MS 
and MS/MS mass spectrum information with that in 
the metabolism database. The retention time (RT), m/z, 
observation data (samples) and peak intensity were nor-
malized using Microsoft Excel 2017. Screened differen-
tial metabolites were characterized using the https​://
metli​n.scrip​ps.edu/publi​c database, a self-built database 
for the Majorbio I-Sanger Cloud Platform (www.i-sange​
r.com) and KEGG pathway analysis (www.metab​oanal​yst.
ca/).

Multivariate statistical analysis
Statistical comparisons were evaluated using Student’s t 
test. A P value of  < 0.05 was defined as statistically sig-
nificant. Hierarchical clustering was conducted using 
the similarity index of Bray–Curtis by the UPGMA. The 
strengths of correlations between metabolites and milk 
bacterial species were estimated using Spearman correla-
tion coefficients and visualized by using the R language 
(Kolde 2015). A P value  < 0.05 was defined as statistically 
significant. The statistical analyses were performed with 
SPSS software version 21.0 (IBM, Armonk, NY). The 
alpha diversity indexes are presented as the mean ± SEM. 
Principal coordinate analysis (PCoA) and orthogonal par-
tial least-squares-discriminant analysis (OPLS-DA) were 
performed to visualize the metabolic differences between 
the experimental groups after mean centering and unit 
variance scaling. Variables with variable importance in 
the projection (VIP) values exceeding 1.0 were consid-
ered relevant for group discrimination. In this study, the 
OPLS-DA model was validated with sevenfold permuta-
tion tests. Significant differences in metabolites between 
groups were assessed using Wilcoxon rank-sum tests.

The original milk composition data were analyzed by 
Excel 2017, and statistical comparisons were evaluated 
using one-way ANOVA in SPSS 21.0 was used (IBM 
Corp., Armonk, NY, USA). Differences were considered 

statistically significant when P < 0.05 and a trend when 
P < 0.10.

Results
Effects of ART on milk performance
As shown in Table  2, the milk yield tended to increase 
(P = 0.06), and the fat yield (P = 0.04) was increased by 
ART supplementation at the end of the trial. Milk lac-
tose and protein were not different in the two treatment 
groups. Milk fat content was greater in the ART group 
than in the CON group (P = 0.04), and the fat/protein 
ratio was also increased (P = 0.03). In addition, the SCC 
tended to be decreased (P = 0.08) with ART supplemen-
tation compared with the CON treatment.

Microbiota diversity analysis
In total, 757,666 high-quality sequences for 12 samples 
were analyzed after the sequences passed quality control, 
which resulted in an average read length of 311 bp, and 
there was  > 99% depth coverage. This result showed that 
the data were reasonable and could reflect the changes 
in most bacterial flora. Furthermore, the rarefaction 
curves for most of the samples plateaued, which further 
confirmed the sufficiency of the data. The alpha diver-
sity index results for the groups are shown in Table  3. 
According to the ACE and Chao indexes, which represent 
the bacterial community richness, there was a significant 
difference between the CON and ART groups, with lower 
richness in the ART group (P < 0.05). However, the bacte-
rial diversity (Shannon and Simpson indexes) was similar 
between the two groups.

Table 2  Effect of  dietary addition of  ART on  milk 
production and composition in dairy cows

1   ECM (kg/d) = 0.3246 × milk yield (kg/d) + 13.86 × fat yield 
(kg/d) + 7.04 × protein yield (kg/d)(Orth 1992)

Item CON ART​ SEM P value

Yield, kg/d

 Milk 30.23 31.22 0.91 0.06

 ECM1 30.50 32.42 1.03 0.14

 Lactose 1.52 1.55 0.06 0.12

 Fat 1.01 1.12 0.09 0.04

 Protein 0.95 0.96 0.03 0.82

Milk composition,  %

 Lactose 5.03 4.97 0.04 0.16

 Fat 3.31 3.58 0.18 0.04

 Protein 3.15 3.07 0.22 0.41

 Fat/protein ratio 1.05 1.16 0.13 0.03

 SCC (× 104 cells/ml) 12.77 10.35 0.32 0.08

http://www.ncbi.nlm.nih.gov/Traces/sra/
http://www.ncbi.nlm.nih.gov/Traces/sra/
https://metlin.scripps.edu/public
https://metlin.scripps.edu/public
http://www.i-sanger.com
http://www.i-sanger.com
http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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Principal coordinate analysis (PCoA) using weighted 
UniFrac metrics was performed to visually analyze the 
similarity or difference in microbial composition in the 
different groups (Fig.  1). The principal coordinates PC1 
and PC2 accounted for 35.83% and 17.83% of the total 
variance, respectively. This result reflects the microflora 
being remarkably distinct between the two groups, and 
the sample points for each group were relatively close.

The results showed a change in the relative abun-
dance of bacteria in milk samples, with the phylum Fir-
micutes being significantly decreased in the ART group 
(P < 0.01), whereas the relative abundance of Proteo-
bacteria was higher (P < 0.01) in the ART group than 
in the CON group (Fig.  2a, c). At the genus level, the 
top 10 most abundant bacterial taxa were presented for 
the two groups (Fig. 2b, d). The ART group had signifi-
cantly lower relative abundances of Corynebacterium_1 
(P < 0.05), Aerococcus (P < 0.01), Staphylococcus (P < 0.01) 
and Facklamia (P < 0.05) than the CON group.

The LEfSe analysis revealed significant increases in 
Firmicutes and Gracilibacteria and reductions in Pro-
teobacteria, Gammaproteobacteria, unclassified-k-no-
rank-d-Bacteria, p-unclassified-k-norank-d-Bacteria and 

Alphaproteobacteria in the CON group compared to the 
ART group (Fig. 3).

Identification of different milk metabolites between CON 
vs ART​
We next employed LC–MS to characterize the milk 
metabolome after feeding with ART. In total, 922 meas-
urable peaks were obtained across all the milk sam-
ples. The multivariate analysis method OPLS-DA, as 
shown in Table  4, identified 35 significantly differential 
metabolites obtained from the milk samples between 
the ART and CON groups using VIP > 1 and P < 0.05. 
These differential metabolites are primarily glycer-
ophospholipids, flavonoids, organooxygen compounds, 
fatty acyls, and glycerolipids. Milk from cows receiving 
ART contained higher levels of glycerophospholipids, 
prenol lipids, glycerolipids, flavonoids, organooxygen 
compounds, carboxylic acids and their derivatives and 
vitamins than did CON cows. In particular, the 4 
glycerophospholipid metabolites phosphatidylser-
ine (PS)(18:1(9Z)/18:1(9Z)), PS(14:1(9Z)/22:1(11Z)), 
PS(18:0/18:3(9Z,12Z,15Z)), and phosphatidylethanola-
mine (PE)(P-16:0/20:4(5Z,8Z,10E,14Z)(12OH[S])), 3 fla-
vonoid metabolites and 2 other glycerolipid metabolites 
(MG(0:0/14:0/0:0) and 1-monopamitin) were elevated. In 
addition, carboxylic acids and their derivatives and vita-
mins were present at higher levels in the ART group than 
in the CON group.

For further analysis, PCA and OPLS-DA were con-
ducted with the CON and ART groups. As shown in 
Fig. 4a, axes 1 and 2 from PCA accounted for 20.8% and 
17.1% of the total variation, respectively. The PLS-DA 
sore plots showed that the milk samples between groups 
were readily separable. For all the milk samples in the 
95% Hotelling T2 ellipse, axes 1 and 2 from OPLS-DA 
accounted for 18.5% and 20.8% of the variation, respec-
tively. Thus, the CON group and ART group metabolites 
have different compositions, indicating that PCA and 
OPLS-DA results reflected the difference in milk metab-
olites between the two groups well.

Metabolic pathway analysis
The differential metabolites between the CON and ART 
groups were analyzed using KEGG pathways for func-
tional enrichment analysis. The significantly changed 
pathways are shown in Table 5. Lipid metabolism, amino 
acid metabolism, carbohydrate metabolism, metabo-
lism of cofactors and vitamins, metabolism of terpe-
noids and polyketides, and digestive system were found 
to be different between the two groups. Figure  5 shows 
that 4 metabolic pathways were enriched (P < 0.05): glyc-
erophospholipid metabolism, pantothenate and CoA 
biosynthesis, linoleic acid metabolism and beta-alanine 

Table 3  Effect of ART on alpha diversity indexes of milk

Index CON ART​ SEM P value

ACE 2335.08 1956.18 105.59 0.04

Chao 2258.71 1805.37 92.79 0.02

Simpson 0.05 0.08 0.01 0.35

Shannon 4.75 4.41 0.13 0.48

Coverage 0.99 0.99 0.01 0.21

Fig. 1  Principal coordinate analysis (PCoA) of milk microbial 
communities from lactating cows fed TMR supplemented with 0 
(CON) and 120 g/d artemisinin (ART), n = 6
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metabolism. Comprehensive P value analysis of pathways 
revealed that glycerophospholipid metabolism was the 
pathway with the greatest difference between the ART 
group and the CON group.

Correlations between the milk microbiome 
and metabolites
Figure  6 shows the genus-level Spearman’s correla-
tion coefficients for the milk microbiota and the altered 

Fig. 2  Predominant bacteria in milk samples from lactating cows fed TMR supplemented with 0 (CON) and 120 g/d artemisinin (ART), n = 6. 
a Phylum level. b Genus level. c Significant differences in bacteria at the phylum level in milk samples between the two groups. d Significant 
differences in bacteria at the genus level in milk samples between the two groups. The extended error bar plot was generated using STAMP 
software. Welch’s two-sided test was used, and Welch’s inverted confidence interval was 0.95

Fig. 3  LEfSe analysis revealing significant differences in species between the ART and CON groups, with Linear discriminant analysis (LDA) 
scores > 3.5 and P value < 0.01
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Table 4  Identification of  significant differential metabolites in  milk from  lactating cows fed TMR supplemented with  0 
(CON) and 120 g/d artemisinin (ART), n = 6

a  VIP and P values: All differential metabolites ART group/CON group were those with a VIP > 1 and P < 0.05
b  FC: fold change, the ART group vs the CON group

Metabolites RT (min) Ion (m/z) Mass error (ppm) VIPa FCb P value Tendency

Glycerophospholipids

 PC(18:0/20:4(5Z,8Z,11Z,14Z)) 11.09 854.59 0.85 3.69 0.55 0.00

 PC(16:0/20:4(5Z,8Z,11Z,14Z)) 10.62 826.56 1.16 5.75 0.70 0.01

 PC(16:0/22:5(4Z,7Z,10Z,13Z,16Z)) 10.59 852.58 0.71 4.56 0.75 0.01

 LysoPC(18:0) 8.81 568.36 − 1.76 5.10 0.69 0.03

 PS(20:5(5Z,8Z,11Z,14Z,17Z)/18:2(9Z,12Z)) 10.46 850.49 0.79 1.01 0.76 0.01

 PS(18:1(9Z)/18:1(9Z)) 11.34 786.53 0.41 12.54 1.23 0.01 ↑
 PS(18:1(9Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 11.15 878.52 2.88 1.15 0.71 0.00

 PS(18:2(9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 10.98 866.47 − 7.84 1.31 0.72 0.00

 PS(18:2(9Z,12Z)/18:0) 10.90 808.51 0.90 1.69 0.92 0.05

 1-Stearoylglycerophosphoinositol 8.50 599.32 − 0.76 8.73 0.68 0.01

 PG(16:0/0:0) 7.98 483.27 − 2.21 1.04 0.56 0.04

 PS(14:1(9Z)/22:1(11Z)) 11.46 788.54 − 1.06 9.17 1.28 0.01 ↑
 PS(18:0/18:3(9Z,12Z,15Z)) 10.96 786.53 − 1.30 4.74 1.24 0.05 ↑
 PE(P-16:0/20:4(5Z,8Z,10E,14Z)(12OH[S])) 10.52 740.52 − 0.51 5.81 1.22 0.01 ↑
 PS(18:0/18:2(9Z,12Z)) 7.03 752.51 − 9.59 2.53 0.18 0.03

Fatty acyls

 Kojibiose 0.59 377.08 0.24 17.75 0.86 0.03

 DL-2-hydroxy stearic acid 9.25 299.26 − 2.06 1.49 0.73 0.00

 2-Methylbutyroylcarnitine 2.25 246.17 0.10 5.41 0.64 0.03

Prenol lipids

 Spirolide E 7.05 708.49 7.07 2.85 0.20 0.04

Sphingolipids

 SM(d18:1/14:0) 10.37 719.53 − 0.30 4.85 1.20 0.02 ↑
Glycerolipids

 MG(0:0/14:0/0:0) 8.08 285.24 − 0.34 3.20 2.67 0.01 ↑
 1-Monopalmitin 8.78 331.28 0.40 2.32 1.73 0.02 ↑

Imidazopyrimidines

 Adenine 12.99 136.06 − 0.28 1.45 0.61 0.00

Flavonoids

 Isovitexin 7-(6′’’-sinapoylglucoside) 4′-glucoside 0.76 943.26 6.16 3.83 3.81 0.02 ↑
 2′’-(6′’-p-Coumaroylglucosyl)quercitrin 0.80 777.16 − 4.81 6.15 0.42 0.01

 6′’-p-Coumaroylprunin 0.78 601.14 8.40 4.34 2.52 0.04 ↑
 Kaempferol 3-(2′’-rhamnosylgalactoside) 7-rhamnoside 0.60 777.16 − 5.28 4.62 0.21 0.00

 Kaempferol 3-neohesperidoside-7-(2′’-p-coumaryllaminaribioside) 1.15 533.16 − 4.04 3.86 1.28 0.02 ↑
Organooxygen compounds

 3-Glucosyl-2,3′,4,4′,6-pentahydroxybenzophenone 0.59 445.07 − 8.72 1.99 0.25 0.00

 Maltose 0.59 341.11 − 3.21 7.52 1.18 0.00 ↑
 N-Acetylgalactosamine 0.64 244.08 − 1.27 1.94 0.60 0.04

Carboxylic acids and derivatives

 5-Aminopentanamide 4.15 296.21 4.66 1.46 1.82 0.01 ↑
Vitamins

 Pantothenic acid 1.831 − 0.945 55.4 3.378 1.397 0.003 ↑
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metabolite profiles (r > 0.5 or <−0.5, P < 0.05). Figure  6 
also shows that the correlations between both the pres-
ence and functions of metabolites and flora in milk 
are strong. We also found that Rhodococcus, Escheri-
chia-Shigella, Facklamia, Aerococcus, Staphylococcus 
and Ignavigranum were remarkably correlated with 
the majority of metabolites (Fig.  6). Of these bacteria, 
Staphylococcus, Aerococcus and Ignavigranum were sig-
nificantly positively correlated with PS(20:5(5Z,8Z,1
1Z,14Z,17Z)/18:2(9Z,12Z)) but negatively correlated 
with isovitexin 7-(6′’’-sinapoylglucoside) 4′-glucoside 
and 6′’-p-coumaroylprunin. Furthermore, the signifi-
cantly decreased metabolite phosphatidylcholine (PC)
(18:0/20:4(5Z,8Z,11Z,14Z)) was positively correlated 
with Aerococcus, Globicatella, Ignavigranum and Kocu-
ria. The sphingomyelin (SM)(d18:1/14:0) metabolite 
was significantly correlated with most members of the 
microbiota. In addition, 1-monopalmitin was negatively 
correlated with Globicatella and Aerococcus but posi-
tively correlated with Escherichia-Shigella, Pseudomonas 
and Rhodococcus. Overall, we found that milk bacteria 
were associated with significantly altered metabolites 

Fig. 4  Principal component analysis (a), corresponding PLS-DA validation plots (b), and OPLS-DA score plots (c)

Table 5  Metabolic pathways and metabolites enriched in the ART group compared with the CON group

In the class column, the number in () is the number of metabolites in that class

Pathway name Class Metabolite P value

Alpha-linolenic acid metabolism Lipid metabolism (2) LysoPC(18:0), PC(16:0/20:4(5Z,8Z,11Z,14Z)) 0.01

Linoleic acid metabolism

Glycerophospholipid metabolism

Lysine degradation Amino acid metabolism (2) 5-Aminopentanamide, Pantothenic acid 0.05

Beta-alanine metabolism

Starch and sucrose metabolism Carbohydrate metabolism (1) Maltose 0.05

Pantothenate and CoA biosynthesis Metabolism of cofactors and vitamins (1) Pantothenic acid 0.03

Zeatin biosynthesis Metabolism of terpenoids and polyketides (1) Adenine 0.05

Carbohydrate digestion and absorption Digestive system (2) Pantothenic acid; Maltose 0.05

Vitamin digestion and absorption

Fig. 5  Metabolome map of differential metabolites between CON 
and ART dairy cows. The x-axis represents the pathway impact, and 
the y-axis represents the pathway enrichment. Larger symbol sizes 
indicate higher pathway impact values and darker colors indicate 
lower P values
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in response to ART extract function, especially some 
metabolites involved in glycerolipid and flavonoid 
metabolism.

Discussion
In this study, we used 16S rRNA and LC–MS metabo-
lomics to compare milk bacteria and metabolites, reveal-
ing that ART moderately increased milk production and 
milk fat content and tended to decrease the SCC at the 
end of the treatment. Although there was no significant 
difference in the bacterial diversity (Shannon and Simp-
son indexes) between the ART and CON groups, the 
bacterial community richness (ACE and Chao indexes) 

was significantly lower in the ART group. In addition, 
the phylum abundances showed that Firmicutes was sig-
nificantly decreased, while Proteobacteria was higher 
after treatment with ART. The well-recognized func-
tional data of the milk microbiota can be used not only 
to identify the quality of milk but also to judge the health 
status of dairy cow mammary glands (Mansor 2012; Sun 
et al. 2017a). Correlation analysis of the microbiota and 
metabolites in milk revealed changes in Aerococcus, Fack-
lamia, and Staphylococcus-related metabolites. Those 
identified metabolites could cause the differences in milk 
components between the groups. Thus, we propose that 
ART activities affect the organism in terms of its milk 

Fig. 6  Correlation analyses between bacterial genera and metabolites in the two treatments. (*0.01 < P < 0.05; **0.001 < P ≤ 0.01; ***P ≤ 0.001)
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microbiota and metabolites, in turn triggering milk fat 
changes.

Milk synthesis
In the present study, ART supplementation moderately 
increased milk yield and significantly increased milk 
fat rate. In line with a previous study, adding Artemisia 
annua to the cow diet increased milk production, which 
was attributed to the activity of phenols and flavonoids in 
Artemisia annua (Ferreira et al. 2011; Zhan et al. 2017). 
Furthermore, it has also been reported that plant flavo-
noids can increase the acetic acid concentration of dairy 
cows (Broudiscou et al. 2000). It is well known that acetic 
acid is the main precursor for milk fat synthesis; similarly, 
cow milk fat production can be significantly increased by 
intravenous acetic acid injection (Storry and Rook 1965). 
Therefore, milk fat increase might be caused by rumen 
acetate acid changes, which warrants further investiga-
tion in future studies.

In addition, the SCC tended to decrease in the ART 
group compared with the CON group. The SCC is one of 
the most useful and widely used tools to predict mam-
mary gland health in bovines (Tong et al. 2019); thus, our 
results proved that ART could reduce mastitis suscepti-
bility. Similar to the results of previous studies by Zhan 
et al. (Zhan et al. 2017), feeding 60 mg/kg alfalfa flavones 
could reduce the SCC, alter the composition of milk, 
improve antioxidant properties and affect immunity in 
dairy cows. In addition, members of the microbiota such 
as corynebacteria in milk are usually associated with low-
SCC intramammary infections (IMIs) (Guan et al. 2014). 
Accordingly, the ART antimicrobial and anti-inflamma-
tory properties function by inhibiting the synthesis of cell 
walls and membranes, interfering with enzymes in or on 
specific cells and inhibiting bacterial proliferation that 
causes mastitis in dairy cows (Cushnie and Lamb 2011), 
especially when modulating the rumen or gut microbiota 
(Amaretti et  al. 2015; Zhan et  al. 2017). Similar results 
were also obtained in our study; the relative abundance 
of Firmicutes was significantly decreased with ART sup-
plementation, whereas that of Proteobacteria was signifi-
cantly increased. These species are similar to members 
of the rumen microbiome (Wang et  al. 2018), and we 
hypothesize that the bacteria can be transferred from 
the rumen to the mammary gland. Therefore, ART may 
be associated with a systemic and local immune respon-
siveness of the udder that is accompanied by microbiota 
changes.

Multivariate analysis of milk
16S rRNA sequencing and analysis provide a low-cost 
and high-yield method for the evaluation of milk micro-
flora (Caporaso et  al. 2011; Hélène et  al. 2016). In the 

present study, milk microbial richness was significantly 
decreased in the ART group. Recent investigations of the 
bovine milk microbiota show that it usually has a variety 
of bioactive or probiotic properties to resist the defense 
mechanism of the udder (F et al. 2016). Additionally, the 
effect of plant bacteriostatic factors on the rumen micro-
biota or pathogens of mastitis in dairy cows (Durmic 
et al. 2008; Cushnie and Lamb 2011) may also be associ-
ated with milk microbiota changes in the present study. 
Similarly, antimicrobials could reduce the diversity of 
microbial ecosystems and, in alternative stable forms, 
accompany this with reduced species richness (Lozupone 
and Knight 2006). Henderson et  al. (Henderson et  al. 
2013) also reported that sample extraction may also affect 
DNA quality and impact microbiota diversity. Moreover, 
previous research found that milk microbial diversity was 
related to mastitis (Hélène et al. 2016). Therefore, no dif-
ference in microbiota diversity was caused by the ART 
treatment, which will strengthen the use of ART as novel 
prophylactic or therapeutic product (or both) alternatives 
to antimicrobials in dairy cows.

In our current study, Firmicutes, Proteobacteria, Act-
inobacteria and Bacteroidetes were the major phyla in the 
milk of the two groups, and the predominant genera were 
Aerococcus, Corynebacterium_1, Staphylococcus and 
Enterococcus, which is consistent with previous studies 
(Zhang et al. 2017). Similar results were also obtained in 
the current study; Firmicutes was significantly decreased 
with ART supplementation, whereas Probacteria was sig-
nificantly increased. These species are similar to those 
in the rumen microbiome (Jinjin et al. 2018; Wang et al. 
2018). Furthermore, recent reports support this entero-
mammary pathway via lymphatic and peripheral blood 
circulation in humans and mice (Rodríguez, 2014) via 
transfer from mothers to neonates by the gut-breast axis 
(Jost et al. 2014).

It has been shown that mastitis in cows or goats by 
Staphylococcus (Guan et  al. 2014) causes serious losses 
in dairy products and to the animal husbandry industry 
(Tong et al. 2019). Increases in the relative abundances of 
Corynebacterium boris, Aerococcus and Staphylococcus 
increase the SCC in the milk of dairy cows (Hogan et al. 
1988; Sun et  al. 2017b). Furthermore, the contents of 
Corynebacterium, Facklamia and Aerococcus were higher 
in dairy cows with a history of clinical mastitis than in 
healthy dairy cows (Hooman et  al. 2018). These patho-
gens can be found in healthy dairy cows because they 
are an important cause of mastitis when the proportions 
of bacteria are out of balance (Guan et al. 2014). In our 
study, the Staphylococcus, Corynebacterium and Aerococ-
cus abundances were extremely reduced in the milk from 
the ART group; these genera were the most commonly 
identified genera omnipresent in the dairy environment 
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and gained great attention as the leading bacteria in IMI 
(Pyrl and Taponen 2009; Vanderhaeghen et  al. 2014; 
Hooman et al. 2018). Our study also detected that Pseu-
domonas was negatively correlated with most metabo-
lites associated with the ART treatment. (Figure 6). It has 
been reported that Pseudomonas causes milk deteriora-
tion by producing lipase and proteolytic enzymes, and 
the quality of milk can be maintained by controlling its 
growth (Chikage et  al. 2018). When the lipase content 
increased, the hydrolysis of triglycerides in dairy cows 
and long-chain fatty acid production increased. These 
mechanistic insights into the microbiota response to 
ART may have important implications for understand-
ing how the milk microbiota participates in biosynthesis 
regulation and in relation to udder health and mastitis.

Differences in milk metabolites
Metabolomics is an emerging area of research involv-
ing organisms; its methods detect small molecular 
metabolites in samples and enable a comprehensive 
understanding of biological processes (Sun et al. 2017a). 
We used LC–MS to analyze the milk metabolite 
response to ART supplementation. In total, 35 dif-
ferent metabolites were identified between the ART 
and CON groups. Some metabolites were upregu-
lated, such as glycerolipids (MG(0:0/14:0/0:0)), flavo-
noids (isovitexin 7-(6’’’-sinapoylglucoside)4′-glucoside 
and 6′’-p-coumaroylprunin), carboxylic acids and their 
derivatives (5-aminopentanamide), and vitamins (pan-
tothenic acid). MG is a monoacylglyceride product of 
triglycerides that regulates liver development and activ-
ity (Coleman and Haynes, 1984). In our study, MG was 
significantly increased (by 2.67-fold) in the ART group, 
which strengthens the idea that ART could trigger the 
mammary gland response to milk biosynthesis, and a 
remarkably negative correlation was found between MG 
and Aerococcus. Meanwhile, MG is absorbed more eas-
ily than other fatty acid derivatives in the intestine; this 
absorption increases the content of docosahexaenoic acid 
and increases the antioxidant activity of mouse plasma 
(Cho et al. 2009). A plausible hypothesis, similar to one 
previously reported, is that the mechanisms underlying 
the effects of nutrition on the potential involvement of 
the microbiota in the microbiome-gut-brain axis (Cryan 
and O’Mahony, 2011) are worthy of further study.

In the present study, we found that the flavonoids 
increased the most of all the metabolites, followed by 
isovitexin 7-(6′’’-sinapoylglucoside)4′-glucoside (by 
3.81-fold) and 6′’-p-coumaroylprunin (by 2.52-fold), in 
the ART group. These metabolites were negatively cor-
related with Staphylococcus. Recent studies have shown 
that flavonoids have antibacterial and antioxidant prop-
erties that promote the production and quality of animal 

products (Zhan et  al. 2017). Furthermore, flavonoids 
increase the activity of antioxidant enzymes to enhance 
antioxidant capacity and protect tissues and cells from 
free radical-mediated damage (Xiao-Shuang et al. 2015). 
These findings may partially explain the moderate SCC 
decrease induced by ART supplementation. Interestingly, 
we detected that many metabolites were significantly 
correlated with members of the microbiota that were 
potential pathogens, such as Staphylococcus, Facklamia, 
and Aerococcus. Our findings collectively highlighted the 
observed microbiota and metabolic changes and pro-
vided further insight into the performance of specific 
ART-related functions in milk profiles that can be used 
to analyze the differences in milk synthesis between the 
groups. We speculated that this discrepancy might be 
associated with the decrease in the SCC resulting from 
ART supplementation.

PS and PE are important components of biomem-
brane structure (Cole et  al. 2012). The phospholipids in 
milk are mainly PE, PC and SM (Shoji et  al. 2006). PC, 
which plays a key role in lipid metabolism, can synthe-
size very low density lipoprotein (VLDL) and be used 
for the export of triacylglycerol (TAG) in the liver (Cole 
et al. 2012). Furthermore, aggregation of ATG in the liver 
may increase fatty liver production (Elke et al. 2016). The 
current study revealed that PC and PS production was 
downregulated and PE production was upregulated in 
the ART group compared with the CON group. Further-
more, the mammary gland utilizes blood PC as a cellular 
energy source for the production of glycerophosphocho-
line and free fatty acids and can synthesize milk triglyc-
erides and phospholipids (Easter et  al. 1971). Thus, this 
might explain the mechanism by which the milk fat con-
tent was significantly increased in the ART group; specif-
ically, we revealed that glycerophospholipid metabolites 
were significantly reduced by ART treatment. However, 
the content of PC was lower in the CON group because 
when the PC breakdown rate decreased, which is closely 
associated with negative energy balance (NEB) and fat 
mobilization, causing metabolic disorders and ketosis 
(Klein et al. 2012). In conclusion, our results indicate that 
the glycerol phospholipid metabolic pathway may be the 
main component of the mechanism by which ART affects 
milk quality.

Key differential metabolic pathways between the two 
groups
Based on a comprehensive analysis of important meta-
bolic pathways that identified 33 differential milk metab-
olites between the two groups, lipid metabolism may be 
the most important pathway for milk quality improve-
ment induced by ART. An unavoidable NEB accompa-
nies various metabolic disorders and affects the immune 
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system, and the energy and lipid metabolism of dairy 
cows is abnormal and vigorous, causing many diseases 
(Bouvier-Muller et al. 2018). However, the conversion of 
PC into milk fat could protect free blood fatty acids, thus 
reducing the mobilization of body fat (Klein et al. 2012). 
It is reasonable to conclude that ART protects the health 
of the body. Furthermore, ART supplementation signifi-
cantly increased β-alanine metabolism relative to that of 
the control group. β-Alanine metabolism mainly occurs 
in muscle and brain, and its final metabolite is acetic acid 
(Griffith 1986). Meanwhile, β-alanine can improve the 
antioxidant capacity of the body(Smith et al. 2012), which 
may be the reason for the improvement in milk quality. 
In addition, pantothenate and CoA biosynthesis was also 
significantly upregulated by ART. Pantothenic acid is a 
water-soluble vitamin. When it is transformed into CoA 
or bound to acyl carrier protein (ACP) in vivo, it mainly 
participates in the metabolism of fatty acids, carbohy-
drates and energy and significantly reduces the levels of 
cholesterol and triglycerides (Smith and Song 1996). This 
may reduce abnormalities in lipid and energy metabolism 
in dairy cows. Therefore, our data indicate that glycer-
ophospholipids and glycerolipids could be potential bio-
markers in the milk response to ART feed in dairy cows, 
which further supports the functional link between ART 
and milk changes. Taken together, the results in our study 
support the assumption that ART changes substances in 
milk by maintaining lipid metabolism in the mammary 
gland.

In summary, LC–MS and 16S rRNA was used to ana-
lyze milk metabolomics and bacterial community pro-
files for dairy cows, revealing that ART supplementation 
increased milk fat, decreased the SCC and may affect 
the structures of bacterial communities, metabolites 
and metabolic pathways. Moreover, ART decreased the 
relative abundances of Corynebacterium_1, Aerococcus, 
Staphylococcus and Facklamia. Our results also revealed 
that some of the 33 metabolites that changed significantly 
in milk after ART supplementation were potential bio-
markers that respond to ART. In addition, glycerophos-
pholipids and glycerolipids could be potential biomarkers 
in the milk response to ART feed in dairy cows, and ART 
changes substances in milk by protecting lipid metabo-
lism in the mammary gland. This study has provided fur-
ther insights into the mechanisms at the metabolic level 
that can improve understanding of the effects of ART 
addition. Overall, our findings provide new strategies for 
improving milk quality with the use of ART; however, 
they warrant further investigations for identification of 
potential immune regulation mechanisms underlying the 
effects of ART on dairy cows.
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