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Abstract 

Microbial activity is the main route for cycling mangrove nutrients. In general, microorganisms have abilities to 
degrade lignocellulosic compounds. Among the biotechnological potential of the microbiota from mangroves, it is 
noteworthy about endophytic fungi, which can be considered as effective sources of different bioactive compounds. 
In this sense, thirty (30) endophytic fungi were isolated from mangrove forest sampling Cananeia, SP, Brazil. These 
microorganisms were analyzed about their enzymatic activities including: lignin peroxidase EC 1.11.1.14, manganese 
peroxidase EC 1.11.1.13 and laccase EC 1.10.3.2, as well endo-cellulase EC 3.2.1.4 and endo-xylanase EC 3.2.1.8. Besides 
that, production of bioactive secondary metabolites like biosurfactant and/or bioemulsifier was also investigated. As 
results, nineteen (19) isolates were selected about their ligninolytic abilities, nine (9) of them about cellulase activity 
and thirteen (13) showed xylanase abilities. The fungal isolate named as 3(3), characterized as Fusarium sambucinum, 
showed a prominent lignin peroxidase (42.4 U L−1) and manganese peroxidase (23.6 U L−1) activities. The isolate 63.1, 
also related to Fusarium sp. genera, was selected about its laccase activity (41.5 U L−1). From all the investigated fungi, 
the isolate 47(4) Trichoderma camerunense was selected about its cellulolytic and xylanolytic activities, showing 45.23 
and 26.09 U mL−1, respectively. The same fungi also showed biosurfactant ability demonstrated by superficial tension 
decreasing to 38 mN/m. In addition, fifteen (15) fungi exhibited bioemulsifier activity, with E24 values up to 62.8%.
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Introduction
Mangroves are coastal ecosystems with high production 
of organic matter to adjacent coastal waters (Badola et al. 
2008). It is estimated that they cover around 18.1 million 
ha worldwide (Andreote et  al. 2012). Microbial activity 
is the main route of nutrient cycling in mangroves (Kris-
tensen et  al. 2008; Sousa et  al. 2006). Among different 
types of microorganisms at mangroves is worth mention 

about the endophytic fungi, whose can establish mutual-
istic associations with plants (Schwarz et al. 2004).

These microorganisms can exhibit biochemical versa-
tility and biological diversity, which have revealed dense 
variety of genes with important biotechnological applica-
tions (Sebastianes et al. 2013), including the production 
of ligninases, cellulases and xylanases (Zheng et al. 2016; 
Bezerra et al. 2012; Rajulu et al. 2011).

Conventional ethanol production or first-genera-
tion ethanol is produced by fermentation of sugar-
cane juice by Saccharomyces cerevisiae (Peixoto et  al. 
2012). Although the production of second-generation 
ethanol, or lignocellulosic bioethanol from biomass, 
are processes that need efficient enzyme-producing 
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microorganisms to perform the extraction of all poly-
saccharides. For this, it is required the use of different 
enzymes, including oxidases and hydrolases (Manava-
lan et al. 2015; Aguiar and Ferraz 2011).

Lignin peroxidases (EC 1.11.1.14) are able to oxidize 
benzyl alcohols, breakdown aromatic chains, perform 
intramolecular rearrangements, and break rings into 
non-phenolic compounds related to lignin (Rabonato 
2013). They can be used in waste treatment, as well 
as the catalysis of difficult chemical transforma-
tions (Akbar et  al. 2013). Manganese peroxidase (EC 
1.11.1.13) is manganese dependent enzyme that oxi-
dizes organic substrates, such as phenols and phenyl 
radicals (Durán 2010). Laccase (EC 1.10.3.2) can oxi-
dize different compounds, such as phenolic dyes, phe-
nols, chlorophenols, diphenylmethanes, benzopyrenes, 
organophosphorus and other compounds with similar 
molecular structures to lignin (Shraddha et al. 2011).

Endo-1,4-β-d-glucanase (cellulase) (EC 3.2.1.4) pro-
motes the hydrolysis of β-1,4 bonds in the amorphous 
regions of cellulose molecules, decreasing the degree 
of polymerization, exposing the microfibrils to other 
enzymatic attacks. Currently, fungal cellulases are used 
at industrial processes, emphasizing the hydrolysis of 
lignocellulosic biomass (Wang et  al. 2012; Zhao et  al. 
2012). Endo-1,4-β-xylanase (xylanase) (EC 3.2.1.8) 
hydrolyses β-1,4 bonds of xylan substrate, also pro-
moting the decreasing of polymerization degree (Aro 
et  al. 2005). Filamentous fungi present high levels of 
xylanase when compared to yeasts and bacteria (Poli-
zeli et al. 2011).

In another context, biosurfactants and bioemulsi-
fiers can be employed for bioremediation of areas 
contaminated by oil, especially petroleum. These com-
pounds are amphiphilic molecules with dual affinity 
(polar–apolar), which can be microbially produced 
(Pacwa-Plociniczak et  al. 2011; Soberón-Chávez and 
Maier 2011). They are secreted either extracellular or 
attached to cell parts, predominantly during growth on 
water-immiscible substrates. This happens because the 
biosurfactants can reduce the surface tension at the 
boundary phase on water-immiscible substrates, mak-
ing the substrate more readily available for uptake and 
microbial metabolism (Desai and Banat 1997).

Microorganisms that produce these bioactive second-
ary metabolites can have greater ability in the digestibility 
of vegetal biomass. According to microbial versatility and 
different possibilities to investigate this topic, the pre-
sent study aimed to show some technological potential of 
endophytic fungi to produce not only enzymes, but also 
some exopolymers with biosurfactant and/or bioemulsi-
fier activities.

Materials and methods
Endophytic strains
All the endophytic fungi isolates evaluated in this study 
were deposited at Culture Collection the Laboratory of 
Microbiology and Biomolecules, from the Department 
of Morphology and Pathology, at Federal University of 
São Carlos—UFSCar. The isolate 47(4), characterized 
as Trichoderma camerunense was deposited at Brazil-
ian Culture Collection of Microorganisms from Envi-
ronment and Industry (CBMAI/UNICAMP): CBMAI 
2095. These endophytes were isolated from Cananeia 
(25°05′02′S, 47°57′42′W) mangrove forest, located at São 
Paulo, Brazil. Sebastianes (2010) and Sebastianes et  al. 
(2013) described and characterized these fungi, previ-
ously. Cananeia mangrove forest is a natural reserve cov-
ering an area of 15,100 ha. Brazilian government named 
this site as natural reserve on July 3, 1962. This reserve 
contains mangroves and several other coastal ecosys-
tems, including Atlantic Rainforest and Restinga, as well 
an inland forest (Sebastianes et al. 2013; Dias et al. 2010).

Activities of ligninases
Preliminarily, ligninolytic enzyme activities were per-
formed in a qualitative approach. Thus, all fungal isolates 
were cultured in BKG agar (glucose 10.0 g L−1; peptone 
2.0  g  L−1; yeast extract 1.0  g  L−1; agar 20.0  g  L−1 and 
guaiacol 4 mM). This screening is based on the microbial 
oxidation of guaiacol (Sigma Aldrich®) by ligninolytic 
enzymes after 4 to 7 days incubation at 28  °C, checking 
the color change of the medium from yellow to brown 
(D’Souza-Ticlo et al. 2006).

Positive hits in these qualitative analyses were con-
ducted to a second round of investigation, using spectro-
photometric assays aiming to quantify Lignin Peroxidase 
(LiP; EC 1.11.1.14), Manganese Peroxidase (MnP; EC 
1.11.1.13) and Laccase (Lac; EC 1.10.3.2), after 7  days 
of incubation in a rotating shaker at 28  °C in ME (Malt 
Extract Oxoid®) broth 3%, in triplicates.

LiP activity was quantified using the adapted meth-
odology from Arora and Gill (2001). It was analyzed the 
oxidation of veratryl alcohol (Sigma Aldrich®) to vera-
tryl aldehyde, in the presence of H2O2. For the analysis 
of MnP, it was adopted a modified method of Kuwahara 
et al. (1984). MnP was determined by measuring the oxi-
dation rate of phenol red substrate, in the presence of 
H2O2. Lac analyses were performed according to method 
described by De Pinto and Ros Barceló (1996), based on 
the oxidation of guaiacol.

All spectrophotometric measurements were performed 
using a microplate reader (Biotek Synergy HT, USA). 
Negative control was composed by the culture medium 
without the microbial inoculum. One unit of enzyme 
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activity (U) was defined as the amount of enzyme needed 
to generate one (1) µmol of product reaction per minute.

Stablishment of optimal enzymatic conditions
Aiming to stablish optimal conditions for lignino-
lytic activities, analyzes at different temperatures and 
pH ranges were performed, using an adaptation of the 
method developed by Heuts et al. (2007). Such analyzes 
were just conducted to selected strain, which could 
showed some prominent ligninolytic activities, at the 
preliminarily described assays. The reactions were con-
ducted at the following temperatures: 37.0 and 45.0 °C, at 
pH 2.0 to 9.0.

Cellulase and xylanase activities
Endo-cellulase (endo-1,4-β-d-glucanase; EC 3.2.1.4) and 
endo-xylanase (endo-1,4-beta-xylanase; EC 3.2.1.8) activi-
ties were monitored with commercial kits AZO-CM-Cel-
lulose and AZO-XYLAN-BIRCHWOOD (Megazyme® 
International, Bray, Ireland), respectively. For both ana-
lyzes, the 30 isolated were inoculated for 4  days in ME 
supplemented by 10.0 g L−1 cellulose (Celuflok 100®) for 
the cellulase activity, or 10.0 g L−1 xylan (Sigma® X4252) 
for the xilanase, in triplicate.

Absorbance measurements were developed using a 
spectrophotometer UV/Vis (BioTek Synergy HT, USA). 
Negative control was composed by the culture medium, 
non-inoculated by the fungal strains. Calculation of 
activities and positive control (Trichoderma reesei—RUT 
C30) were performed according to the manufacturer’s 
specifications.

Biosurfactant and bioemulsifier production assays
For screening of biosurfactant-producing isolates, all 
fungi were analyzed by qualitative drop-collapse tech-
nique, described by Boudour and Miller-Maier (1998). 
The fungal isolates were incubated, in triplicate, at ME, 
during 96  h. Then, the supernatant aliquots were ana-
lyzed about the presence or absence of biosurfactant 
activities, when spoted in the center of a thin coat of 
automotive engine oil disposed at polystyrene lid of a 
96-microwell plate, with diameter of 8  mm. If the drop 
remained beaded, it was considered a negative hit. How-
ever, if the drop was collapsed, it was get a positive hit. 
Non-inoculated culture medium was used as negative 
control, while Tween 80 (Synth®) 2% solution was applied 
as positive control.

Emulsification Indexes (E24)
The positive hits selected at drop-collapse assay were 
evaluated about their emulsification abilities, using three 
different apolar compounds (soy oil, automotive engine 
oil and hexane 85%). The isolates were cultured at ME 

medium during 4  days, in triplicate. Besides that, the 
supernatants were examined about bioemulsifiers pro-
duction, according Cooper and Goldenberg (1987) meth-
odology. The E24 indexes were calculated according to 
Fleck et  al. (2000), and described as percentage values. 
The culture medium without inoculum was also adopted 
as negative control, while solution of Tween 80 (10%) was 
used as positive control.

Tensiometric analysis
Positive hits obtained through drop collapse tech-
nique, were also evaluated about their tensiometric 
abilities, using the ring method, according to method-
ology described by Rodrigues et  al. (2006). Therefore, 
the selected isolates were inoculated in the mineral 
medium supplemented with saccharose (5.0  g  L−1), soy 
oil (5.0  mL  L−1), peptone (2.5  g  L−1) and yeast extract 
(2.5 g L−1), during 4 days, in triplicate. The analysis were 
based in the measurement of surface tension of microbial 
supernatants (mN/m) using a Krüss K6 tensiometer. The 
negative control was uninoculated culture medium.

Results
Ligninolytic activities
Using qualitative screening applying Guaiacol Agar 
(BKG) medium, nineteen (19) fungal isolates showed 
some ligninolytic activities. As illustrated through Fig. 1, 
the obtained positive hits exhibited brown color under 
and/or around their colonies, confirming the microbial 
guaiacol oxidation reaction. Then, after these qualita-
tive screening, the positive hits were analyzed about the 
specific activities of lignin peroxidase (LiP), manganese 
peroxidase (MnP) and laccase (Lac) using spectrophoto-
metric assays.

Fig. 1  Illustrative image of a positive hit cultured in guaiacol agar 
(BKG). The arrows show the color change of the medium (yellow to 
brown), which indicates the oxidation of guaiacol by the action of 
the ligninolytic enzymes produced by the isolated. It is the result of 
16.1—Fusarium sp.
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LiP analysis, revealed satisfactory results for fungi 
3(3)—Fusarium sambucinum and 67(4)—Diaporthe sp., 
showing 42.4 U L−1 and 36.2 U L−1, respectively. Three (3) 
isolated (12.6, 47.4 and 1.14) showed LiP activities rang-
ing from 15.9 to 14.5 U L−1. All of the 19 evaluated fungi 
could showed some MnP activities. In this context, the 
isolates 3(3)—F. sambucinum and 12.2(1)—Diaporthe sp. 

reached the highest activity values, 23.6 and 19.6 U L−1, 
respectively. In addition, about Lac activities, the isolates 
63.1—Fusarium sp. and 12.6—Hypocrea lixii showed the 
highest performances, 41.5 U L−1 and 38.0 U L−1, respec-
tively (Fig. 2).

Stablishment of optimal enzymatic conditions
It was selected the isolated 3(3)—Fusarium sambuci-
num as a model microorganism to optimize reaction 
conditions, in order to improve its ligninolytic abilities. 
This isolated was adopted as it showed prominent LiP 
and MnP activities, in the previous described analysis. 
In this context, a pH range between 2.0 and 9.0, under 
three (3) temperatures (22, 37 and 45 °C) were evaluated. 
MnP activities showed some variated values, if compared 
to LiP activities. It was obtained pH 9.0 at 37  °C, as the 
optimum conditions for LiP activity. For MnP enzyme, 
pH 5.0 at 45  °C was detected as the optimum condition 
(Fig. 3).

Cellulolytic and xylanolytic activities
All the 30 endophytic fungi were investigated about their 
endo-cellulase and endo-xylanase activities. Fifteen (15) 
fungi showed either cellulase or xylanase activities. Nine 
(9) isolates showed cellulolytic activities. Three (3) of 
them showed better performance than adopted positive 
control [47(4), 12.2(1) and 36.3(1)]. Thirteen (13) fungi 
could demonstrated some xylanolytic ability, emphasiz-
ing four (4) isolates that showed results comparable to 
positive control [47(4), 82(4), 51.5(1) and 36.3(1)]. The 
most standout cellulolytic and xylanolitic activities were 
showed by the isolated 47(4)—Trichoderma camerun-
ense, which is affiliated with the same genera of the posi-
tive control Trichoderma reesei (Fig. 4).

Fig. 2  Ligninolytic activity of lignin peroxidase (LiP; EC 1.11.1.14), 
manganese peroxidase (MnP; EC 1.11.1.13) and laccase (Lac; EC 
1.10.3.2) assays, values in U L−1. Results about the fungi selected 
positive in qualitative screening with guaiacol used like the substrate. 
Lac assays of isolates 9(4) and 3(3) unrealized. The data represent the 
means and standard errors of three measurements

Fig. 3  Relative activity of strain 3(3)—Fusarium sambucinum about its ligninolytic activities in pH range to 2.0–9.0 and three (3) temperatures (22, 
37 and 45 °C) for stablish optimal conditions. a Lignin peroxidase (LiP) using veratryl alcohol like substrate and b manganese peroxidase (MnP) with 
phenol red was used as substrate these analyses. The data represent the means and standard errors of three measurements
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Biosurfactant and bioemulsifier activities
Through qualitative drop collapse screening it was pos-
sible to select fifteen (15) positive hits. Besides that, these 
selected fungi were analyzed about their potential to pro-
duce bioemulsifier compounds, calculating their Emul-
sification Indexes (E24) under non polar compounds. All 
the evaluated fungi could show some ability to emulsify 
automotive engine oil and soybean oil, while eight (8) iso-
lates were able to emulsify n-hexane.

When automotive engine oil was used to evaluate 
the emulsifier potential of the fungi, it was possible to 
verify the most prominent E24 values, up to 62.8%, by 
the isolates 94(4)—Diaporthe sp. and 9(4)—Aspergillus 
awamori. Against commercial soybean oil, two isolates 
showed the most expressive emulsifier activities, above 
de positive control: 63.1—Fusarium sp. (50.0%) and 
56(3)—Aspergillus niger (47.8%). For n-hexane, the best 
results were obtained by 75(3)—Fusarium chlamydo-
sporum (51.9%) and 56(3)—Aspergillus niger (38.4%), 
above de positive control. Figure 5 illustrates the obtained 
E24 indexes under all the investigated compounds.

In this study, it was possible to select fifteen fungi 
about their emulsifying ability. All of them were also 
evaluated by tensiometric analyzes. Exception for the 
isolate 56(3)—Aspergillus niger, all of them showed some 
surfactant abilities. It is worth noting about the isolated 
63.1—Fusarium sp. and 39.3(1)—Xylaria enteroleuca, 
which achieved the most prominent surface tension, 

36.0  mN/m, followed by 47(4)—Trichoderma camerun-
ense, 38 mN/m.

Discussion
Industrial and environmental applications of ligninolytic 
enzymes are diverse and for this reason a number of stud-
ies about these enzymes are found. Although it is worth 
noting the studies with fungi of the genus Fusarium sp., 
Diaporthe sp., Hypocrea sp. (Tooley and Roberts 2016; 
Gajera et  al. 2015; Lozovaya et  al. 2006), which showed 
higher ligninolytic activities in this study. Bonugli-San-
tos et  al. (2012) analyzed ligninolytic enzymes in three 
marine-derived basidiomycetes, and showed the highest 
LiP activity (2.234  U  L−1) for Tinctoporellus sp., as well 
highest MnP activity (4.514 U L−1) for Marasmiellus sp. 
Silva et al. (2014) observed 117.33 U L−1 for MnP activ-
ity by Trametes villosa. About Lac activity, Stoilova et al. 
(2010) described, approximately, 1.7 U L−1 also for Tram-
etes genus.

In the stablishment of optimal enzymatic conditions 
for LiP and MnP enzymes, it was observed the same 
patterns, which means the presence of more than one 
point of high activity. It was probable due the analy-
ses were performed using the microbial supernatants, 
which may consist of a mixture of metabolites that 
influence the enzymatic activities, including the pres-
ence isoforms of enzymes that differ in the amino acid 
sequence and may present different optimal pH ranges 

Fig. 4  Endo-cellulases (endo-1,4-β-d-glucanase; EC 3.2.1.4) and 
endo-xilanases (endo-1,4-beta-xylanase; EC 3.2.1.8) activities, 
expressed in U mL−1, of positive fungi for commercial kits 
AZO-CM-Cellulose and AZO-XYLAN–BIRCHWOOD (Megazyme® 
International, Bray, Ireland), respectively. Positive control performed 
according to the manufacturer’s specifications, using a strain of 
Trichoderma reesei—RUT C30. The data represent the means and 
standard errors of three measurements

Fig. 5  Emulsification Index (E24) for three apolar compounds 
(soybean oil, automotive engine oil and hexane 85%) for the 
fifteen (15) strains selected in the initial qualitative screening to the 
detection of potential production of metabolites with biosurfactant 
and bioemulsifier abilities and its controls, negative (Ctr−) and 
positive (Ctr+). The data represent the means and standard errors of 
three measurements
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and temperatures (Fernández-Fueyo et al. 2014). More-
over, the assays showed that optimal enzymatic con-
ditions for manganese peroxidase were performed in 
similar pH, while the increase in temperature resulted 
in an improvement in its activity. However, for lignin 
peroxidase, changes of pH and temperature increased 
its activity.

Evaluating cellulolytic and xylanolytic activities, Gou-
vêa (2013) showed values between 1.0 and 1.5  U  mL−1 
for cellulase, as well 7.5 to 10.0 U mL−1 for xylanase by 
an Aspergillus niger strain. In a similar study evaluat-
ing another A. niger strain, it was obtained values up to 
18  U  mL−1 and 216  U  mL−1 for cellulase and xylanase 
activities, respectively (Bansal et al. 2011). Michelin et al. 
(2010) reported xylan-degrading activities between 1.5 
to 11.0 U mL−1 and 2.0 to 10.95 U mL−1, for Aspergillus 
terricola and A. ochraceus, respectively. Gottschalk et al. 
(2013) investigated xylanolytic activity in a mutant strain 
of A. awamori reached 12.9 U mL−1 as the maximal xyla-
nase activity, using yeast extract as nitrogen source.

Therefore, comparing the obtained results with 
the literature, it was possible to select the strain 
47(4)—Trichoderma camerunense as a potential cellulase 
(45.23  U  mL−1) and xylanase (26.09  U  mL−1) producer. 
According to the literature, there are microorganisms 
that can produce both enzymes, as described by Das 
et  al. (2013), whose showed cellulolytic and xylanolytic 
activities for Aspergillus fumigatus. It is worth to men-
tion that the main efforts into improve the production of 
second generation ethanol are focused in the cellulolytic 
and xylanolytic activities under lignocellulosic substrates 
(Mabee and Saddler 2010). Furthermore, there are many 
studies about cellulose activity with different species of 
Trichoderma sp. (Iqbal et al. 2011; Kirk et al. 2002). Iqbal 
et al. (2011) related a cellulase activity of 398 U mL−1 of 
Trichoderma viride.

Among the fifteen (15) fungi that showed ability to 
produce bioactive secondary metabolites (biosurfactant 
and bioemulsifier), twelve (12) also showed some enzy-
matic activity, corroborating about microorganisms that 
produce these compounds can have greater ability in the 
digestibility of the vegetal biomass. When comparing 
the obtained results among the isolated genera, it was 
possible to verify that Aspergillus sp. could be selected 
as a potential emulsifier producer, under the evaluated 
conditions of E24 indexes. Some species of Candida sp., 
Aspergillus sp., Cladosporium sp., Fusarium sp., Ustilago 
sp. and Trichosporon sp. were reported as able to pro-
duce compounds with these properties (Bhardwaj et  al. 
2013; Qazi et  al. 2013; Castiglioni et  al. 2009; Mulligan 
2005; Desai and Banat 1997). According Lira (2014) fun-
gal strains were able to detoxify the environment due to 
their abilities to join in organic matter. Kiran et al. (2009) 

showed biosurfactant production in A. ustus isolated 
from the marine sponge (E24 of 42.8%).

Endophytic fungi have systems that can breakdown 
complex compounds, degrading chemical pollutants 
and exhibiting biosorption of heavy metals (Zhang et al. 
2012; Li et al. 2012; Russell et al. 2011; Xiao et al. 2010). 
However, the knowledge about the bioemulsifier pro-
duction by endophytic fungi is still very scarce. Only 
few studies were reported about this ability. Lima et  al. 
(2016) showed emulsifier index of diesel oil (52%) from 
Phoma sp. isolated from macrophytes at the Negro River, 
Manaus, Brazil. Other study with endophytic fungi iso-
lated from Myrcia guianensis showed E24 values up to 
75.75% (Da Silva et al. 2014).

About the results of tensiometric analysis, in a simi-
lar study, reported by Reis et  al. (2004), one isolated of 
Bacillus subtilis was able to produce surface tension of 
28.7  mN/m. Similarly, Qazi et  al. (2013) exhibited sur-
face tension of 32 mN/m from Fusarium sp. Moreover, 
by comparison surface tension breakdown obtained in 
the present study with synthetic surfactants, such SDS—
sodium dodecyl sulphate, that can reduce the surface ten-
sion from 72 to 37 mN/m, it was verified that the obtained 
biosurfactant were efficient. This fact demonstrated that 
biosurfactants as potential as commercial surfactants, 
besides that it reduce the cost of production, has low tox-
icity, high biodegradability and environmental control 
(Kim et al. 2000).

Briefly, these results were possible to emphasize about 
the versatility of endophytic fungi, since enzymatic abili-
ties, like oxidases and hydrolases that can to improve 
the lignocellulosic bioethanol production. Moreover, the 
production of metabolites with bioremediation potential, 
as biosurfactants and bioemulsifiers. Among the isolates, 
it is worth noting about the strain 47(4)—Trichoderma 
camerunense, which showed not only emulsifier and ten-
siometric activities, as well as a prominent cellulolytic 
and xylanolytic activities, turning it as a potential candi-
date for more investigations about future biotechnologi-
cal applications.
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