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Kinetic modeling of Stickland 
reactions‑coupled methanogenesis 
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Abstract 

Studying amino acid catabolism-coupled methanogenesis is the important standpoints to decipher the metabolic 
behavior of a methanogenic culture. l-Glycine and l-alanine are acted as sole carbon and nitrogen sources for 
acidogenic bacteria. One amino acid is oxidized and another one is reduced for acetate production via pyruvate by 
oxidative deamination process in the Stickland reactions. Herein, we have developed a kinetic model for the Stickland 
reactions-coupled methanogenesis (SRCM) and simulated objectively to maximize the rate of methane production. 
We collected the metabolic information from enzyme kinetic parameters for amino acid catabolism of Clostridium 
acetobutylicum ATCC 824 and methanogenesis of Methanosarcina acetivorans C2A. The SRCM model of this study 
consisted of 18 reactions and 61 metabolites with enzyme kinetic parameters derived experimental data. The internal 
or external metabolic flux rate of this system found to control the acidogenesis and methanogenesis in a methano-
genic culture. Using the SRCM model, flux distributions were calculated for each reaction and metabolite in order 
to maximize the methane production rate from the glycine–alanine pair. Results of this study, we demonstrated the 
metabolic behavior, metabolite pairing while mutually interact, and advantages of syntrophic metabolism of amino 
acid-directed methane production in a methanogenic starter culture.
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Introduction
The development of clean or environmentally friendly 
alternative energy is required to promote a global energy 
demand. Fossil fuels secure the demand, but they threat 
climate change due to the large burning. The develop-
ment of sustainable energy resources is, therefore eco-
nomically indispensable to recover a global energy need. 
Methane produced from methanogenic archaea inevita-
bly a substitute for fossil fuels to satisfy such energy crises 
(Head and Gray 2016). A syntrophic association between 
acidogenic bacteria and methanogenic archaea is being 
of great concern to yield a large amount of methane in 

anaerobic digesters (Ali Shah et al. 2014; Enzmann et al. 
2018). However, metabolic characteristics and mutual-
istic association of these trophic organisms are not yet 
known during the anaerobic digestion process. Organic 
wastes constituting carbohydrate, proteins, and lipids 
are gradually hydrolyzed and transformed into methane 
and CO2 by subsequent acidogenesis and methanogen-
esis. Generally, the methanogenic cultures exhibit a low 
potential to degrade protein-based waste compared to 
carbohydrate-based waste. Such limitation hinders the 
efficacy of the anaerobic digestion process and metabolic 
rate of methanogenic cultures.

Amino acids are used as the important carbon and 
energy sources for proteolytic microorganisms. Amino 
acid catabolic systems represent an advantage in protein-
rich environments (Stark et  al. 2017). Amino acids vary 
significantly in size and structure and are anaerobically 
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or aerobically fermented via different pathways to a range 
of products depending on the type and concentration 
of amino acids present. These products include various 
organic compounds (mainly short-chain and branched-
chain organic acids), ammonia, CO2 and small amounts 
of hydrogen and sulfur-containing compounds (Sangavai 
and Chellapandi 2017). The pairs of amino acids can be 
degraded through the Stickland reaction. Besides, a typi-
cal metabolic system may perform a single amino acid 
fermentation. The Stickland reaction usually involves one 
amino acid that acts as an electron donor (the product is 
shorter by one carbon atom than the original amino acid), 
while another acts as an electron acceptor (the product 
has the same number of carbon atoms as the original 
amino acid) (Stickland 1934; Nisman 1954). It occurs 
rapidly compared to uncoupled amino acid decomposi-
tion (Barker 1961). Certain amino acids can serve both as 
an electron donor and an electron acceptor (for example 
leucine). Therefore, the Stickland reactions are the sim-
plest ways to ferment amino acids for microbial growth 
by providing approximately 0.5 mol ATP per mole amino 
acid transformed (Andreesen et al. 1989).

Methanosarcina acetivorans (MAC) is a heterotrophic 
methanogenic achaean that has a wide-substrate utility 
(Galagan et al. 2002; Nazem-Bokaee and Maranas 2018). 
Clostridium acetobutylicum (CAC) is an acidogenic 
bacterium and it has the ability to produce organic sol-
vents and acids form protein catabolism (Sangavai and 
Chellapandi 2017). CAC and MAC shared interspecies 
electron transporter for being carried a consecutive flux 
of metabolites (Wang et  al. 2011). Stickland reactions-
coupled methanogenesis (SRCM) is a major mutualistic 
metabolic process occurring between them for complete 
anaerobic digestion of protein-based substrates for meth-
ane production. Metabolite distributions and flux coeffi-
cients of this system are not yet studied for methanogenic 
culture. CAC catabolizes one amino acid to acetic acid 
which in turn produces methane by MAC. A co-culture 
of Clostridium collagenovoran and Methanosarcina bark-
eri was extensively utilized for conversion of gelatin to 
methane (Jain and Zeikusi 1989). The specific metha-
nogenic activity of mixed or developed methanogenic 
cultures on different protein-based substrates has been 
evaluated to reveal the SRCM (Chellapandi et  al. 2008; 
2010a; Chellapandi and Uma 2012a, b).

A kinetic model consists of a network structure, a cor-
responding set of rate expressions, and their associated 
parameter values. The size of kinetic models is rang-
ing from single enzymes (Hattersley et  al. 2011) and to 
entire pathways (Almquist et al. 2014; Costa et al. 2016; 
D’hoe et  al. 2018; Kim et  al. 2018). Metabolic mod-
eling and simulation are currently advancing of mutu-
alistic study for a better understanding of such a system 

(Chellapandi et al. 2010b). Several stoichiometric (Desai 
et al. 1999a, b; Ramasamy and Pullammanmappallil 2001) 
and kinetic models (Chellapandi 2011, 2013, 2015) have 
been formalized for studying the metabolic behaviors 
and methanogenesis of methanogens. A kinetic model 
has been developed for improved production of meth-
ane by a co-culture of C. butyricum and M. mazei (Bizu-
kojc et al. 2010). Most recently, Ringemann et al. (2006) 
have explored the biochemical parameters as a selective 
pressure for gene selection that constitutes a metabolic 
pathway during inter-species and endosymbiotic lateral 
gene transfer. Hence, the present study was intended to 
develop a kinetic model for SRCM system consisting of 
CAC and MAC in a methanogenic culture and to per-
form a metabolic simulation for the production of meth-
ane from l-glycine and l-alanine as substrate constraints. 
This study would provide a new avenue to exploit pro-
tein-based waste as a substrate for methane production 
in batch digesters.

Materials and methods
Construction of the SRCM model
For the construction of SRCM model, we extracted 
information for the metabolic reactions, proteins, and 
genes from the genome-scale metabolic models of CAC 
and MAC (iMB745; iVS941; iMAC868) (Senger and 
Papoutsakis 2008a, b; Kumar et al. 2011; Benedict et  al. 
2012; Nazem-Bokaee et  al. 2016). The missing enzymes 
involved in SRCM were identified by sequence similarity 
searching using NCBI-BLASTp program (Altschul et  al. 
1997). The functional equivalency of missing or iden-
tified enzyme was annotated with the ProFunc server 
(Laskowski et  al. 2005). The proteins with known func-
tion and proteins with predicted function were manually 
compiled for the assignment of gene–protein–reaction 
in the dataset. A draft metabolic network was generated 
for three individual compartments (CAC-Environment-
MAC) by using CellDesigner 5.1 software (Funahashi 
et al. 2008). The net sum of all production and consump-
tion fluxes was set to zero for each internal metabolite.

The biochemical formalism of SRCM model
The draft model of SRCM model was updated with meta-
bolic information collected from the MetaCyc Metabolic 
Pathway Database 22.6 (Caspi et  al. 2018) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Kane-
hisa et  al. 2018). Biochemical reaction formalism was 
created and optimized using the knowledge on reac-
tion stoichiometry and information on enzyme kinetic 
data available in the SABIO-reaction kinetics (Wittig 
et al. 2012) and BRENDA (Schomburg et al. 2013) data-
bases and PUBMED (Additional file  1: Tables S1–S3). 
Some missing information for the initial concentration of 
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metabolites and enzymes were assigned according to the 
physiological assumptions of CAC and MAC. Charges 
of each metabolite in the model were assigned from the 
metabolic reaction index developed by the Model SEED 
(Overbeek et al. 2005). All the kinetic parameters in the 
metabolic model were transformed into a mathematical 
model by using ordinary differential equations (ODE) 
(Chou and Voit 2009) and enzyme kinetic functions 
(Additional file 1). The concentration of metabolites and 
reaction fluxes were expressed as mmol/min/ml.

Metabolic flux analysis
The overall reactions with kinetic parameters were 
merged into a metabolic network by using COPASI 4.11 
software (Mendes et al. 2009) and then non-steady-state 
approximation defined by the stoichiometric matrix using 
deterministic method (Hoops et  al. 2006). The resulted 
deterministic model captures the collective behaviors of 
the elements constituting the network, which requires a 
set of the state variables (Demin and Goryanin 2009). In 
the deterministic, mass balance equations can be written 
as,

where x(t) denotes an m-dimensional vector of time-
dependent state variables. S is a stoichiometric matrix of 
dimension m × n. (v(x)t), u(t), (θ) represents an n-dimen-
sional vector of reaction rates, which are dependent on 
the state variables, a vector of input variables u(t), and a 
set of parameters θ.

The kinetic rate expressions can be derived from actual 
reaction mechanisms by approximate expressions captur-
ing the essential quantitative and qualitative features of a 
reaction. These rate expressions for the transporter and 
intracellular reaction were described with the generalized 
mass action and Michaelis–Menten kinetics, respectively. 
Generalized mass action describes reactions by power 
law kinetics with non-integer exponents, allowing an 
analytical steady-state solution to be calculated for linear 
pathways (Savageau 1971). Michaelis–Menten kinetics 
can be derived from an on-ordered enzyme mechanism 
under the assumption of rapid equilibrium between the 
enzyme and its substrates and products using the follow-
ing equation (Liebermeister and Klipp 2006a, b; Bajzer 
and Strehler 2012).

where v is reaction rate; S is substrate concentration; Vmax 
is the maximum rate achieved by the system. Km is sub-
strate concentration at which the reaction rate is half of 
Vmax. It was used to describe enzyme kinetics where the 

dx(t)

dt
= S.v(x(t),u(t), θ)

V =
VmaxS

Km+ S

concentration of the substrate is much higher than the 
concentration of the enzyme (Chen et  al. 2010). Model 
parameters were determined by minimizing an objective 
function measuring the difference between experimen-
tal data and model predictions (Ljung 1987). Time-scale 
metabolic simulation data provide important information 
about the accumulation of metabolites, which implies 
causal relationships in the metabolic reaction network 
(Voit 2013). It was performed in a batch culture mode by 
the Gibson–Bruck Stochastic method (Gibson and Bruck 
2000) of the Gillespie algorithm (Gillespie 1976).

A typical objective function to be optimized would be 
the rate of formation of the desired product. The opti-
mization procedure is a subject to constraints regarding 
the maximum changes in levels of enzymes and metabo-
lites. A maximal flux value of the objective function was 
optimized with the ODE. In the metabolic simulation, a 
reaction involved in methane synthesis was assumed as 
a maximal objective function whereas reactions involved 
in glycine–alanine catabolism as minimal objective 
functions. Every metabolic reaction flux and metabolite 
concentration in time-series were simulated with the 
deterministic method and then model robustness exam-
ined. The internal steps of the simulation were maxi-
mized 10,000 times with an interval size of 1.0.

Model validation
Model validation is typically done by analyzing the devia-
tion between the measured data and the model outputs 
(Mendes et al. 2009). The stability and dynamic behavior 
of this model were calculated by means of eigenvalues, 
which are originally a special set of scalars associated 
with a linear system of equations. The degree of change 
of model properties (model sensitivity) was determined 
under the curve of state variables in response to a change 
in the model parameters. Metabolites (xi) and reactions 
rate (vi) which are catalyzed by enzymes with concentra-
tions ej. The elasticity coefficients of this network struc-
ture were estimated as below.

Each elasticity coefficient is a property of an individ-
ual enzyme and is therefore independent of the activity 
of the other enzymes in the pathway. The flux control 
coefficients of model property, if no single rate-limiting 
enzyme, were calculated in response to a change in the 
model parameters.

Results
Stickland reactions‑coupled methanogenesis
SRCM is used as a metabolic model for our hypothesis 
testing on the bioconversion of gelatin into methane 

E
j
Xj =

Xi

Vj
.
∂Vj
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by a methanogenic culture. Glycine (21.4%), proline 
(12.4%) and alanine (8.9%) are major amino acids com-
posed in pure gelatin. Extracellular proteases produced 
by CAC are able to degrade the gelatin and release the 
small peptides and amino acids to the environment 
(medium). The liberated amino acids are subsequently 
catabolized into intracellular metabolites through spe-
cialized pathways or the Stickland reactions by CAC. 
We predicted a catabolic pathway for amino acids 
showing a connection to acetogenesis and solventogen-
esis from its genome-scale metabolic model. As shown 
in Fig. 1, l-alanine from medium is oxidatively deami-
nated to pyruvate, ammonia, and NADH (reduced 
NAD+) catalyzed by alanine dehydrogenase (EC 

1.4.1.1). l-Glycine is deaminated to acetate and ammo-
nia with a reduction of NADH as NAD+ by l-amino 
acid dehydrogenase (EC 1.4.99.1). Reduced thiore-
doxin and ATP molecule are produced as end-products 
by glycine reductase and acetate kinase (EC 2.7.2.1), 
respectively. Acetate is produced from pyruvate via 
intermediates acetyl-CoA and acetyl-phosphate. This 
reaction uses two modifiers such as phosphate acetyl-
transferase (EC 2.3.1.8) and acetate kinase. Pyruvate-
formate lyase converts pyruvate to acetyl-CoA by the 
addition of substrate CoA. Pyruvate dehydrogenase 
(EC 1.2.4.1) transfers an acetyl group with the addition 
of electron donor NAD+, which reduces to NADH2 in 
the conversion of pyruvate to acetyl-CoA.

Fig. 1  The proposed pathway for the Stickland reactions-coupled methanogenesis in a methanogenic culture
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Acetate is produced from acetyl-CoA and transported 
to medium, which is consecutively transformed into 
methane through methanogenesis. Pyruvate is a main 
metabolic intermediate formed from amino acid catab-
olism of CAC. The concentration and reaction flux of 
it found to determine acetogenesis or solventogenesis 
in CAC. SRCM is indirectly connected with the syn-
thesis of acetate and n-butanoate during acidogenesis 
whereas production of acetone, propanol, and butanol 
during solventogenesis (Additional file  1). It simply 
indicates that there are some metabolic control points 
for the regulation of acidogenesis, particularly acetate 
synthesis in favor of methanogenesis in a methanogenic 
culture or only solventogenesis in CAC.

Description of membrane transporter
Some membrane transporter systems such as diffusion, 
symporter, proton translocation, anti-bacterial cassette 
(ABC), formate–nitrite transporter (FNT), amino acid–
polyamine-organization (AAPO) and dicarboxylate/
amino acid: cation symporter (DAACS) are predicted 
from the genomes of CAC and MAC. The substrate, as 
well as product fluxes in related to the SRCM, is medi-
ated by these transporter systems (Fig.  2). Volatile fatty 
acids except formate are transported from cytoplasm of 
CAC to the environment via proton translocation and 
then imported into the cytoplasm of MAC through a pro-
ton symporter. AAPO, ABC, DAACS and sodium/proton 
symporter are common transporter systems for exchange 
of amino acids through CAC-medium-MAC channel.

Fig. 2  The proposed membrane transporter system for the exchange of substrates and products across the CAC and MAC
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SRCM model properties
Mathematical models have more recently gained great 
attention for the identification of metabolic engineering 
targets and associated pathways of industrial microor-
ganisms due to the complexity of microbial metabolism 
and gene regulation (Almquist et  al. 2014; Costa et  al. 
2016; D’hoe et  al. 2018). Reaction kinetics is being 
the fundamental building block of the kinetic model 
described by set up of mathematical expressions for the 
rates of all biochemical species present in the modeled 
system. The SRCM model developed from this study 
consists of three compartments in which CAC includes 
7 biochemical reactions with 24 metabolites and MAC 
has 11 intracellular reactions with 37 metabolites. This 
model contains 6 transport reactions in each compart-
ment. Medium is assumed to be the third compartment 
in this model. The network structure of the modeled sys-
tem defines the network of interconnected elements that 
are assumed to be important for the SRCM. Generally, 
biomass formalism is a key modeling component for the 

prediction of growth phenotypes using central metabo-
lism and genome-scale metabolic models.

Methanogenesis is a chief energetic metabolism in all 
methanogenic archaea and is also directly associated 
with the growth rates of them. Despite the prediction of 
growth rate, we used the SRCM model to compute the 
methane production rate as a maximized objective func-
tion from substrate constraints. As represented in Fig. 3, 
maximum metabolic fluxes observed in the reactions 
R2, R4, and R5 of CAC. The rate of these reactions has 
directed the synthesis of acetate from glycine. We found 
a drastic flux variability showing to distribute glycine 
either for pyruvate formation to cellular metabolism or 
acetate synthesis to maintain the mutualistic interac-
tion between CAC and MAC. We assume that it may 
be a rate-limiting step for the synthesis of acetate in a 
methanogenic culture under anaerobic digestion pro-
cess. In MAC, the maximal reaction rates are predicted 
for the accumulation of acetyl CoA (R8) and coenzyme 
M (M15) in the cytoplasm. Acetyl-CoA is a carbon sink 

Fig. 3  A flux map of the Stickland reactions-coupled methanogenesis under the growth of a methanogenic culture on gelatin as a sole carbon 
source. Black arrows indicate the feasibility of thermodynamics equilibrium towards the enzymatic reactions and the thickness of the arrow is 
directionally proportional to the flux rate of each reaction (larger fluxes in the reactions are connected with thicker arrow). A single dotted line 
indicates zero fluxes of corresponding reactions. The production rate of methane (objective function) depends on the uptake of alanine and 
glycine (constraints) during the metabolic simulation process. All the reactions in each compartment a different flux value for given experimental 
parameters (Additional file 1: Tables S2, S3)
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for methane production and therefore, the occurrence of 
reaction flux initiates its accumulation for further ener-
getic metabolism of MAC. Heterodisulfide reductase is 
an alternative route found in Methanosarcina genus for 
the biosynthesis of coenzyme M in contribution to meth-
ane generation. The results of flux distributions explained 
a steady state approximation requiring for initial deg-
radation of glycine or alanine and glycine–alanine pair 
through the Stickland reactions.

The ability of SRCM model to incorporate detailed 
information about reactions gives them a number of 
advantageous properties. It has predicted the cellular 
and metabolic behaviors in response to genetic altera-
tions in CAC and MAC. The model’s predictions were 
shown to compare qualitatively well with previously pub-
lished experiments. A local parameter sensitivity analy-
sis is to determine the degree of change of some model 
property in response to a change in the model parameter. 
It has also opted for identification of suitable targets to 
rationally design directed metabolic engineering strate-
gies. However, the model’s predictive capability should be 
verified experimentally by over-expression of metabolic 
engineering targets, particularly the low flux-control 
enzymes, for a significant increase in methane produc-
tion rate. A typical objective function to be optimized 
would be the rate of formation of methane. The devel-
opment of competitive cell factories is the expansion of 
their range of substrates. The present SRCM model con-
tribution aimed for improved utilization of amino acid 
pairs in CAC. Thus, the SRCM model describes many 
different levels of metabolic control, regulation, and 
coordination of biochemical reactions, which are essen-
tial for growth-associated methanogenesis of a co-culture 
of CAC and MAC.

Time‑course simulation for metabolic behavior
Many biological processes or systems of importance to 
biotechnology are non-stationary in their nature, which 
is characterized by their dependence on time. The rate of 
reactions that are accountable to maximize the methane 
production rate was calculated when glycine or alanine 
and glycine–alanine pair consumed by a methanogenic 
culture. A gradient flux value has gradually increased the 
rate of reactions R5 and R6. It may be resulted due to the 
transport of acetate to the medium. Metabolic flux rate 
is radically influenced by the decreasing, the rate of reac-
tions R3 (CAC), R9 and R14 (MAC). The depletion of 
CO2 from CO infers the reaction flux of R9. The overall 
flux distribution has shown to effect on the consumption 
of glycine alone by glycine reductase-catalyzed reac-
tion and generation of acetyl-CoA for methanogenesis 
by acetyl-CoA synthetase (Fig.  4). The concentration of 
alanine and glycine are slowly raised, but not completely 

assimilated as released from gelatin, indicative of cyto-
plasmic substrate saturation in CAC. The complete uti-
lization of amino acids from gelatin does not endeavor 
in the methanogenic culture as a result of low fluxes in 
the reactions catalyzed by alanine dehydrogenase, amino 
acid dehydrogenase and glycine reductase (Fig. 5). Pyru-
vate is almost consumed for acetate synthesis, reflecting 
that its concentration is directly proportional to the pro-
duction rate of acetate. The concentration of methane is 
reached to a maximum when the acetyl-CoA concentra-
tion is attained a steady state flux for methanogenesis.

Robustness of SRCM model for methane production
As shown in Fig.  6a, the primary flux distribution of 
each reaction is compared with the optimized flux dis-
tribution. The primary flux distribution is the overall 
flux rate of reactions obtained prior to optimization of 
kinetic parameters and network robustness under pre-
steady-state condition. The robustness and consistency 
of the SRCM model were evaluated for improved meth-
ane production rate by simulating it with enzyme kinetic 
parameters. It shows that metabolic flux rates in the reac-
tions R3 and R9 are decreased as a result of optimizing 
flux rate of reactions R5 and R11. After flux optimization, 
we found the production rate of methane increased to 
0.1567 mmol methane/min/ml from 0.0967 mmol meth-
ane/min/ml (Fig. 6b). This model is more consistent with 
increased methane production rate (2.5190–2.9480 mmol 
methane/min/ml) when the alanine–glycine pair is used 
as a substrate constraint. Nevertheless, it is not reliable 
to glycine-mediated methanogenesis. It clearly states that 
this model has good agreement with experimental data 
for enhanced production of methane from alanine–gly-
cine coupled Stickland reaction.

Discussion
The protein-based industry typically discharges waste-
water containing a huge quantity of proteins and amino 
acids, which are utilized to produce methane by using 
defined methanogenic culture (Chellapandi et  al. 2008, 
2010a; Chellapandi and Uma 2012a, b), a co-culture of C. 
collagenovorans and M. barkeri (Jain and Zeikusi 1989) 
and syntrophic growth of C. butyricum, and M. mazei 
under anaerobic conditions (Bizukojc et  al. 2010). Ace-
tate and butyrate were common end-products probably 
arising from the oxidation of amino acids such as ala-
nine or the reduction of glycine in CAC. Methanosaeta 
sp. found to use acetate produced by amino acid degra-
dation and subsequent acidogenesis (Tang et  al. 2005). 
Our study suggested that amino acid catabolism-directed 
methanogenesis is a central metabolic process of syn-
trophic methanogenic cultures for the biomethanation of 
protein-based waste, particularly gelatin.
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Glycine reductase is found in the energetically less 
favorable glycine–serine–pyruvate pathway of C. aci-
durici 9a for glycine degradation (Hartwich et al. 2012). 
Glycine reductase and pyruvate dehydrogenase widely 
distributed in many Clostridial species (Arkowitz and 
Abeles 1991; Bednarski et al. 2001; Graentzdoerffer et al. 
2001). Pyruvate–ferredoxin oxidoreductase (Petitde-
mange et al. 1997) and NADH and NADPH–ferredoxin 
oxidoreductase (Meinecke et  al. 1989) also identified 
from CAC. The presence of d-proline reductase and 
the glycine reductase perform the reduction of electron 
acceptors proline and glycine in C. difficile, respectively 
(Jackson et al. 2006; Bouillaut et al. 2013). We predicted 
three key enzymes contributing to major functions in the 
proposed pathway of CAC. Escherichia coli amino acid 
dehydrogenase and Clostridial pyruvate dehydrogenase 
have shown the functional equivalency to ferredoxin 
(AAK78284) and pyruvate ferredoxin oxidoreductase 
(NP_349113), respectively. Anaerobic ribonucleoside 
triphosphate reductase (YP_004635874), hypothetical 
protein SMB_G3587 (YP_004638200) and hypothetical 
protein CA_C1859 (NP_348483) were shown functional 

analogs to the Clostridial glycine reductase. As shown 
by our analysis, the proposed amino acid degradation 
pathway was established in CAC which can be activated 
through the Stickland reaction.

Stickland reactions are coupled between a reducing 
and an oxidizing amino acid, and therefore the net pro-
duction of hydrogen from completely coupled reactions 
would be zero. The theoretical stoichiometric coeffi-
cient for hydrogen is 0.134. This coefficient is a result of 
0.174 mol H2 produced by oxidation versus 0.040 mol H2 
consumed by reduction per carbon mole protein con-
sumed. Only about 20% of the hydrogen produced from 
amino acid fermentation was consumed by the reduc-
tion of amino acids (Andreesen et al. 1989). The chosen 
reaction pathways provided a good prediction of fermen-
tation products. However, these energetically favored 
reactions should be coupled to hydrogen-consuming 
methanogens and would not be termed Stickland reac-
tions. Using this model, a co-culture of these organisms 
has shown to produce methane (2.9480  mmol/min/ml) 
via alanine–glycine coupled Stickland reaction. About 
60% of fermentation reactions were not coupled to 

Fig. 4  Time-scale simulation of metabolic flux rates in the selected reactions of CAC during the Stickland reaction-coupled methanogenesis. 
Shown are a–c uptake rates of alanine, glycine, pyruvate, and acetate production rate (d)
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Fig. 5  Time-scale simulation of metabolic flux rates in the selected reactions of MAC during the Stickland reaction-coupled methanogenesis. 
Shown are a–g uptake rates of acetate, acetyl-CoA, methyl-corrinoid protein, methyl-tetrahydrosarcinapterin, methyl-CoM, CO2, CO and methane 
production rate (h)
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Fig. 6  The relative flux distribution of the Stickland reactions-coupled methanogenesis, simulated with kinetic parameters under the growth 
on gelatin of a methanogenic culture (a). A time-scale simulation for calculating an optimized reaction flux rate of the model is shown in b. The 
predicted flux rate of each reaction is proportional to the relative gradients of the respective reactions. The optimized flux rates for the key reactions 
involving in methanogenesis from amino acids are represented in c (left). The production rate of methane (R13) was objectively increased under 
selective constraints of R1 (alanine) and R2/R3 (glycine), which is shown in c. The flux distribution was optimized for a maximal methane rate. Shown 
are flux values in units of mmol per min per ml. The reaction abbreviations are defined in Additional file 1: Table S1
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amino acid reactions. Consequently, the end-products 
derived from amino acid catabolism could be consumed 
by hydrogen-consuming methanogens (Ramasamy and 
Pullammanmappallil 2001). Our study also predicted 
a specific pathway actively performing the glutamate 
and aspartate catabolism in CAC coupled with metha-
nogenesis (Masion et  al. 1987) (Additional file  1: Figure 
S1). Pyruvic acid was a metabolic intermediate that can 
be catabolized into acetate and n-butanoate in the aci-
dogenic phase. Butanoyl-CoA predicted as a metabolic 
switch for the biosynthesis of n-butanoate in accordance 
with the earlier work (Green et  al. 1996). For n-propi-
onate biosynthesis, succinate was found as a metabolic 
switch similar to other Clostridia (Jones and Woods 
1986).

Both organisms were shared formate, acetate, pyru-
vic acid, CO2, NH3 and H2 as common metabolites. The 
membrane transporter system was fundamental for 
the exchange of these metabolites to establish the syn-
trophic growth of both organisms. We predicted several 
transporter systems including AAPO, ABC, DAACS and 
sodium/proton symporter to translocate amino acids. 
Amino acid transport in membrane vesicles of CAC is 
fused with proteoliposomes containing a functional pro-
ton motive force-generating system (Driessen et al. 1989). 
However, a transporter system of MAC was differed from 
CAC due to the existence of its unique membrane lipids 
(Koga et al. 1993). Similarly, a model has been developed 
to characterize the membrane transport reactions for the 
excretion of the intermediate metabolite xylitol (Parachin 
et al. 2011).

Appropriate levels of metabolic enzymes have been 
optimized for these microbial products using simulation-
based study (Gurung et  al. 2013; Nigam 2013). Several 
kinetic models have been used to determine suitable 
genetic targets for improved production of ethanol (Poli-
setty et al. 2008), glycerol (Cronwright et al. 2002), lactic 
acids (Alvarez-Vasquez et al. 2000; Polisetty et al. 2008), 
antibiotics and amino acids (Lee et  al. 2008) in indus-
trial microorganisms. Some kinetic models have been 
developed for studying improved utilization of substrates 
including glucose, arabinose, and xylose in bacteria and 
fungi (Prathumpai et al. 2004; Visser et al. 2004; de Groot 
et  al. 2005; Nishio et  al. 2008; Nikolaev 2010). Despite 
a common methanogenic process, the kinetic model 
developed from this study provides an insight into the 
understanding of methane formation from amino acid 
catabolism in a methanogenic culture.

Results of our study demonstrated how alanine–glycine 
coupled Stickland reaction is interconnected with meth-
anogenesis for anaerobic digestion of gelatin. Alanine 
and glycine are reduced by l-amino acid dehydrogenase 
and glycine reductase, respectively. A typical pathway 

typical metabolic subsystem is discovered from the CAC 
genome for aspartate and glutamate catabolism. Pyru-
vate acts as a metabolic switch to synthesis the acetate, 
a substrate of methanogenesis and also to predetermine 
the acidogenesis and solventogenesis. Our study provides 
the importance and advantage of using the syntrophic 
degradation of amino acids in the biomethanation pro-
cess. This model is more reliable for model-driven meta-
bolic engineering of methanogens. It has also consistent 
with improved methane production from protein-based 
substrates by a methanogenic culture. The complex bio-
chemistry of cells in a more complete way is represented 
by kinetic models, where mathematical models should be 
able to assist in the rational design of cell factory prop-
erties or in the production processes. Evaluation of the 
effects of adding, removing, or modifying molecular 
components of a cell factory is, therefore, an important 
one for the design of the bioreactor or fermentation pro-
cess. Moreover, experimental validation (mass spectral 
data) will prove our hypothesis on the SRCM of a metha-
nogenic culture for the production of methane biofuel at 
the large-scale.

Additional file

Additional file 1. Fig. S1. The proposed pathway for single amino acid 
(aspartate and glutamate) catabolism in C. acetobutylicum. Table S1. The 
reconstructed pathway information of the SRCM model of C. acetobutyli-
cum ATCC874 and M. acetivornas C2A obtained from their genome-scale 
metabolic models. Table S2. Kinetic parameters assigned for substrate 
and enzymes involved in the reconstructed SRCM model. Table S3. 
Reduced stoichiometry matrix representation for constructed SRCM 
model.
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