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Abstract 

Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with 
other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnos‑
tic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays 
using the C-terminal fragment of ZIKV NS1 antigen (ΔNS1) can be used to discriminate ZIKV from DENV infections. In 
order to be used in serological tests, the expression/solubility of ΔNS1 and growth of recombinant E. coli strain were 
optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According 
to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which 
predicted 7.5 g/L of biomass and 962 mg/L of ΔNS1. These conditions were validated and used in a 6-L batch in the 
bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of ΔNS1 in 12 h of induction. The serological ELISA test 
performed with purified ΔNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. 
Denaturation of ΔNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conforma‑
tional epitopes and confirming the importance of properly folded ΔNS1 for the specificity of the serological analyses. 
Obtaining high yields of soluble ΔNS1 supports the viability of an effective serologic diagnostic test capable of dif‑
ferentiating ZIKV from other flavivirus infections.
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Introduction
Zika virus (ZIKV) is a flavivirus transmitted primarily by 
Aedes aegypti mosquitoes. Many cases of microcephaly 
and other congenital malformations were reported fol-
lowing ZIKV infections during pregnancy (Franca et  al. 
2016). Most cases are asymptomatic, however, infection 
of both children and adults can lead to serious neuro-
logic complications, such as Guillain-Barré syndrome or 

neuropathy (WHO 2016). The ZIKV infections are nor-
mally diagnosed by molecular tests designed to detect 
viral RNA in the blood or saliva, but the short blood-
stream viral detection window limits its utilization. Fur-
thermore, another concern lies in the molecular tests 
reliability, since recent reports showed 73% of suboptimal 
sensitivity or specificity among 15 Brazilian laboratories 
(Fischer et al. 2018) and similar results among European 
laboratories, which highlights the challenging aspect of 
the diagnosis.

On the other hand, serological tests do not have the 
disadvantage of limited window of detection. IgM and 
IgG antibodies can be detected for months or even years 
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following the ZIKV infection (Chua et  al. 2017; Paz-
Bailey et  al. 2018). Moreover, serological tests also have 
the advantage of being easily implemented due to lower 
costs and technical requirements. Since the ZIKV out-
break in the Northeast of Brazil, there was a major effort 
towards the development of a reliable serological test. For 
other flavivirus, particularly DENV, the laboratory diag-
nostic was mostly based on the detection of antibodies 
against the non-structural protein 1, NS1 (Kikuti et  al. 
2018; Stettler et  al. 2016). Previous work indicated that 
serological assays based on NS1 can be used to discrimi-
nate ZIKV and DENV infections (Balmaseda et al. 2017; 
Bosch et  al. 2017; Stettler et  al. 2016). However, ZIKV 
and DENV proteins share high sequence identity result-
ing in the cross-reactivity of antibodies generated after 
the infection (Balmaseda et al. 2017; Fernanda Estofolete 
et al. 2016; Granger et al. 2017; Priyamvada et al. 2017). 
In spite of significant progress made in the last years in 
our understanding of ZIKV, the improvement of diag-
nostic assays is still needed (Kikuti et al. 2018; Theel and 
Hata 2018).

We have previously produced a recombinant ZIKV 
NS1 protein initially as insoluble inclusion bodies, which 
required the use of high hydrostatic pressure in order 
to refold it. Even though refolded NS1 from ZIKV and 
DENV preserved the antigenic properties (Amorim et al. 
2010; Rosa da Silva et  al. 2018), the refolding is gener-
ally avoided since it requires more steps of purification 
and increases the overall cost of the process (Vallejo and 
Rinas 2004; Yang et al. 2011). In recent studies, we have 
produced a recombinant protein derived from the ZIKV 
NS1 protein (ΔNS1) (Caires-Junior et al. 2018; Kam et al. 
2017; Oliveira et al. 2016). To be used as a diagnostic test, 
ΔNS1 needs to be produced at high yields in its soluble 
form.

Escherichia coli is one of the most used hosts to pro-
duce recombinant proteins due to its well characterized 
genetics and the abundant number of strains and vec-
tors (Baneyx 1999; Baneyx and Mujacic 2004; Rosano 
and Ceccarelli 2014). Furthermore, other variables such 
as medium components, additives and culture condi-
tions, allows a series of combinations between these fac-
tors and increase the challenge in determining which 
factors are important in order to obtain high yields of 
properly folded recombinant proteins. Even if we restrict 
to the most important factors affecting the production 
of recombinant proteins, testing one-factor-at-a-time 
will require many experiments. The Response Surface 
Methodology is a statistical tool used to deal with several 
variables that affect a particular response, including the 
production of recombinant proteins (Larentis et al. 2011; 
Marthos et al. 2015; Montgomery 2008; Papaneophytou 
and Kontopidis 2012). Using E. coli BL21 (DE3) as host 

to express 104 ORFs from different organisms in stand-
ard conditions (induction at 37 °C with 0.5 mM IPTG for 
3 h), Abergel et al. (2003) demonstrated that 89 exhibited 
detectable expression and 54 were obtained in soluble 
form (52%). On the other hand, using a statistical design 
to evaluate E. coli strains, culture media and differ-
ent temperatures, out of the 94 ORFs tested, 93 showed 
detectable expression and 68 were soluble. This repre-
sents 72% of the proteins obtained in the soluble form, 
thus demonstrating that optimization of culture condi-
tions through statistical designs can improve the solubil-
ity of the recombinant proteins.

The goal of this work was to increase the yield of ΔNS1 
by improving the growth of the E. coli host and solubil-
ity of ΔNS1. The present study applied Response Sur-
face Methodology (RSM) to evaluate different culturing 
conditions. We validated the model, scaled-up the pro-
duction and evaluated the performance of ΔNS1 in 
serological tests to discriminate between the ZIKV and 
DENV infections in mouse and human.

Materials and methods
Plasmids construction and bacterial strains
Recombinant plasmids (GenScript, USA), derived from 
pET-28a, encoding the full sequence of DENV-2 strain 
NGC (GenBank reference number M29095) and ZIKV 
NS1 based on the Brazilian strain (GenBank reference 
number ALU33341) were introduced into chemically 
competent E. coli BL21-Codon Plus (DE3)-RIL strain 
(Stratagene, USA). The plasmid encoding the ZIKV 
ΔNS1 carries the genetic sequence corresponding to the 
last 100 amino acids of the C-terminal region of ZIKV 
NS1 (patent application number: BR 10 2016 011318 
0). The plasmid encoding DENV-2 NS1 was previously 
reported (Amorim et al. 2010). Recombinant expression 
plasmids encoding the ΔNS1 were introduced in E. coli 
Arctic Express (DE3) (Agilent) and BL21 (DE3) (Invitro-
gen) strains.

Evaluation of culture media for the expression of ΔNS1
The expression of the full DENV-2 and ZIKV NS1 pro-
teins was performed according to protocols described 
previously (Amorim et al. 2010). To produce ZIKV ΔNS1, 
the clones were grown in LB (Yeast extract 5 g/L, Tryp-
tone 10 g/L, NaCl 10 g/L), TB (Yeast extract 24 g/L, Tryp-
tone 12 g/L, glycerol 4 mL/L, KH2PO4 2.31 g/L, K2HPO4 
12.54  g/L) or 2xHKSII medium [Yeast extract 10  g/L, 
tryptone 20 g/L, acid hydrolyzed casein 4 g/L, salts Mg, K 
and Ca, and trace metals Fe, Zn, Mn, Cu, Co, B, Mo and 
I, as described by Jensen and Carlsen (1990)], contain-
ing kanamycin (20 µg/mL). A cell bank was prepared for 
each bacterium and the same procedure was performed 
for every culture. Briefly, a single clone was grown in LB 
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or TB with kanamycin until mid-log phase, centrifuged 
and cells washed with phosphate-buffered-saline. The cell 
pellet was resuspended with medium and aliquots stored 
with 10% glycerol at − 80 °C until use. Before each run, a 
pre-inoculum was prepared a day before by inoculating 
an aliquot of the frozen stock in 50 mL of medium kept at 
37 °C for 16 h at 200 rpm using a Gyromax 737R incuba-
tor (Amerex, USA). 500 mL-Erlenmeyer flasks containing 
50 mL of medium were inoculated with the pre-inoculum 
to an initial optical density (OD) at 600  nm of 0.1 and 
grown at 37  °C at 250  rpm. When the cultures reached 
an OD ~ 2.0, they were transferred to 11 °C (Arctic strain) 
and 16 °C (BL21 DE3 strain) for 30 min without shaking. 
Cultures were induced with 0.5  mM of IPTG (Aldrich 
Sigma, USA) and incubated in the same temperature at 
250 rpm for 18 h.

Response Surface Methodology setup
After the selection of the strain and culture medium with 
the highest ΔNS1 solubility (BL21 DE3 in TB, with the 
addition of anti-foam polypropylene glycol (PPG) 0.03% 
(v/v)), a Central Composite Rotatable Design (CCRD) 
was created with the aid of the Design Expert software 
7.0. Based on the literature and our previous data, three 
factors were selected as independent variables: tem-
perature, time of harvest after induction and inducer 
concentration, and the design comprised a total of 20 
experiments, 14 experimental variations, including 6 
axial points with an alpha of 1.68, and 6 centerpoints 
(Table 1). Before each run, the previously prepared glyc-
erol stocks were inoculated into 500  mL-Erlenmeyer 
flasks with 50 mL of TB and incubated at 37 °C for 16 h at 
200 rpm. The pre-inoculum was used to seed full-baffled 
TunAir mini flasks (Aldrich Sigma, USA) with 100  mL 
medium to an initial OD of 0.1 and cultures were grown 
at 37 °C at 250 rpm. When the OD of the cultures reached 
approximately 2.0, they transferred to the specified tem-
peratures according to the experimental design and incu-
bated for 30 min without shaking. The cultures were then 
induced with the indicated amount of IPTG, incubating 
at the respective temperatures with shaking at constant 

250 rpm. The effect of the variables and their interactions 
were considered statistically significant when p < 0.05. 
Non-significant factors were excluded from the model.

Quantification of biomass production and soluble ΔNS1
After each cultivation the final OD was measured and the 
equivalent volume of an OD 5.0 was collected (e.g. collect 
1 mL of OD 5.0 or 2 mL of OD 2.5). The suspension was 
washed with lysis buffer (100  mM Tris, 500  mM NaCl, 
1 mM PMSF, pH 8.5) and resuspended in a final volume 
of 0.5  mL. Bacteria were disrupted by sonication using 
an Ultrasonic Processor GE 100 (3 cycles of 5 min with 
1 s pulses at 60 Hz). Soluble and insoluble fractions were 
separated by centrifugation at 14,000g, at 4 °C for 30 min. 
The protein extracts were separated by SDS-PAGE (15% 
gels). The gels were stained with Coomassie Blue R-250 
for 16 h and unstained using a destaining solution (30% 
ethanol, 10% acetic acid v/v). To evaluate the production 
of ΔNS1, the band area corresponding to its predicted 
mass (~ 18  kDa) was measured by densitometry using 
ImageJ software. A standard curve of BSA was used to 
determine the concentration of ΔNS1. Total yield (mg/L) 
was calculated considering the culture volume collected 
and the volume applied to the gel. Cell concentration 
was measured as OD and converted to dry cell weight 
(DCW). To calculate DCW, 500 mL of culture was taken 
after the bioreactor cultivation and inactivated using 2% 
formalin for 16  h. Serial dilutions were made and OD 
measured for each dilution. Pre-determined volumes of 
the samples were centrifuged and the cell pellets taken to 
an oven set to 100 °C. After at least 48 h or until constant 
weight, cell pellets were weighed and plotted against the 
OD to establish the correlation of OD vs DCW, resulting 
in 1 unit of OD to 0.34 g/L of DCW.

Bioreactor setup
The best condition identified in the shake-flask experi-
ments was carried out in the 6-L bioreactor (BioStat 
C-Plus, Sartorius) in a batch cultivation using the cho-
sen medium with addition of kanamycin (20  µg/mL) 
and anti-foam PPG (0.03% v/v). The inoculum of the 
bioreactor was prepared as follows: 1 L Erlenmeyer flask 
containing 100  mL of medium was previously cultured 
overnight and used to inoculate the bioreactor to an ini-
tial OD of 0.1. Dissolved oxygen (pO2) was maintained at 
30% air saturation and pH at 7.2, controlled by the auto-
matic addition of phosphoric acid 98% or ammonium 
hydroxide 24%. The culture was maintained at 37 °C until 
OD reached ~ 2.0, then the temperature was decreased to 
21 °C and IPTG was added according to the values deter-
mined in the shake-flask experiments. Cell concentration 
was measured by regular readings after inoculation, and 

Table 1  Independent variables and  levels 
of the experimental design

a   α = 1.68

Independent variable Level

− αa − 1 0 + 1 + αa

A: Temperature (°C) 11.2 16 23 30 34.8

B: Time (h) 7.9 12 18 24 28.1

C: IPTG (mM) 0.2 0.4 0.7 1.0 1.2
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samples were also used to determine the production and 
solubility of ΔNS1.

Protein purification
The recombinant ZIKV proteins, as well as the NS1 
originally derived from DENV-2 NGC strain, were puri-
fied by affinity chromatography according to previously 
described methodology (Amorim et al. 2010). For ΔNS1 
an additional purification step was necessary using size-
exclusion chromatography with a previously described 
protocol (Caires-Junior et al. 2018).

ELISA
Polystyrene high-binding COSTAR microplates (Corning 
Inc., New York, EUA) were coated with 200 ng of ZIKV 
ΔNS1 or equimolar amounts of the ZIKV and DENV 
NS1 proteins in phosphate-buffered saline (PBS) pH 7.2, 
overnight at 4  °C, and, then, blocked with 5% skimmed 
milk and 1% BSA for 2 h at room temperature. The plates 
were washed three times in PBS-Tween 0.05% (PBST) 
and human serum samples from ZIKV and/or DENV-
infected individuals were serially diluted (log2) in 5% 
skimmed milk and 0.25% BSA and incubated at room 
temperature for 1.5  h. The DENV+ sera were obtained 
from eight patients infected with serotypes 1 to 4 (Alves 
et al. 2016). After a washing cycle, the diluted goat anti-
human IgG peroxidase conjugate (Aldrich Sigma, USA; 
reference code: A0170) was added to the wells and incu-
bated again for 1.5  h. After a final washing step, plates 
were developed with citrate buffer (pH 5.8) containing 
0.4  mg/mL of ortho-phenylenediamine dihydrochlo-
ride (OPD) (Aldrich Sigma, USA) and 0.12% H2O2. The 
reaction was stopped after 15  min with the addition of 
50 µL/well of 2  N H2SO4. The OD of the reaction was 
measured at 492 nm in a plate reader (Labsystems Mul-
tiskan, Thermo Scientific, USA). For assays using the 
denatured forms of the proteins, these were previously 
heated to 100  °C for 10  min and immediately cooled to 
0 °C in ice. The proteins were then used to coat the plates 
as described above. To evaluate the specificity of ZIKV 
ΔNS1 and DENV NS1 proteins in mice infected with 
ZIKV and other Flavivirus, the same protocol was used 
with goat anti-mouse IgG peroxidase conjugate (Aldrich 
Sigma, USA; reference code: A4416).

Statistical analysis
Design Expert 7 Software was used to analyze the results 
of CCRD. The quality of the regression of the model 
equation was evaluated by the coefficients R2, adjusted 
R2 and predicted R2. The significance of the factors and 
interactions was determined by the tabulated and calcu-
lated F-value at p = 0.05. The lack-of-fit test was used to 
evaluate the differences of experimental and pure error. 

An insignificant lack-of-fit test (p-value > 0.05) states that 
the model correctly represents the correlation between 
response and predictors. Adequate precision was used 
to measure the signal-to-noise ratio. Ratios greater than 
4 suggest that the model is adequate in predicting the 
responses within the space design. The normal prob-
ability plot was used to observe the distribution of the 
residuals. Differences in the antibody levels determined 
by ELISA were calculated using two-way ANOVA and 
the Bonferroni test. Differences with p < 0.05 were con-
sidered statistically significant.

Results
Response Surface Methodology for growth and production 
of soluble ΔNS1
A preliminary evaluation of strains and culture media 
was performed to exclude some variables and reduce the 
number of experiments in the RSM design. Since solubil-
ity was an important aspect, we sought to compare the 
solubility of ΔNS1 produced by E. coli Arctic Express 
(DE3) and BL21 (DE3) strains using LB, TB and 2xHKSII. 
In the protein extracts of the cold-adapted Arctic strain it 
was possible to detect soluble ΔNS1 but at very low lev-
els, only detectable by Western blot. Only the BL21 strain 
cultured and induced in TB showed a distinguishable 
band of soluble ΔNS1 in Coomassie stained SDS-PAGE 
(Additional file 1: Figure S1) and therefore were used for 
further optimization using the statistical design. For the 
statistical design we used full-baffled shake flasks, which 
resulted in a much higher final OD (OD ~ 18.0), but also 
required the addition of anti-foam. Furthermore, in the 
presence of the anti-foam ΔNS1 showed increased solu-
bility (Additional file 1: Figure S2).

The RSM design, coded independent variables (time, 
temperature and IPTG), actual and predicted responses 
(biomass and production of soluble ΔNS1) are summa-
rized in Table  2. Throughout the experiments, biomass 
varied between 2.02 and 7.76  g/L and ΔNS1 from 5 to 
1154  mg/L. The effects of temperature, time of induc-
tion and IPTG concentration on biomass and ΔNS1 
concentration are shown in Table  3. The time of induc-
tion presented a positive significant effect on biomass 
(p < 0.0001). The interaction between time and tempera-
ture presented a negative significant effect on biomass 
(p < 0.0001) and all quadratic factors were significant 
and had negative effect on this response. The quadratic 
effect of the temperature presented the major influence 
on biomass (the lowest coefficient, − 1.86), which makes 
sense, as values below or above the optimum tempera-
ture range will diminish cell growth (Table 3). For ΔNS1, 
the effect of the temperature was significant (p < 0.05) 
and negative, which means that high induction tempera-
tures led to ΔNS1 aggregation into inclusion bodies. The 
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interaction between time and temperature of induction 
also had a significant negative effect on ΔNS1 solubility 
(p = 0.01), indicating that the formation of inclusion bod-
ies increased with time and temperature. All quadratic 
factors presented significant negative effect on ΔNS1 sol-
ubility (p < 0.0001) and the square of temperature showed 
the more pronounced effect (Table 3).

The conditions that generated the highest biomass 
and ΔNS1 concentration in the soluble fraction were 
observed at the centerpoint, 23 °C for 18 h and 0.7 mM 
IPTG, which produced an average of 7.34 ± 0.4 DCW 
g/L and 954 ± 120  mg/L of ΔNS1. The lowest tempera-
ture (11.2  °C) produced the lowest biomass concentra-
tion, while the highest temperature (34.8  °C) resulted 

Table 2  Results of  CCRD used to  assess the  influence of  temperature, time of  induction and  IPTG concentration 
on biomass and soluble ΔNS1 production

a  Code values for independent variables, the actual values in Table 1

Run Independent variablesa Responses

Biomass (DCW g/L) ΔNS1 (mg/L)

Temp Time IPTG Experimental Predicted Experimental Predicted

1 − 1.68 0 0 2.02 2.30 229 278

2 + 1 + 1 − 1 2.81 3.45 52 7

3 0 − 1.68 0 3.33 3.51 344 279

4 − 1 − 1 − 1 2.10 1.92 168 144

5 + 1.68 0 0 2.51 1.89 5 14

6 + 1 + 1 + 1 3.17 3.45 97 38

7 + 1 − 1 + 1 3.92 4.08 292 286

8 − 1 − 1 + 1 2.17 1.92 131 175

9 0 0 + 1.68 4.97 5.16 357 386

10 0 0 0 6.78 7.35 802 969

11 − 1 + 1 + 1 6.39 6.09 526 463

12 0 0 − 1.68 5.68 5.16 304 334

13 0 0 0 7.65 7.35 1021 969

14 0 0 0 7.10 7.35 837 969

15 0 + 1.68 0 6.99 6.48 190 313

16 − 1 + 1 − 1 5.63 6.09 506 432

17 + 1 − 1 − 1 3.92 4.08 194 254

18 0 0 0 7.76 7.35 1154 969

19 0 0 0 7.10 7.35 917 969

20 0 0 0 7.65 7.35 1095 969

Table 3  Estimated effects for IPTG concentration, temperature and time of induction on biomass and ΔNS1 solubility

Factors Biomass (DCW g/L) ΔNS1 (mg/L)

Effect Standard error p-value Effect Standard error p-value

Mean 7.35 0.21 < 0.0001 969 49 < 0.0001

A: Temp − 0.12 0.14 0.4032 − 79 32 0.0352

B: Time 0.88 0.14 < 0.0001 10 32 0.7601

C: IPTG 0.00 0.14 0.9975 16 32 0.6377

AB − 1.20 0.18 < 0.0001 − 134 42 0.0100

AC − 0.06 0.18 0.7486 20 42 0.6461

BC 0.13 0.18 0.4851 0 42 0.9915

A2 − 1.86 0.14 < 0.0001 − 291 31 < 0.0001

B2 − 0.83 0.14 < 0.0001 − 238 31 < 0.0001

C2 − 0.78 0.14 0.0002 − 215 31 < 0.0001
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in the lowest amount of soluble ΔNS1. For biomass, the 
response surface plot for temperature (A) and time (B) 
showed a rising ridge shape towards longer times and 
lower temperatures (Fig.  1a). In Fig.  1b we observe the 
positive effect of mild temperatures and in Fig.  1c the 
positive effect of longer times on cell growth. In both 
cases, the influence of IPTG concentration on biomass 
response is less pronounced than the other two fac-
tors (Fig.  1b, c). All surface plots showed less intense 
effects of independent variables on ΔNS1 production 
(Fig.  1d–f) than on biomass (Fig.  1a–c). The ANOVA 
table showed that the empirical model was statistically 
significant (p < 0.0001), while the lack of fit was insignifi-
cant (Table 4). The normal probability plot of the studen-
tized residuals showed normal distribution and residuals 
were insignificant for both biomass and ΔNS1 responses 
(Additional file 1: Figure S3).

Predicted versus actual DCW and ΔNS1 production 
and model validation
The experimental data for DCW and ΔNS1 produc-
tion were compared to the values predicted by the 
model (Fig.  2a, b). Both responses showed good cor-
relation between the actual and the predicted values 
(R2 = 0.97 and 0.94 for DCW and ΔNS1, respectively). 
According to the model, the highest biomass concen-
tration (7.7  g/L) would be obtained at 21.5  °C, 22  h, 
and the highest yield of ΔNS1 in the soluble fraction 
(975  mg/L) at 22  °C, 18  h. The best solution for both 
responses would be 21 °C for 20 h. This condition pre-
dicted 7.5 g/L DCW and 962 mg/L of ΔNS1. To validate 
the model generated by the RSM design we performed 
three independent runs at predicted optimal condition 
for both dependent variables. The results we obtained 
were very close to those predicted by the model. On 

Fig. 1  Response surface plots for biomass and production of soluble ΔNS1 as a function of time, temperature of induction and IPTG concentration. 
The model generated by the CCD for a–c biomass concentration measured as dry cell weight (DCW g/L) and d–f production of ΔNS1 the soluble 
fraction of cell extracts (mg/L). The temperature range was 16–30 °C, time between 12 and 24 h of induction and IPTG concentration between 0.4 
and 1.0 mM. Color-coding indicates high (red) and low (blue) responses
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average 7.25 ± 0.25  g/L DCW and 1022 ± 29  mg/L of 
ΔNS1 were produced (Table 5).

Bioreactor
Based on the culture conditions established in the 
shaken-flask experiments, we scaled-up ΔNS1 produc-
tion to a 6-L batch. In the bioreactor, induction was 

performed at 21  °C and 0.7  mM IPTG, while regular 
readings provided information on growth and solubil-
ity of ΔNS1 across time. Biomass reached its maximum 
value (DCW 5.5–6.4  g/L) at 10–12  h after induction. 
Soluble and insoluble ΔNS1 were observed as soon as 
2 h after the induction. The maximum of soluble protein 
was observed after 10–12 h of induction. Further cultiva-
tion greatly affected the solubility of ΔNS1, which starts 
to decrease and aggregates in inclusion bodies (Fig. 3). At 
the same time, specific growth rate and plasmid stability 
also decreases from 0.24 to 0.1/h and from 99 to 56% of 
antibiotic resistant colonies, respectively, suggesting that 
an overall stress may be occurring after 10–12 h of induc-
tion (data not shown). For controlling the pH, a total of 
37 mL phosphoric acid and 1 mL ammonium hydroxide 
were added during the process.

Validation of the specificity of the antigen produced
After establishing the best expression conditions, the 
next step was to determine the recombinant protein 
specificity for the detection of virus-specific antibodies 
raised among ZIKV-infected subjects, particularly those 
previously infected with DENV. We produced and puri-
fied ΔNS1 as well as the full length NS1 of the Brazil-
ian ZIKV strain and the NS1 derived from type 2 DENV 
(NGC strain) (Fig.  4a). To test the specificity of the 
∆NS1 in serological assays, we standardized an ELISA 
with the above-mentioned proteins and probed them 

Table 4  Analysis of variance (ANOVA) of the influence of temperature, time and IPTG concentration on biomass and ΔNS1 
solubility

a  Model: 7.35 + 0.88*B − 1.20*AB − 1.86*A2 − 0.83*B2 − 0.78*C2, R2 = 0.97; Adj. R2 = 0.95; Pred. R2 = 0.92. Adeq. precision = 21.9. F-tab = 2.96
b  Model: 969 − 79*A − 134*AB − 291*A2 − 238*B2 − 215*C2, R2 = 0.94; Adj. R2 = 0.92; Pred. R2 = 0.90. Adeq. precision = 16.9. F-tab = 2.96

Source of variation Biomass (DCW g/L)a ΔNS1 (mg/L)b

Sum of squares df Mean square F-calc p-value Sum of squares df Mean square F-calc p-value

Regression 82.49 9 9.17 34.83 < 0.0001 2.5 × 106 9 2.8 × 105 19.52 < 0.0001

Residuals 2.63 10 0.26 1.4 × 105 10 14,251

Lack of fit 1.83 5 0.37 2.30 0.1913 4.2 × 104 5 8335 0.31 0.8228

Pure error Total 0.80 5 0.16 1.0 × 105 5 20,168

Fig. 2  Predicted vs actual plots for biomass and ΔNS1. Linear 
regression plot for the predicted and actual responses for a biomass 
formation (g/L DCW) and b ΔNS1 (mg/L) obtained in soluble fraction 
of cell extracts

Table 5  Biomass and  soluble ΔNS1 production 
of the validation experiments

Biomass (DCW g/L) ΔNS1 (mg/L)

Predicted 7.50 963

Experiment 1 7.54 1033

Experiment 2 7.10 989

Experiment 3 7.10 1043

Experiment average 7.25 ± 0.25 1022 ± 29
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with monovalent ascitic fluids from mice infected with 
DENV2, ZIKV, YFV or CHIKV (Additional file 1: Figure 
S4a). The results showed reduced (DENV) or no (YFV 
and CHIKV) cross-reactivity with ΔNS1. Similarly, there 
was low cross-reactivity of ∆NS1 with sera from mice 
infected with DENV1, DENV3 and DENV4 (Additional 
file 1: Figure S4b). In contrast, antibodies of mice infected 
with ZIKV strongly reacted with ΔNS1, which indicated 
that the protein preserved the targeted epitopes under 
the established production conditions. Antigen valida-
tion was also assessed with serum samples collected from 
eight patients infected with DENV serotypes 1, 2, 3 and 
4 before the entry of ZIKV in South America (Fig. 4b) or 
double-positive for ZIKV/DENV (Fig.  4c). The DENV+ 
sera for all four serotypes exhibited significantly lower 
reactivity with ΔNS1 as compared to the full length ZIKV 
NS1 (50% reduction) and to the DENV NS1 (75% reduc-
tion) (Fig.  4b), indicating its reduced cross-reactivity. 
In a serum sample collected from a subject previously 
exposed to DENV and ZIKV, the ΔNS1 antigen showed 
significant reactivity. ZIKV NS1 and DENV NS1 reac-
tivities were significantly increased as compared to that 
observed for the ΔNS1 antigen, as expected (Fig.  4c). 
Notably, heat denaturation of the antigens drastically 

reduced the reactivity of the tested serum antibodies 
(Fig. 4c).

Discussion
The initial results with ΔNS1 indicated that it would be 
a promising candidate for the differential serological 
diagnosis of ZIKV infections in the presence of DENV 
and CHIKV. However, it is necessary to obtain the pro-
tein in high yields and in soluble form. Previous observa-
tions showed that insoluble NS1 in the form of inclusion 
bodies could be renatured by a high-pressure refolding 
strategy (Rosa da Silva et  al. 2018). The expression of 
NS1 from DENV-2 in recombinant E. coli was obtained 
as insoluble, and after refolding, the protein was shown 
to preserve its structural and immunological properties 
(Amorim et al. 2010; Chura-Chambi et al. 2019). In this 
context, although refolding of NS1 would be possible, 
its scale-up would impose additional purification steps, 
therefore increasing its cost.

In preliminary experiments, we evaluated different 
strains of E. coli, Arctic Express (DE3) and BL21 (DE3), 
using different temperatures (11 °C and 16 °C) and media 
(LB, TB and 2xHKSII). Arctic Express (DE3) could sup-
port improved folding of heterologous proteins at very 
low temperatures (4–11 °C) due to two chaperones from 
the psychrophilic bacterium, Oleispira Antarctica (Fer-
rer et  al. 2003). However, our results showed that BL21 
(DE3) cultured at 16 °C expressed higher levels of soluble 
ΔNS1 than Arctic Express (DE3) grown at 11 °C. Of the 
media evaluated, only TB allowed the production of solu-
ble ΔNS1. The main advantage of TB over LB and 2xHK-
SII is its buffering capacity, maintaining a controlled pH 
during growth, and the presence of glycerol as an addi-
tional carbon source. TB had previously demonstrated 
improved performance over other culture media for the 
production of recombinant proteins (Osadska et al. 2014; 
Zamani et al. 2015) and plasmid DNA (Wood et al. 2017). 
The auto-induction medium described by Studier (2005) 
was also evaluated, but the growth and solubility of ΔNS1 
were not better than that observed with TB (data not 
shown). Thus, the E. coli BL21 (DE3) and the TB medium 
were selected for further optimizations.

We have applied RSM, which allows evaluation of sev-
eral factors in parallel with a minimum number of experi-
ments, to optimize culture conditions to improve the 
yield and solubility of ΔNS1 in E. coli (Bae and Shoda 
2005; Einsfeldt et al. 2011; Emamipour et al. 2019; Uho-
raningoga et  al. 2018; Xie et  al. 2003). From the initial 
experiments performed using Erlenmeyer flasks, we 
changed to full-baffled flasks that improve the oxygen 
transfer rate, approaching the results to that obtained in 
bioreactors (Tunac 1989). Based on the literature (Berrow 
et al. 2006; Jia and Jeon 2016), we selected temperature, 

Fig. 3  Solubility of ΔNS1 during the induction in the bioreactor. 
After inoculation to achieve OD 0.1, culture was maintained at 37 °C 
until OD ~ 2.0 (pre-induction). Temperature was shifted to 21 °C 
and protein production induced with 0.7 mM IPTG. To determine 
solubility and biomass concentration, aliquots were taken at regular 
intervals after inoculation. After lysis, soluble and insoluble protein 
extracts were separated by SDS-PAGE and stained by Coomassie Blue. 
NI = non-induced. OD converted to biomass (g/L) according to the 
relation 1.0 OD = 0.34 g/L
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time and IPTG concentration as the independent vari-
ables to evaluate their effect on the responses of biomass 
concentration and solubility of ΔNS1. Our preliminary 
data demonstrated that lowering the temperature to 
16 °C coupled with induction time of 18 h increased the 
solubility of ΔNS1 in TB. Therefore, we investigated tem-
peratures from 16 to 30  °C, induction times from 12 to 
24 h, and concentrations of the inducer IPTG from 0.4 to 
1.0 mM, and included axial points with an alpha of 1.68 
in a Central Composite Rotatable Design.

Temperature and time are two of the most impor-
tant factors affecting the production and solubility of a 
recombinant protein (Papaneophytou and Kontopidis 
2014, 2016). Lowering the temperature can significantly 
increase the solubility of recombinant proteins (Schein 
and Noteborn 1988), although this is not always the 
case and should be evaluated for each protein. Vincen-
telli et al. (2011) applied high-throughput screening to 

analyze the effect of E. coli strain, culture media and 
temperature on the solubility of recombinant proteins. 
Of the 110 prokaryotic proteins tested, induction at 37, 
25 and 17 °C resulted in 38, 36 and 25 soluble proteins, 
respectively. In our statistical model, time presented a 
significant positive effect for biomass production. On 
the other hand, temperature had a significant nega-
tive effect on the solubility of ΔNS1. The interaction 
between these factors was also statistically significant 
with a negative effect on both responses. In the pro-
duction of soluble recombinant proteins, other studies 
have also demonstrated that these factors interact with 
each other (Larentis et  al. 2011; Maharjan et  al. 2014; 
Marini et  al. 2014; Swalley et  al. 2006). Furthermore, 
in our study, the response surface plots showed a posi-
tive curvature and represented well the significance of 
the quadratic terms of temperature and time of induc-
tion, indicating that along with the interaction between 

Fig. 4  Antigenicity and specificity of the recombinant protein ΔNS1. a Coomassie Blue staining (left panels) and Western blots (right panels) 
obtained with 1 µg of purified ΔNS1 or full length Brazilian ZIKV NS1 and DENV2 NS1 (strain NGC). Western blots were probed with a mAb 
anti-His-Tag (ZIKV proteins) or anti-DENV2-NS1. b Reaction of human immune sera from eight DENV-infected subjects (serotypes 1 to 4) with DENV 
NS1, ZIKV NS1 and ΔNS1 in ELISA. c Reaction of ZIKV+ DENV+ human serum sample with intact and heat denatured DENV NS1, ZIKV NS1 and ΔNS1. 
Statistical significance was assessed by two-way ANOVA and the Bonferroni test
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these factors, values too high or low will have a nega-
tive effect on the responses.

Moreover, the effect of the concentration of IPTG was 
not significant for any of the responses, but its quadratic 
term presented a significant negative effect on both bio-
mass formation and ΔNS1 production. IPTG may lead to 
poor induction or result in inhibitory effects for the cell in 
a dose-dependent manner (Heyland et  al. 2011). In fact, 
the concentration of the inducer can have a great impact 
on growth and yield (Einsfeldt et al. 2011; Larentis et al. 
2011; Marini et  al. 2014) or little to no effect (Ghaderi 
et  al. 2018; Xie et  al. 2003). Through statistical designs, 
Papaneophytou et al. (2013) observed a significant effect 
of IPTG on the solubility of RANKL, but not for TNF-α 
(Papaneophytou and Kontopidis 2012), both produced in 
recombinant E. coli. IPTG can also be used in low concen-
trations when coupled to other inducers such as galac-
tose, in an attempt to decrease the cost and prevent the 
deleterious effect of IPTG (Restaino et  al. 2013). Across 
all the experiments, biomass concentration varied almost 
fourfold and soluble ΔNS1 concentration more than 240-
fold. This emphasizes the importance of optimizing the 
culture conditions before scaling-up. If we had applied a 
standard protocol using lower temperature (induction at 
18 °C for 16 h with 0.5 mM of IPTG) (Structural Genom-
ics et al. 2008), we would have obtained soluble ΔNS1, but 
according to our model at a yield approx. 40% lower. The 
best conditions predicted by the model were tested and 
validated. From the predicted responses of 7.5 g/L DCW 
and 962 mg/L of ΔNS1 we obtained an average of 7.25 g/L 
DCW and 1022 mg/L ΔNS1, a difference of only 3 and 6%, 
between predicted and actual values, respectively.

Using the condition established by the RSM (induc-
tion at 21 °C with 0.7 mM IPTG) we scaled-up the cul-
tivation to a 6-L bioreactor batch. In comparison to the 
small-scale flasks, the optimal duration of induction in 
the bioreactor was lower. These differences may be due 
to control of dissolved oxygen and pH during the whole 
culture. Additionally, even with the use of full-baffled 
flasks, some differences in the growth rate are expected 
when scaling-up from 100  mL to a 6-L batch. During 
the batch cultivation in the bioreactor, we observed 
mainly the addition of phosphoric acid (not ammonium 
hydroxide), suggesting a tendency towards alkalization. 
This was previously observed by others and implies a 
rapid consumption of glycerol as carbon source during 
the culture (Kram and Finkel 2015; Losen et  al. 2004). 
In this scenario, further improvements could be possi-
ble by optimizing the input of the carbon source in a 
pH-controlled environment, which could be achieved 
in a batch or fed-batch process. The addition of etha-
nol up to 2% v/v has been shown to increase the solubil-
ity of recombinant catalase expressed in E. coli (Zheng 

et  al. 2019) and could be used to further increase the 
yield. Nonetheless, the current culture conditions 
allowed production of an estimated 0.5  g/L of ΔNS1 
in a 6-L batch culture. Based the current purification 
setup, with an estimated 20% of ΔNS1 recovery, a single 
batch would be sufficient for ~ 30,000 ELISA plates.

Despite the broad utilization of the NS1 proteins for 
flaviviruses serological diagnosis, it has been demon-
strated that DENV NS1 proteins lead to conflicting 
results in endemic areas, especially for ZIKV (Felix et al. 
2017; Matheus et  al. 2016). Although ZIKV NS1 pro-
teins have been considered specific for ZIKV infections 
(Matheus et al. 2016), it’s cross-reactivity with DENV is 
widely acknowledged by the scientific community. Our 
previous results had shown that the recombinant ΔNS1 
fragment was a useful antigen for the detection of specific 
IgG antibodies generated upon ZIKV infection (Caires-
Junior et al. 2018; Kam et al. 2017; Oliveira et al. 2016). 
Here, the purified ΔNS1 protein was used to character-
ize the specificity of the antibodies generated by infec-
tion with ZIKV and other flavivirus, including human 
serum samples of patients infected with DENV. The 
serological tests carried out with ΔNS1 showed a reduced 
cross-reactivity of the serum from individuals previously 
infected with DENV as compared to full length NS1. Such 
enhancement in the specificity may be ascribed to the 
reduction of common surface exposed epitopes in NS1 
between ZIKV and DENV. Despite the structural similar-
ity between the NS1 protein of ZIKV and other flavivirus, 
ZIKV NS1 displays a divergent electrostatic potential that 
may explain the altered binding profile of the antibodies 
to ΔNS1 (Song et al. 2016). Finally, the lack of detection 
when using denatured ΔNS1 reinforces the relevance of 
conformational epitopes in the detection of ZIKV-spe-
cific antibodies and the essential requirement of soluble 
protein production.

The data presented in this study demonstrates the 
application of statistical design to improve the yield and 
solubility of ΔNS1 produced by recombinant E. coli, its 
pilot-scale production and specificity for serological diag-
nosis of ZIKV infection. These results will contribute to 
the viability of this much needed serological diagnostic of 
ZIKV infection in the presence of other flavivirus.
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