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Use of waste canola oil as a low‑cost 
substrate for rhamnolipid production using 
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Abstract 

Rhamnolipids are glycolipid biosurfactants that are primarily produced by Pseudomonas aeruginosa that have gained 
a great deal of interest for their numerous industrial applications and environmentally friendly properties. In this 
study, we explored the potential of waste canola oil as a low-cost and environmentally friendly substrate for the 
production of rhamnolipids by P. aeruginosa. Four different 23 full factorial designs were used to assess the effect 
of three independent factors on rhamnolipid production, including carbon source (canola oil and waste canola 
oil), nitrogen source [(NH4)2SO4 and NaNO3] and production time (7 and 14 days). The highest observed yield was 
3585.31 ± 66.24 mg/L when P. aeruginosa was cultured for 14 days with 3% v/v waste canola oil and 4 g/L of NaNO3. 
The nitrogen source proved to be a crucial factor, as the use of NaNO3 rather than (NH4)2SO4 led to a 30-fold increase 
in production yield. The observed yield when waste canola oil was used was similar to, and even slightly higher than, 
that obtained using canola oil. Our results showed that waste canola oil has great potential for use as a carbon source 
for rhamnolipid production by P. aeruginosa, thus paving the way for the development of a low-cost, efficient, and 
environmentally friendly bioprocess for the production of rhamnolipids.
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Introduction
Biosurfactants are secondary metabolites with amphi-
philic properties that are produced by a variety of 
microorganisms (Pacwa-Plociniczak et  al. 2011). These 
surface-active molecules have the same properties as 
their chemical counterparts with respect to their emul-
sification, detergency and foaming properties, but they 
are more environmentally friendly (Moya-Ramírez et al. 
2015). There is increasing interest in replacing synthetic 
surfactants with those of biological origin (Camilios-
Neto et  al. 2008), the latter of which have a variety of 
advantages, including their ecological acceptability, low 
environmental toxicity, biodegradability, effectiveness, 
stability, and activity at high temperatures, extreme pH 
values and high salinity (George and Jayachandran 2012). 

These compounds are biosynthesized when microorgan-
isms, especially bacteria, fungi or yeast, are grown in 
medium containing hydrophobic compounds, such as oil 
or hydrocarbons (Thavasi et al. 2011). Nevertheless, bio-
surfactants can also be produced using alternative sub-
strates, such as carbohydrates, glycerol or agro-industrial 
wastes (Wang et al. 2007).

Glycolipids are the most common biosurfactants in 
nature (Shoeb et  al. 2013) and are formed of mono, di, 
tri or tetra saccharides of mannose, glucose, galactose or 
rhamnose that are attached to long-chain aliphatic acids 
with an ester or ether linkage (Rahman and Gakpe 2008). 
Rhamnolipids, the most studied of this class of biosur-
factants, are anionic glycolipids that are formed of an 
l-rhamnose residue and units of β-hydroxyalkanoic acids 
(Müller et al. 2012). The precursors used for rhamnolip-
ids synthesis include the nucleotide activated saccha-
ride dTDP-l-rhamnose and hydrophobic moieties such 
as 3-(3-hydroxyalkanoyloxy) alkanoic acid (HAA). The 
sugar moiety can be synthesized from d-glucose, while 
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the hydrophobic moiety can be synthesized through 
the fatty acid synthesis pathway, starting with two-
carbon units (Chong and Li, 2017). HAA, mono- and 
di-rhamnolipids are almost exclusively synthesized by 
Pseudomonas sp. In the last decades, rhamnolipids have 
emerged as a promising class of biosurfactants and bio-
technological products owing to their unique properties 
and industrials applications and may represent a sustain-
able alternative for traditional surfactants (Dobler et  al. 
2016).

Rhamnolipids have a high surface activity and emul-
sification index. In addition, they can be produced at 
relatively high yields by bacteria; further, this approach 
requires relatively short incubation times and uses a well 
understood means of production. Furthermore, because 
rhamnolipids are virulence factors of Pseudomonas aer-
uginosa, many aspects of their biosynthesis have been 
investigated to control their production and effects 
(Abdel-Mawgoud et al. 2011).

The industrial production of rhamnolipids has gener-
ated a great deal of interest due to their diverse applica-
tions in many fields (Chong and Li 2017). For example, 
rhamnolipids are used as whiteners and detergents 
because of their natural surface-active properties (Sek-
hon-Randhawa and Rahman 2014). Rhamnolipids are 
also used in bioremediation and oil recovery (Sharma 
et  al. 2018) because of their excellent emulsification 
properties, which make them highly useful in removing 
crude oil from contaminated soils. With respect to their 
pharmaceutical and therapeutic applications, rhamnolip-
ids exhibit low toxicity and have antimicrobial proper-
ties against pathogens such as Staphylococcus aureus and 
Listeria monocytogenes (Chen et al. 2017). In cosmetics, 
rhamnolipids have been shown to be effective for several 
skin treatments applications, such as for wound healing 
and the treatment of wrinkles (Sekhon-Randhawa and 
Rahman 2014).

Genetic factors have been shown to be a key target for 
the improvement of rhamnolipid production by P. aer-
uginosa (Dobler et al. 2016; Gutiérrez-Gómez et al. 2018; 
Huang et al. 2018). However, rhamnolipid production is 
highly affected by medium composition and cultivation 
conditions. Several studies had focused on exploring var-
ious fermentation strategies for enhancing rhamnolipid 
yields by optimizing fermentation parameters. For 
instance, compared to water-soluble carbon sources 
(e.g., glucose), the use of water-insoluble carbon such as 
vegetable oil generally produces rhamnolipids in higher 
titers (Chong and Li 2017). The use of factorial design 
to optimize culture conditions has been proven to be a 
successful approach to significantly increase the rham-
nolipid yield obtained using several P. aeruginosa strains 
(Camilios-Neto et  al. 2008; Kumar et  al. 2015; Ozdal 

et al. 2017; El-Housseiny et al. 2019). Various studies (see 
Table 1) have explored economical production methods 
using low-cost and readily available nutrients. Carbon 
and nitrogen sources are among the most important 
parameters for rhamnolipid production, with an appro-
priate C/N ratio being a key factor (Huang et  al. 2018). 
To develop a cost-effective bioprocess, cheap nutrient 
sources are needed and complex mineral medium can-
not be used. The use of domestic or industrial wastes for 
rhamnolipid production is both cost-effective and envi-
ronmental-friendly (Ozdal et al. 2017).

Large amounts of waste cooking oil are produced each 
year in homes and restaurants and by the food industry 
(Chhetri et  al. 2008). The improper disposal of waste 
cooking oil can cause serious environmental contami-
nation as well as operational problems in sewers and 
water treatment plants (Panadare and Rathod 2015). 
However, the adequate management of waste cooking 
oil and its use as a feedstock to generate industrial sub-
products can have economic and environmental benefits 
(Patil et al. 2012). Recycled waste cooking oil is primar-
ily used as feedstock for biodiesel generation, although it 
has numerous other applications (Panadare and Rathod 
2015). Relatively few studies have investigated the pro-
duction of rhamnolipids by P. aeruginosa using waste 
cooking oils as a carbon source (see Table 1; Chong and 
Li 2017), and to the best of our knowledge, waste canola 
oil has yet to be investigated for this purpose.

The goal of this study was to evaluate the potential of 
waste canola oil as a cost-effective and environmentally 
friendly carbon source for rhamnolipid production by 
P. aeruginosa in combination with an adequate nitrogen 
source through a full factorial experimental design.

Materials and methods
Molecular identification of the bacterial strain
The P. aeruginosa strain used in this study was donated 
by a Mexican Medical laboratory (http://labor​atori​osrui​
z.com/), where it was previously identified as P. aer-
uginosa using the Vitek 2 GN typing panel (Biomérieux, 
México) and analyzed using the Vitek 2 instrument (Bio-
mérieux, México). The identity of the strain was con-
firmed by sequencing a portion of the 16S rRNA gene 
with bacterial-specific primers Bacfw (ACT​CCT​ACG​
GGA​GGCAG) and Bacrev (GAC​TAC​CAG​GGT​ATC​
TAA​TCC) (Yu et  al. 2005). The strain was cultivated in 
50  mL of nutritive broth (BIOXON, Mexico) for 13  h 
at 37  °C with shaking at 200  rpm. DNA extraction was 
performed using a QIAamp DNA Mini kit (Qiagen, 
Mexico) according to the manufacturer instructions. 
PCR amplification was performed in a reaction con-
taining 12.5  µL PrimeSTAR polymerase mix, 1 µL for-
ward primer (10 µM), 1 µL reverse primer (10 µM), 4 µL 
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genomic DNA as template (5 ng), and 6.5 µL MiliQ water. 
The thermocycling program was as follows: (1) 98 °C for 
5 min, (2) 98 °C for 10 s, (3) 58 °C for 15 s, (4) 72 °C for 
25 s, (5) repeat steps 2, 3 and 4 30× and a final extension 
at 72 °C for 5 min. The PCR product was purified using a 
QIAquick PCR Purification kit (Qiagen, Mexico) accord-
ing to the manufacturer’s instructions. The purified PCR 

product was sequenced in triplicate using the Sanger 
technique at the Biotechnology Institute of the National 
Autonomous University of Mexico). The consensus 
sequence was deduced from the obtained sequences 
using BioEdit, and the identity of the sequence was deter-
mined using the program BLAST.

Table 1  Rhamnolipid production using P. aeruginosa as  producer microorganism with  different waste and  non-waste 
carbon sources, nitrogen sources, culture media and production time

The highest rhamnolipid yield and the used P. aeruginosa strain in each case is reported

Highest 
rhamnolipid 
yield (g/L)

P. aeruginosa strain Culture medium Carbon source Nitrogen source Time References

2.70 47T2 NCIB 40044 NaNO3, KH2PO4, 
K2HPO4, KCl, 
MgSO4·7H2O, CaCl2, 
FeSO4.7H2O, yeast 
extract and trace 
elements

40 g/L waste frying 
vegetable oils

4 g/L NaNO3 80 h Haba et al. (2000)

1.82 PEER02 KCl, NaCl, FeSO4∙7H2O, 
KH2PO4, K2HPO4, 
MgSO4∙7H2O, yeast 
extract, trace ele‑
ments

2% v/v soy oil 15 g/L NaNO3 4 days Wang et al. (2007)

9.50 MR01 KH2PO4, MgSO4·7H2O, 
yeast extract.

4% v/v soy oil 0.2% w/v NaNO3 336/360 h Lotfabad et al. (2010)

3.55 D KH2PO4, Na2HPO4, 
MgSO4·7H2O, glyc‑
erol, yeast extract.

2% waste coconut oil 6.5 g/L NaNO3 7 days George and Jayachan‑
dran. (2012)

0.89 PA01 Glucose, Na2HPO4, 
KH2PO4, 0.4 
MgSO4·7H2O, 
CaCl2·2H2O, 
FeSO4·7H2O, and 
trace elements

2% w/v waste oil 2 g/L NaNO3 7 days Moya-Ramírez et al. 
(2015)

4.53 2297 KH2PO4, K2HPO4, 
MgSO4·7H2O

2% sawdust 1 g/L (NH4)2SO4 120 h Kumar et al. (2015)

2.16 Local isolate (wild-
type)

Not specified 1% v/v glycerol 2% w/v NaNO3 54 h Eraqi et al. (2016)

4.5–5.1 Wild-type strain Oil mill wastewater 
(25% v/v)

Corn steep liquor (10% 
w/v); Sugar cane 
molasses (10% w/v)

Not specified Gudiña et al. (2016)

2.80 DR1 MgSO4·7H2O, NaCl, KCl, 
CaCl2·2H2O, H3PO4, 
trace elements

1% mango kernel oil, 
1% glucose

2.5 g/L NaNO3 96 h Sathi-Reddy et al. (2016)

5.00 L05 Na2HPO4, KH2PO4, 
K2HPO4, trace ele‑
ments

19.43 mM of myristic 
acid

1.4 g/L NaNO3 144 h Nicolo et al. (2017)

5.53 AMB Na2HPO4, KH2PO4, 
NaCl, MgSO4·7H2O, 
CaCl2·2H2O

2% w/v waste coconut 
oil

0.1 g/L NaNO3 60 h Samykannu and Achary 
(2017)

41.87 15GR MgSO4·7H2O, NaCl, 
KCl, CaCl2·2H2O, 
H3PO4, FeSO4·7H2O, 
ZnSO4·7H2O, 
MnSO4·H2O, K3BO3, 
CuSO4·5H2O, 
Na2MoO4·2H2O

2% v/v glycerol 2.5 g/L NaNO3 6 days El-Housseiny et al. (2019)
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Inoculum conditions
A 500-ml shake flask containing 100  mL of nutritive 
broth (BIOXON, Mexico) was inoculated with a 5% 
(v/v) overnight culture of P. aeruginosa with a starting 
OD565nm of 0.012 (nutritive broth). The culture was incu-
bated at 37 °C with shaking at 200 rpm in a Benchmark 
Incu-Shaker until the optical density at 565 nm reached 
0.745 ± 0.020 (corresponding to 1.53 × 108  CFU/mL), 
indicating that the culture was in mid-exponential phase 
according to the logistic growth model (Additional file 1: 
Figure S1). The culture was used as an inoculum for 
rhamnolipid production.

Factorial design
Rhamnolipid production was optimized using four dif-
ferent 23 full factorial design with three independent 
factors, including carbon source, nitrogen source and 
production time. Factorial design 1 used canola oil as 
a carbon source at two concentrations (1 and 3%, v/v), 
(NH4)2SO4 as a nitrogen source at two concentrations 
(1 and 4  g/L), and production times of 7 and 14  days. 
These 2 incubation times were selected based on pre-
viously published research where production times 
varied between 7 (George and Jayachandran. 2012; 
Moya-Ramírez et al. 2015) and 14 days (Lotfabad et al. 
2010). Factorial design 2 used waste canola oil as a 
carbon source at two concentrations (1 and 3%, v/v), 
(NH4)2SO4 as a nitrogen source at two concentrations 
(1 and 4  g/L), and production times of 7 and 14  days. 
Factorial design 3 used canola oil as a carbon source at 
two concentrations (1 and 3%, v/v), NaNO3 as a nitro-
gen source at two concentrations (1 and 4  g/L), and 
production times of 7 and 14  days. Factorial design 4 
used waste canola oil as a carbon source at two concen-
trations (1 and 3%, v/v), NaNO3 as a nitrogen source at 
two concentrations (1 and 4 g/L), and production times 
of 7 and 14  days. Eight experiments were performed 
for each factorial design in two replicates. The meas-
ured response variable was rhamnolipid production, 
which was expressed as rhamnose equivalents (mg/L). 
Sixty-four experiments in total were performed for the 
four different 23 experimental designs. Minitab statis-
tical software was used to statistically analyze the data 
(p < 0.05). Waste canola oil was obtained from a Uni-
versity restaurant and was filtered prior to its use to 
remove any particles. The experimental design is sum-
marized in Table 2.

Culture conditions
The experiments were carried out in Erlenmeyer flasks 
(500  mL) containing 100  mL of an autoclave steri-
lized mineral medium containing 1  g/L K2HPO4, 1  g/L 

KH2PO4, and 0.41 g/L MgSO4·7H2O supplemented with 
the corresponding carbon and nitrogen sources accord-
ing to the factorial design. The culture medium was inoc-
ulated with a 5% (v/v) of mid-exponential growth culture 
(OD565nm = 0.745 ± 0.020; 1.53 × 108  CFU/mL). The cul-
tures were incubated at 37 °C with shaking at 200 rpm in 
a Benchmark Incu-Shaker.

Rhamnolipid extraction
Rhamnolipid extraction was performed using the method 
described by Camilios-Neto et al. (2008) with modifica-
tions. At the end of the experiments, the culture broth 
was centrifuged at 5000 rpm for 20 min (Hermle Labnet 
Z 326), and the supernatant was recovered and mixed 
with one volume of chloroform/ethanol (3:1 v/v). After 
mixing, phase separation was performed in a separa-
tion funnel. The lower organic phase was collected, and 
the process was repeated with the upper aqueous phase 
until no emulsification was observed. The organic phase 
was evaporated in a rotary evaporator (HAHNVAPOR, 
HS-2001NS) at 40 °C, and the rhamnolipids were resus-
pended in one volume of distilled water.

Rhamnolipid quantification
The rhamnolipids were quantified as described by Wang 
et al. (2007). Briefly, a 9:1 (v/v) mixture of orcinol (0.19% 
in 53% H2SO4) and rhamnolipids sample was warmed in 
a water bath (Terlab, TE-B80D) at 80 °C for 30 min. Sub-
sequently, the sample was cooled for 10  min in a water 
bath at room temperature. The optical density was meas-
ured at 421 nm using a UV–Vis spectrophotometer. The 
rhamnolipid concentration was obtained using a stand-
ard curve of l-rhamnose (0–50  mg/L), and the results 
were expressed as rhamnose equivalents (mg/L). The 
data corresponding to Fig. 1 can be found in Additional 
file 1: Figure S2.

Results
Confirmation of the identity of the bacterial strain
The bacterial strain used in this study was previously 
identified as P. aeruginosa using automated biochemi-
cal tests. To confirm the identity of the strain, a partial 
16S rRNA gene sequence was obtained (NCBI accession 
number MK307837). The sequence was analyzed using 
Megablast and exhibited 100% similarity with the 16S 
rRNA gene sequences of several P. aeruginosa strains.

Full factorial design results
Four full factorial designs were used to evaluate the per-
formance of waste canola oil compared with canola oil as 
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Table 2  23 full factorial designs used to optimize rhamnolipid production

Factorial design 1

Treatment Canola oil (% v/v) (NH4)2SO4 (g/L) Production 
time (days)

T1 1 1 7

T2 3 1 7

T3 1 4 7

T4 3 4 7

T5 1 1 14

T6 3 1 14

T7 1 4 14

T8 3 4 14

Factorial design 2

Treatment Waste canola oil (% v/v) (NH4)2SO4 (g/L) Production 
time (days)

T1 1 1 7

T2 3 1 7

T3 1 4 7

T4 3 4 7

T5 1 1 14

T6 3 1 14

T7 1 4 14

T8 3 4 14

Factorial design 3

Treatment Canola oil (% v/v) NaNO3 (g/L) Production 
time (days)

T1 1 1 7

T2 3 1 7

T3 1 4 7

T4 3 4 7

T5 1 1 14

T6 3 1 14

T7 1 4 14

T8 3 4 14

Factorial design 4

Treatment Waste canola oil (% v/v) NaNO3 (g/L) Production 
time (days)

T1 1 1 7

T2 3 1 7

T3 1 4 7

T4 3 4 7

T5 1 1 14

T6 3 1 14

T7 1 4 14

T8 3 4 14
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well as to determine the optimal nitrogen source, carbon/
nitrogen ratio and production time (Fig. 1).

When canola oil and ammonium sulfate were used 
as carbon and nitrogen sources, respectively (Factorial 
design 1; Fig.  1a), no significant differences in rham-
nolipid yields (p < 0.05) were observed between treat-
ments 1, 2, 3, 5 and 6. The highest rhamnolipid yield was 
observed for treatment 5 (113.83 ± 18.69  mg/L). Upon 
switching the carbon source to waste canola oil, while 
the nitrogen source remained ammonium sulfate (Fac-
torial design 2; Fig.  1b), treatment 6 (High carbon, low 
nitrogen, 14 days) showed the highest rhamnolipid yield 
(102.24 ± 8.66 mg/L).

When canola oil and sodium nitrate were used as 
carbon and nitrogen sources, respectively (Facto-
rial design 3; Fig.  1c), the highest rhamnolipid yield 
(3196.33 ± 848.05  mg/L) was obtained for treat-
ment 8 (high carbon and nitrogen, 14  days) and was 

significantly different from the other treatments. Upon 
switching the carbon source to waste canola oil, while 
the nitrogen source remained as sodium nitrate (Fac-
torial design 4; Fig.  1d), the highest rhamnolipid yield 
(3585.31 ± 66.24 mg/L) was also observed with treatment 
8 and was significantly different from the other treat-
ments. The highest yield among the 32 treatments of the 
4 factorial designs was obtained for treatment 8 of facto-
rial design 4.

The use of sodium nitrate as a nitrogen source (facto-
rial designs 3 and 4) led to a 30-fold increase in rham-
nolipid yield under all treatments (Fig. 1c, d) compared to 
the yield obtained when ammonium nitrate was used as a 
nitrogen source (factorial designs 1 and 2; Fig. 1a, b). The 
rhamnolipid yield obtained when waste canola oil was 
used as a carbon source (Fig.  1d) was comparable and 
even slightly higher than the yield observed when canola 
oil was used as a carbon source (Fig. 1c).

Fig. 1  The four full factorial designs used to optimize rhamnolipid production. The rhamnolipid yield is expressed as rhamnose equivalents. a 
Factorial design 1 (Canola Oil/(NH4)2SO4); b Factorial design 2 (Waste canola Oil/(NH4)2SO4); c Factorial design 3 (Canola Oil/(NaNO3); d Factorial 
design 4 (Waste canola Oil/(NaNO3). Treatments that do not share a letter are significantly different (p < 0.05)
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Discussion
The P. aeruginosa strain used in this study was a wild-
type clinical isolate that was previously identified using 
biochemical tests. Partial sequencing of the 16S rRNA 
gene in combination with the biochemical tests results 
enabled the confirmation of the identity of the strain as 
P. aeruginosa. This species is considered a metabolically 
versatile bacterium that is able to use a variety of sim-
ple and complex carbon sources and can survive under 
normal and harsh environmental conditions (Rojo 2010; 
El-Housseiny et  al. 2019). These characteristics make P. 
aeruginosa an excellent candidate for rhamnolipid pro-
duction using unusual carbon sources.

The results of numerous reports indicate that rham-
nolipid production by P. aeruginosa is dependent on 
medium components in addition to other factors (Mul-
ligan and Gibbs 1989; Müller et al. 2012; El-Housseiny 
et al. 2016, Gutiérrez-Gómez et al. 2018), with carbon 
and nitrogen sources being among the most impor-
tant factors to be considered (Huang et  al. 2018). To 
determine the potential of waste canola oil as a carbon 
source for rhamnolipid production, we used a factorial 
design to determine the effect of 3 parameters, carbon 
source (canola oil and waste canola oil), nitrogen source 
(ammonium sulfate and sodium nitrate) and production 
time (7 and 14 days) as well as the interaction between 
these parameters (Table  2). The results presented in 
Fig. 1 show that when ammonium nitrate was used as a 
nitrogen source, rhamnolipid production remained low 
regardless of the carbon source and production time 
used, with canola oil faring slightly better than waste 
canola oil (Fig.  1a, b). However, when the nitrogen 
source was switched to sodium nitrate a 12 to 30-fold 
increase in rhamnolipid production was observed 
(Fig. 1c, d). This result is in agreement with previously 
published reports. Most studies favor the use of nitrate 
over ammonium as a nitrogen source for rhamnolipid 
production by P. aeruginosa (see Table 1). Furthermore, 
it was shown that under certain experimental condi-
tions, sodium nitrate promotes rhamnolipid produc-
tion, whereas ammonium sulfate inhibits it (Mulligan 
and Gibbs 1989). However, alternative nitrogen sources 
should not be entirely discounted, as they may still be 
useful under certain circumstances (Huang et al. 2018), 
including ammonium sulfate (Kumar et al. 2015). Thus, 
the best course of action is to determine the nitrogen 
source that pairs best with the desired carbon source to 
maximize rhamnolipid yield.

When sodium nitrate was used as a nitrogen source, 
waste canola oil (Fig.  1d) performed as well and even 
slightly better than canola oil (Fig.  1c), particularly 
under experimental conditions using high concentra-
tions of carbon and nitrogen, and 14 days of production 

(treatment T8, Fig.  1c, d). The maximum rhamnolipid 
yield attained under these conditions (3.6  g/L for waste 
canola oil and 3.2  g/L for canola oil) is comparable to 
that obtained by other studies using a variety of differ-
ent carbon sources (see Table  1), particularly when the 
use of submerged fermentation conditions and wild-type 
strains are considered. These results indicates that waste 
canola oil has excellent potential as a carbon source for 
the production of rhamnolipids by P. aeruginosa. Impor-
tantly, only three parameters were considered in our 
study for the optimization of culture conditions (carbon 
source, nitrogen source and production time). Thus, 
additional improvements could be made in the rham-
nolipid yield obtained using waste canola oil as a carbon 
source through the optimization of other important bio-
process parameters, such as pH, incubation temperature 
and dissolved oxygen among others (Zhu et  al. 2012; 
Müller et al. 2012; Bazsefidpar et al. 2019).

The fact that the highest rhamnolipid yield was 
obtained for treatment 8 for factorial designs 3 (Fig. 1c) 
and 4 (Fig.  1d) suggests that the C/N ratio under these 
experimental conditions is the closest to the optimal C/N 
ratio when canola or waste canola oil is used as a carbon 
source and sodium nitrate is used as a nitrogen source. 
Interestingly, when rhamnolipid production time was 
set to 7 days (treatments 1, 2, 3 and 4), the highest yield 
was obtained for treatment 4 that have the same C/N 
ratio as treatment 8, regardless of the used carbon source 
(Fig. 1c, d). Both treatments 4 and 8 feature the highest 
carbon and nitrogen contents but differ by the produc-
tion times: 7 and 14 days respectively (Table 1). The fact 
that the rhamnolipid yield was higher for treatment 8 
as compared to treatment 4 suggests that both carbon 
and nitrogen sources where limiting for all other treat-
ments. These results suggest that further improvements 
of rhamnolipid yield could be made through the optimi-
zation of the C/N ratio and the used carbon and nitrogen 
substrates concentration.

When vegetable oil is fried, it undergoes several types 
of chemical degradation reactions that result in a change 
in its fatty acid composition and physicochemical char-
acteristics, including hydrolysis, oxidation and polym-
erization (Choe and Min 2007). The first two reactions 
lead to an increase in the free fatty acid content of the 
oil and a decrease in the degree of unsaturation of fatty 
acids, respectively. These reactions are correlated with the 
greater acid value and higher viscosity observed with used 
cooking oil compared with unused vegetable oil (Chhetri 
et  al. 2008; Knothe and Steidley 2009). Knothe and 
Steidley (2009) observed an overall increase in the satura-
tion of fatty acids in used vegetable oils compared to the 
corresponding oil before use, with an observed increase 
in stearic (C18:0) and oleic (C18:1) acids and a decrease 
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in linoleic (C18:2) and linolenic (C18:3) acids. Huang et al. 
2018 tested various vegetable oils as carbon sources for 
rhamnolipid production, including palm, olive, rapeseed 
(canola), soybean and corn oils. Their results showed that 
olive oil was the carbon source that produced the high-
est rhamnolipid yield under their experimental condi-
tions. Since oleic acid is by far the most abundant fatty 
acid in olive oil (Gunstone 1996), their results might indi-
cate a preference of P. aeruginosa for oleic acid. Canola 
oil has a typical fatty acid composition of approximately 
60% oleic acid, 20% linoleic acid and 10% linolenic acid 
(Warner and Mounts 1993). In contrast, olive oil gener-
ally has a higher content of oleic acid (78%) and a lower 
content of linoleic (7%) and linolenic (1%) acids than 
canola oil (Gunstone 1996). When canola oil is fried, an 
increase in oleic acid and a decrease in linoleic and lino-
lenic acid contents would confer a fatty acid profile to the 
waste canola oil that is globally similar to that of unused 
olive oil. This phenomenon may explain the increase in 
rhamnolipid production when waste canola oil is used as 
a carbon source (Fig. 1d) compared to the yield obtained 
with unused canola oil (Fig. 1c). The increase in free fatty 
acid content in waste cooking oil would be challenging for 
any bacterial species due to its antibacterial effects (Yoon 
et  al. 2018). However, P. aeruginosa is resistant to most 
free fatty acids other than eicosapentaenoic acid (C20:5), 
making P. aeruginosa particularly suitable for rhamnolipid 
production using waste cooking oil.

It is particularly noteworthy that the rhamnolipid 
yield attained in this study was achieved using a min-
eral medium that contained only four salts (K2HPO4, 
KH2PO4, MgSO4 and NaNO3) included waste canola 
oil as the sole carbon source. This medium is consid-
ered minimal when compared to the composition of 
the more complex growth media used in other stud-
ies (see Table 1). Along with cost reductions due to the 
use of waste canola oil as a carbon source, the use of a 
simplified mineral medium should lead to further cost 
reductions upon scaling-up the bioprocess. High pro-
duction costs are one of the major obstacles facing the 
large-scale industrial production of biosurfactants (Mül-
ler et al. 2012; Chong and Li 2017). Thus, increasing the 
rhamnolipid yield should be pursued in parallel with the 
development of low-cost substrates and growth media 
to increase the economic and technical feasibility of the 
industrial production of biosurfactants.
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