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Abstract 

Here, we report a novel protein elicitor from Bacillus subtilis BU412 which could cause hypersensitive response (HR) 
and systemic acquired resistance (SAR) in tobacco. The purification was executed by ion-exchange and size exclusion 
chromatography. The target band on SDS-PAGE was analyzed by mass spectrometry, and the peptide mass finger-
printing matched an uncharacterized protein (WP_017418614.1), which was then named AMEP412. AMEP412 could 
cause a clearly defined HR necrosis in tobacco leaves, which was less affected by thermal treatment. The sub-cellular 
localization assay revealed that AMEP412 localized on the cell surface. This protein could also trigger early defense 
events such as the generation of reactive oxygen species (H2O2 and O2

−) and the induction of defense enzymes, 
including superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-
lyase (PAL). Moreover, AMEP412 could stimulate plant systemic resistance against Pseudomonas syringae pv. tomato 
DC3000.
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Introduction
During the long term interaction with pathogens, plants 
evolved different regulatory mechanisms to escape the 
attacks from pathogens (Díez-Navajas et  al. 2008; Piet-
erse et  al. 2009; Dodds and Rathjen 2010). Recognition 
of the pathogens or other foreign molecules is critical 
for the initiation of defence responses (Bruce and Pick-
ett 2007). Elicitors, produced and released by microbes, 
are thought to have significant roles in signal exchange 
between plants and pathogens (Mishra et al. 2012).

Elicitors can induce plant defence responses, such as 
cell wall strengthening, reactive oxygen species (ROS), 
ethylene biosynthesis, expression of pathogenesis-related 
(PR) proteins, and induction of hypersensitive response 
(HR) (Wang et  al. 2004; Miyata et  al. 2006; Wang et  al. 
2012). These responses are first expressed in the infected 
area, which is called induced system resistance (ISR), 
and then extend to the non-infected area and create a 

systemic acquired resistance (SAR) (Yano et  al. 1998; 
Durrant and Dong 2004; Garcia-Brugger et al. 2006).

Many protein elicitors have been isolated from a variety 
of pathogens, including Flagellin and Harpin from bacte-
ria (Che et al. 2000; Wei et al. 1992), xylanase from fungi 
(Hanania and Avni 1997), invertase from yeast (Basse 
et  al. 1993), and Elicitins from oomycetes (Ricci et  al. 
1989). However, several protein elicitors from biocontrol 
strains also have been reported to induce disease resist-
ance, like Fengycins and Surfactins from Bacillus subtilis 
(Ongena et al. 2007), PeBA1 from Bacillus amyloliquefa-
ciens (Wang et al. 2016) and BAR11 from Saccharothrix 
yanglingensis (Zhang et al. 2018).

In this paper, we reported the purification and char-
acterization of a novel protein elicitor from a biocon-
trol strain Bacillus subtilis BU412. We performed a 
purification process that consisted of ion-exchange and 
size exclusion chromatography to gain the new protein 
elicitor, and identified it by mass spectrometry. Plant 
defence response caused by the new protein elicitor was 
determined, like HR, ROS burst, induction of defense 
enzymes, and SAR against infection by Pseudomonas 
syringae pv. tomato DC3000.
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Materials and methods
Plants, strains, and growth conditions
Nicotiana tabacum was grown at 24–26 °C, with a 12-h 
light/dark in a phytotron. Bacillus subtilis BU412 was iso-
lated from potato field by our laboratory and deposited 
in China Center for Type Culture Collection (CCTCC 
M2016142). YME medium (Schaad et al. 2001) was used 
to culture the strain. Pseudomonas syringae pv. tomato 
(Pst) DC3000 (ATCC BAA-871) was cultured in low salt 
LB (half dosage of NaCl) medium containing 50 mg L−1 
rifampicin at 28  °C overnight as previously described 
(Katagiri et  al. 2002). Culture cells were harvested and 
the final concentration of cell suspensions was adjusted 
to 5 × 105 cfu mL−1 using 20 mM Tris–HCl (pH 7.5).

Protein purification
A single colony of Bacillus subtilis BU412 was cultured 
in YME liquid medium at 32 °C and 160 rpm for 12 h as 
seed liquid. 3 mL seed liquid was inoculated into 300 mL 
YME liquid medium and cultured at 32 °C, 160 rpm for 
22 h. The supernatant was collected by centrifugation at 
4 °C, 16,000×g for 30 min.

The culture supernatant was filtered through 0.22  μm 
membrane and applied to a Source 15Q 4.6/100 PE col-
umn, on an AKTA Purifier system (Amersham Bio-
sciences) pre-equilibrated with 20  mM Tris–HCl (pH 
7.5). The column was washed with a linear gradient of 
0.5  M NaCl from 0 to 100% concentration in 20  mM 
Tris–HCl (pH 7.5) at a flow rate of 1  mL  min−1. Indi-
vidual peak fractions were concentrated to 1  mg  mL−1 
by Amicon ultra centrifugal filters (Millipore) and tested 
for HR activity on tobacco leaves. Protein samples with 
HR activity were applied to a Superdex 75 10/300 GL 
column. The column was eluted with 20  mM Tris–HCl 
(pH 7.5) at a flow rate of 0.8  mL  min−1. Fractions were 
collected and tested for HR activity, and then determined 
by SDS-PAGE. All purification steps were performed at 
room temperature, and the column effluent was moni-
tored by absorbance at 280 nm.

Mass spectrum analysis
The exclusive protein band in SDS-PAGE gel was 
removed, gel-digested and analyzed with 4700 MALDI-
TOF/TOF mass spectrometer (AB SCIEX). Strong 
mother ions were selected to get second mass spectrum 
(MS/MS). The peptide mass fingerprinting (PMF) of MS 
and MS/MS was searched with Mascot (Matrix Sciences) 
search engine to identify the protein.

Characterization of the elicitor
Protein elicitor samples used in the following assays were 
purified from the supernatant of BU412 culture through 
ion-exchange and size exclusion chromatography 

following the methods mentioned above. All protein con-
centrations were measured using NanoDrop One UV 
Spectrophotometer (Thermo Scientific).

HR and Trypan blue staining
In order to check the effect of the new protein elicitor 
for the HR-inducing activity in tobacco, 1 mg mL−1 pro-
tein elicitor was infiltrated into the leaves using a syringe 
without needle to cover areas of 1 cm2. The HR symptom 
necrosis was examined in the injected areas after 24  h. 
Tobacco leaves with HR were stained by Trypan blue and 
then observed under a microscope, according to the pre-
viously described method (Koch and Slusarenko 1990).

The minimum concentration for HR induction
In order to check the minimum concentration of the new 
protein elicitor for the induction of HR in tobacco, dif-
ferent concentrations of protein elicitor (2.4, 2.0, 1.6, 1.2, 
0.8 and 0.4 mg mL−1) in a 100-μL volume were infiltrated 
into tobacco leaves using a 1 mL needleless syringe, with 
20 mM Tris–HCl (pH 7.5) as control. HR symptoms were 
examined after 24 h.

The thermo stability test of the protein elicitor
To test the thermo stability, protein elicitor was treated 
at different temperatures (25, 40, 60, 80, and 100 °C) for 
5 min and then infiltrated into tobacco leaves after cool-
ing to room temperature. The HR responses for infil-
trated tobacco leaves were observed after 24 h.

Sub‑cellular localization
Two milligrams of the protein elicitor was reacted with 
0.1 mg of FITC in 2 mL of carbonate buffer (0.05 M, pH 
9.0) for 12 h at 4 °C. The FITC and protein elicitor mix-
ture was applied to a Superdex 75 10/300 GL column 
equilibrated and eluted with 20 mM Tris–HCl (pH 7.5). 
Thus, FITC-elicitor was separated from free FITC mol-
ecules. Subsequently, FITC-elicitor was infiltrated into 
the upper leaves of 6-week-old N. tabacum plants using 
a 1  mL-syringe without needle. The leaves were shred-
ded at 4 h post injection, and a laser confocal microscope 
(Leica SP8) with an excitation wavelength of 495 nm was 
then used to observe the localization.

ROS accumulation
One of the early events during the HR is the generation of 
reactive oxygen as an active process to signal downstream 
cellular processes (Torres et  al. 2006). Accumulation 
of hydrogen peroxide was detected by a peroxidase-
dependent in  situ histochemical staining procedure 
using 3,3-diaminobenzidine (DAB) (Thordal-Christensen 
et  al. 1997) and superoxide ion using a superoxide-
dependent reduction of nitro blue tetrazolium (NBT) 
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Fig. 1  The purification of the new elicitor protein. a The anion exchange chromatography map. P1-P4 were peaks eluted with a linear gradient of 
NaCl. b The superdex chromatography map. F1 and F2 were peaks eluted with 20 mM Tris–HCl. Inset, typical chromatogram from a function test of 
Superdex 75 10/300 GL (Amersham Biosciences). c The SDS-PAGE detection of the target protein. M: low molecular weight standards, 1: the purified 
protein sample of the peak F2, B1: the target protein band

Fig. 2  AMEP412 induced HR in tobacco leaves. a HR lesion caused by AMEP412 in tobacco leaves. b Trypan blue staining of the HR areas infiltrated 
by AMEP412. Buffer treatment areas could not be stained by dye. AMEP412 induced cell death in infiltrated areas was stained blue. Scale bar = 50 μm
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(Doke 1983). Leaves of N. tabacum plants were sprayed 
with 50  μg  mL−1 AMEP412, and buffers were used as 
control. At different post treatment hours (0, 4, 12, and 
24  h), leaves were cut and then vacuum-infiltrated with 
1  mg  mL−1 DAB (pH 3.8) or 1  mg  mL−1 NBT for 2  h. 
The treated leaves were incubated for more than 24 h in 
70% ethanol and 5% glycerol to eliminate chlorophyll, 
observed for DAB and NBT deposits, and photographed.

Induction of defense enzymes
Leaves of N. tabacum plants were sprayed with 
50  μg  mL−1 AMEP412, and buffers were used as con-
trol. Leaves were harvested at different times (0, 4, 8, 12, 
24, 48, and 72  h) after treatment and immediately fro-
zen in liquid nitrogen. Then, samples of each treatment 
were homogenized in extraction buffer (50  mM phos-
phate buffer, pH 7.8) using mortar and pestle. The lysate 
was then centrifuged at 16,000×g for 20  min at 4  °C. 
The supernatant was collected for use as crude enzyme 
extracts. The activities of SOD, POD, PPO and PAL were 
assayed according to the previously described method 
(Hano et al. 2008).

Induced disease resistance in tobacco
Six-week-old N. tabacum plants were used for the follow-
ing assay. Two leaves of tobacco plant were treated with 
protein elicitor (50 μg mL−1) by spraying, using buffer as 
control. At 24  h post treatment, 50  μL  Pst DC3000 cell 
suspension (5 × 105  cfu  mL−1) was infiltrated into the 
untreated systemic leaves using a 1  mL-syringe without 
needle. Inoculated plants were maintained in growth 
chamber at 22 °C with high humidity and a 16-h day/8-h 
night cycle. Symptoms were observed 4 days post infec-
tion with Pst DC3000.

Results
Purification and identification of the new protein elicitor
The supernatant was prepared through centrifugation 
and filtration, which was then applied for anion exchange 
purification. The anion exchange chromatography 
obtained four main peaks after a linear gradient elution 
(Fig.  1a), and the peak P2 showed HR activity. Then P2 
was concentrated and further purified by Superdex col-
umn, and two main peaks were collected (Fig.  1b). The 
peak F1 had HR activity and showed a main megascopic 
band (B1) around 7  kDa on SDS-PAGE (Fig.  1c), which 
was thought to be the target protein.

Band B1 was cut off and analyzed by Maldi-TOF mass 
spectrometer and the mass spectrum was shown in Addi-
tional file  1: Figure S1. Mascot search results indicated 
that peptide mass fingerprinting (PMF) of the sequenced 
protein had the best similarity to an uncharacterized 

protein (WP_017418614.1). The amino acid sequence 
was shown in Additional file 1: Figure S2 with bold and 
italic letters indicating the matched amino acids with 
the sequenced protein. There were five amino acid frag-
ments matched that included 37 amino acid residues and 
sequence coverage was 49%. The above results allowed us 
to conclude that the protein identified in this study was 
most likely an uncharacterized protein, which was named 
AMEP412.

According to the analysis result of ProtParam (Wilkins 
et al. 1999), AMEP412 contained 76 amino acid residues 
with a relative molecular mass (MW) of 8.36  kDa. In 
addition, the protein also consisted of 15.8% lysine, 13.2% 
alanine and 10.5% leucine. The protein had 2 negatively 
charged residues and 12 positively charged residues, 
and the isoelectric point (pI) reached 10.05. The insta-
bility index was computed to be 1.35, which classified 
the protein as stable. A secondary structure prediction 
server (Drozdetskiy et  al. 2015) analysis indicated that 
AMEP412 had five á-helices with no â-sheet and random 
coil (Additional file  1: Figure S2). The predicted results 
for the transmembrane domain (Tusnády and Simon 
2001) showed that there was a transmembrane domain at 
position 17–36, which implied its binding ability with the 
membrane.

Fig. 3  The characterization of AMEP412 for its HR activity. a The 
minimum concentration of AMEP412 for its HR activity. Serial 
dilutions of AMEP412 (2.4, 2.0, 1.6, 1.2, 0.8 and 0.4 mg mL−1) were 
infiltrated into tobacco leaves, and HR was observed after 24 h. b 
The thermal stability of AMEP412 for its HR activity. AMEP412 was 
treated at different temperatures (25, 40, 60, 80 and 100 °C) for 5 min, 
infiltrated into leaves and photographed at 24 h
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Characterization of AMEP412
To confirm the HR activity of the new protein, 1 mg mL−1 
AMEP412 was infiltrated into tobacco leaves, and clearly 
defined HR necrotic areas were found at the infiltration 
sites (Fig. 2a). HR is also a kind of cell death, which can 
be monitored by Trypan blue staining on the leaves. In 
our test, dead cells located at the site of HR were stained 
blue (Fig. 2b).

In order to check the minimum concentration needed 
for HR, serial dilutions of AMEP412 were infiltrated into 
tobacco leaves and the results showed that the minimum 
concentration was 0.8 mg mL−1 (Fig. 3a).

The thermo stability test showed that AMEP412 could 
induce obvious HR symptoms after treated at 25, 40, 60, 
80 and 100 °C for 5 min, which suggested that AMEP412 
had good thermal stability (Fig. 3b).

Localization assay
The cellular localization of AMEP412 was determined 
by generating a fusion with FITC. FITC-AMEP412 was 
infiltrated into tobacco leaves, and the fluorescent sig-
nals were observed using laser confocal microscope after 
4 h incubation. As shown in Fig. 4, the fluorescence was 
observed to distribute almost uniformly along the cell 
wall and the cell peripheral surface. This result suggested 
that AMEP412 localized in the cell surface, which pro-
vided clues for the mechanism research.

Induction of ROS production
To further examine AMEP412 activated biochemical 
responses, the ROS accumulation were detected using 
DAB and NBT, respectively. As shown in Fig.  5, with 
the increase of treatment time, brown DAB-stained and 

Fig. 4  Sub-cellular localization of AMEP412 in tobacco cells
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blue NBT-stained precipitates were increasing clearly 
observed. At 24 h post treatment, precipitates spread all 
over the tobacco leaves.

Increase of defense enzymes in AMEP412 treated plants
Defense related enzymes, including SOD, POD, PPO and 
PAL, were detected from 0 to 72 h after AMEP412 treat-
ment. The activities of the above enzymes showed a simi-
lar trend, which appeared to be stimulated at 8 h, peaked 
at 24  h after AMEP412 treatment and then gradually 
declined in the AMEP412 treated plants (Fig. 6).

AMEP412 induced plant SAR
The ability of AMEP412 to induce SAR of N. tabacum 
against Pst DC3000 was tested. The AMEP412 treatment 
significantly inhibited the lesion caused by Pst DC3000 in 
area and severity (Fig. 7), which suggested that AMEP412 
could induce plant SAR.

Discussion
In this work, a novel protein elicitor AMEP412 was puri-
fied and characterized from Bacillus subtilis BU412. 
According to the BLAST result, AMEP412 was an 
uncharacterized protein without any function identi-
fied. It was reported widely distributed in genus Bacillus, 
including Bacillus velezensis, Bacillus amyloliquefaciens, 
Bacillus vallismortis, Bacillus subtilis, Bacillus vietna-
mensis, and Bacillus aquimaris. However, according 
to our research, the expression level of AMEP412 had 
an obvious dissimilarity between Bacillus strains (data 
not shown). It’s worth mentioning that Bacillus subtilis 
BU412 had a high expression level of AMEP412, which 
not only facilitated its purification and identification, but 
also provided material for further assays.

Different with most other elicitors, AMEP412 is 
secreted by Bacillus subtilis, which is regarded as an 
ideal biocontrol strain. Its advantage lies in that it can 
secret various antimicrobial peptides (AMPs) in the fer-
mentation process, such as Surfactin (Peypoux et  al. 
1999), Fengycin (Hu et al. 2007), Bacilysin (Rajavel et al. 
2009), and Iturin (Arrebola et  al. 2010). All the encod-
ing genes of these AMPs were successfully detected by 
PCR amplification using BU412 as template (data not 
shown). Unlike eliciting plants’ resistance against patho-
gens, these AMPs can directly inhibit plant pathogens. It 
will be a great enhancement for the disease control effect 
of AMEP412 applied products if these AMPs could be 
effectively saved during the fermentation and purification 
process.

AMEP412 contained 76 amino acid residues with a 
relative molecular mass of 8.36  kDa. However, accord-
ing to the result of Superdex chromatography, the elution 
volume of AMEP412 (Fig.  1b, Peak F1) corresponded 
to a molecular weight of > 43  kDa, which was several 
times of its real molecular weight. This result indicated 
that AMEP412 probably formed polymers. The polym-
erization state could enhance its stability against thermal 
treatment, which explained why AMEP412 exhibited a 
good thermal stability.

HR is a form of cell death, which is regarded as part of 
plant innate immunity (Atkinson et al. 1990). Although 
some elicitors do not lead to HR symptoms (Mao et al. 
2010; Zhang et  al. 2010), HR is regarded as an impor-
tant early event and widely used in elicitor screen and 
identification. In this study, high concentrations of 
AMEP412 could induce necrosis in tobacco leaves, and 
Trypan blue staining confirmed this result. Serial dilu-
tions of AMEP412 were infiltrated into tobacco leaves 
for HR testing, and the minimum concentration of 
AMEP412 that inducing HR was 0.8 mg mL−1.

Fig. 5  Induction of ROS in tobacco leaves by AMEP412. a DAB 
showed the production of H2O2. The leaves were stained at 
different post treatment hours. H2O2 accumulation appeared in 
AMEP412 treated leaves. b NBT revealed the production of O2

−, and 
staining was performed on leaves at the same treatment time. O2

− 
accumulation appeared in AMEP412 treated leaves



Page 7 of 9Shen et al. AMB Expr           (2019) 9:117 

Low concentrations of AMEP412 could not cause 
visible HR symptom. However, they could still inter-
act with tobacco leaves and trigger a serials of defence 
responses, like ROS accumulation and expression of 
defense enzymes, which leaded to the activation of the 
plant immune system (Dangl and Jones 2001; Chisholm 
et al. 2006). In our research, all these defence responses 
occurred at about 24  h after treatment. However, 
some elicitors required more than 2  days to show the 
responses (Zhang et al. 2010; Bu et al. 2013; Wang et al. 
2016). The reason of the difference probably lied in the 
diversified mechanisms, which deserved clarification 
in the following research. Considering the degradation 
problem of elicitors in application, fast induction of 
defence responses should be a non-negligible advantage 
for commercial product.

In this research, the new elicitor was observed to be 
localized on the surface of tobacco cell, which indicated 
that it did not need to enter the cell to exert its func-
tion. So, it was predicted there might be some receptors 
interacted with the new elicitor and then transducted 
the signal into the cell through a certain pathway. It has 
been verified that salicylic acid (SA) and jasmonic acid 
(JA) signal pathways are responsible for the elicitor trig-
gered plant defence responses. SA is a key regulator 
of SAR, whereas JA is indispensable for ISR (Spoel and 
Dong 2008). Moreover, interactions have been reported 
between these two pathways, which can be either antag-
onistic or synergistic. However, the antagonistic inter-
actions seem to be dominant (Yang et  al. 2015). For 
AMEP412, more researches are needed to reveal the 

Fig. 6  Kinetics of SOD, POD, PPO and PAL activity after AMEP412 treatment. The activities were measured 0–72 h after AMEP412 treatment. The 
values are the mean ± SD of quintuplicate samples
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receptor it interacts and the signal transduction pathway 
it utilizes.

In summary, our results showed that Bacillus subti-
lis BU412 produced a novel protein elicitor, AMEP412. 
It triggered a hypersensitive response in tobacco leaves 
and induced the production of signaling molecules and 
secondary metabolites related to plant resistance. Our 
results indicated that AMEP412 was a good plant defense 
activator and could be developed to a novel biopesti-
cide in the future. In our next research, the fermentation 
conditions of BU412 will be optimized to increase the 
yield of AMEP412. Meanwhile, the exact mechanisms 
underlying AMEP412 induced priming of plant defence 
responses will also be studied.

Additional file

Additional file 1: Figure S1. The mass spectrometry of the target 
protein. Figure S2. Amino acid sequence information of AMEP412 
(WP_017418614.1). Amino acid sequence of AMEP412 in the one letter 
code. A predicted secondary structure is given in the lower line. H, Alpha 
helix; C, random coiled. Bold and italic letters, the peptide fragments 
detected by MS sequencing. Underlined, the predicted transmembrane 
domain.
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HR: hypersensitive response; SAR: systemic acquired resistance; SOD: super-
oxide dismutase; POD: peroxidase; PPO: polyphenol oxidase; PAL: phenylala-
nine ammonia-lyase; ROS: reactive oxygen species; PR: pathogenesis-related; 
ISR: induced system resistance; SAR: systemic acquired resistance; PMF: 
peptide mass fingerprinting; DAB: 3,3-diaminobenzidine; NBT: nitro blue 
tetrazolium.
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