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Abstract 

Pectin is a complex dietary fiber and a prebiotic. To investigate pectin-induced changes in the gut microbiome and 
their effects on the short chain fatty acids (SCFAs) production, we performed in vitro pectin fermentation using the 
feces of three Korean donors. The pectin degradations in all three donors were observed. While the donors displayed 
differences in baseline gut microbiota composition, commonly increased bacteria after pectin fermentation included 
Lachnospira, Dorea, Clostridium, and Sutterella. Regarding SCFAs, acetate levels rapidly increased with incubation 
with pectin, and butyrate levels also increased after 6 h of incubation. The results suggest that pectin fermentation 
increases bacterial species belonging to Clostridium cluster XIV (Lachnospira, Dorea, and Clostridium), with Lachnospira 
displaying the greatest increase. The results also confirm that pectin fermentation leads to the production of acetate 
and butyrate.
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Introduction
Recent studies have demonstrated that the gut micro-
biota plays important roles in human health, and are 
associated with diseases. The pathogenic mechanisms 
of various diseases and disorders, such as irritable bowel 
syndrome (Hyland et  al. 2014), Crohn’s disease (Gevers 
et  al. 2014), and non-alcoholic steatohepatitis/non-alco-
holic fatty liver disease (Icaza-Chávez 2013; Sánchez et al. 
2017) are associated with the composition and diver-
sity of the gut microbiota (Laparra and Sanz 2010). The 
constitution of the gut microbiota can be influenced by 
endogenous and environmental factors, such as one’s die-
tary, antibiotic, xenobiotic, and probiotic intakes (Falony 
et al. 2016).

Prebiotic food ingredients feed the intestinal microbi-
ota, and can be used to selectively promote the growth 
of specific microbiota (Laparra and Sanz 2010). Most 

prebiotics are carbohydrates, such as inulin, fructooligo-
saccharide, and human milk oligosaccharide, which are 
not digested by human digestive enzymes (Bindels et al. 
2015; Coppa et  al. 2006). Microorganisms in the intes-
tines produce energy and short-chain fatty acids (SCFAs) 
including acetate, propionate, and butyrate, affecting the 
host though prebiotic fermentation (Flint et  al. 2012). 
The SCFAs produced by the gut microbiota have positive 
effects on immune function and ameliorate metabolic 
diseases such as obesity and type 2 diabetes (Clemente 
et al. 2012; Gerritsen et al. 2011).

Differences in intestinal microbiota composition can 
exist depending on diet (Conlon and Bird 2014; David 
et  al. 2014), and in particular, on the types of nutrients 
ingested in various countries, environments, and cul-
tures (Marques et al. 2010). Asian diets tend to be high in 
carbohydrates, while western country diets are relatively 
high in fat (LeCroy and Stevens 2017; Li et al. 2017). The 
Korean diet, one of the Asian diets, tends to be a high-
vegetable diet compared with the typical western diet 
because of traditional foods including Kimchi (Kim et al. 
2016; Song and Joung 2012; Lee et al. 2002).

Pectin is a complex polysaccharide found in the cell 
walls of a variety of vegetables and fruits, which is mainly 
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composed of d-galacturonic acid (GalA) with α-(1-4) gly-
cosidic linkages (Sriamornsak 2003). Pectin is a candidate 
prebiotic because it is not well degraded by human diges-
tive enzymes, but is by microorganisms (Holloway et al. 
1983). Pectin is degraded by the gut microbiota, produc-
ing SCFAs and changing the composition of the intestinal 
microbiota (Chung et  al. 2016; Marounek and Dušková 
1999). Although many studies have confirmed the deg-
radation of pectin and the production of SCFAs by gut 
microbiota species of the genera Bifidobacterium, Faecal-
ibacterium, Anaerostipes, and Roseburia (Duncan et  al. 
2004), very few metagenomics studies have been per-
formed on the human gut microbiota following in vitro 
fermentation of pectin. In addition, no studies have been 
performed examining pectin utilization and gut micro-
biota changes in Koreans, which have high vegetable con-
sumption. Thus, in this study, we explored the process 
of pectin degradation and the compositional changes in 
the gut microbiota of three Korean subjects after pectin 
fermentation.

Materials and methods
Donor information
All donors (males, ages 29, 30, and 30) were healthy and 
did not have any gastrointestinal disease. Donors had 
consumed a regular diet and had not received antibiotic 
treatment in the last 6 months. The study was approved 
by the Institutional Review Board of Kyung Hee Univer-
sity (IRB file no. KHSIRB-17-004). All experiments were 
performed in accordance with relevant guidelines and 
regulations. Informed consent was obtained from all 
participants.

Fecal collection
Fecal samples (20  g) were collected from three volun-
teers under anaerobic conditions and transported within 
1  h after excretion. Fecal samples were diluted fivefold 
with sterile phosphate-buffered saline in an anaerobic 
chamber. After mixing, the resultant fecal slurries were 
homogenized and immediately inoculated in the pre-
pared medium.

Growth media
Pectin from citrus peel was purchased from Sigma-
Aldrich (St. Louis, MO, USA), and was composed of 
> 74% galacturonic acid. Because a basal medium is 
non-selective and supports the growth of several organ-
isms, we selected a basal medium for this study; the 
basal medium used was the chopped meat (CM) broth 
containing 15% (v/v) of bovine rumen fluid (CMR). 
Each liter of CMR consisted of peptone (30.0  g), yeast 
extract (5.0 g), dipotassium phosphate (5.0 g), l-cysteine 
(0.5  g), and resazurin (0.001  g). Pectin was added to a 

final concentration of 1%. CMR medium with 1% pectin 
(CMRP) was stirred on a hot plate to dissolve the pec-
tin, transferred to serum vials, and capped. Sealed CMRP 
medium was flushed with 99.5% CO2 gas and sterilized 
by autoclave at 121 °C for 15 min.

Batch culture incubations
To investigate changes in microbial diversity and pectin 
degradability, 100  μL of prepared feces was inoculated 
into 20 mL of CMRP medium (baseline). Cultures were 
incubated at 37 °C at 150 rpm, with sampling at various 
incubation times (0, 6, 12, 18, 24, 36, and 48 h). All sam-
ples were immediately frozen and stored at − 72 °C. Incu-
bations were performed in CMRP medium in triplicate.

Determination of total sugar
The total sugar in culture was measured by the phenol–
sulfuric acid method. A 5% phenol solution (200 μL) was 
added to 100  μL of culture supernatant from each time 
point. The reaction mixture was mixed with 800  μL of 
99% sulfuric acid and vortexed. After cooling for 20 min 
at 25 °C, 250 μL of each mixture was added to a 96-well 
microplate. The absorbance of the phenol–sulfuric acid 
was measured at 550  nm using an iMark Microplate 
Absorbance Reader (BioRad Laboratories, Inc., Hercules, 
CA, USA).

Determination of reducing sugar
The reducing sugar in culture was measured using 
3,5-dinitrosalicylic acid (DNS). Culture supernatants 
from each time point (20  μL) were diluted in 80  μL 
deionized water. Reducing sugar was detected by adding 
300 μL of DNS solution and boiling for 5 min. After cool-
ing on ice, the absorbance was measured at 555 nm using 
an iMark Microplate Absorbance Reader.

Thin liquid chromatography (TLC) analysis
TLC analysis was performed with TLC Silica gel 60G 
F25425 Glass plates (Merk Millipore, Billerica, MA, USA) 
after activating at 110 °C for 5 min. Culture supernatants 
from each time point were loaded onto TLC plates and 
placed in a TLC chamber containing a 5:2:3 (v/v/v) sol-
vent mixture of 1-butanol:acetic acid:water for degrada-
tion product analysis. Plates were dried, rapidly soaked 
into 0.3% (w/v) 1-naphthol and 5% (v/v) sulfuric acid in 
methanol, dried again, and placed on a 110  °C oven for 
10 min.

DNA extraction and 16S rRNA gene sequencing
Fecal bacterial DNA from samples taken at various times 
(0, 6, 12, and 18 h) was extracted using a QIAamp DNA 
Stool Mini kit (Qiagen, Valencia, CA, USA), in accord-
ance with the manufacturer’s instructions, including 
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bead-beating twice for 5 min. The V1–V2 regions of 16S 
rRNA genes were amplified by polymerase chain reaction 
(PCR) using universal primers (8F and 338R) with bar-
code sequences for multiplexing sample reads. PCR was 
performed using a PCR Thermal Cycler Dice (Takara, 
Shuzu, Japan) and recombinant Taq DNA polymerase 
(Takara). The PCR conditions were as follows: 95  °C for 
5 min; 30 cycles of 30 s at 95 °C, 1 min at 61 °C, and 40 s 
at 72  °C; and 5  min at 72  °C. The amplified 16S rRNA 
gene products were purified with an AccuPrep PCR Puri-
fication Kit (BIONEER, Daejeon, Korea).

PCR product concentrations were measured on a Nan-
oDrop ND-1000 (NanoDrop Technologies Inc., Wilm-
ington, DE, USA) and mixed to a constant concentration 
such that the total concentration was 1  mg. The Ion 
Xpress Plus Fragment Library Kit (Thermo Scientific, 
Wilmington, DE, USA) was used to form the amplicon 
library according to the manufacturer’s instructions, 
and quantification of the amplicon library was per-
formed using a Bioanalyzer 2100 (Agilent Technologies, 
Inc., Santa Clara, CA, USA). The amplicon library was 
sequenced on an Ion Torrent PGM system (Thermo Sci-
entific, Wilmington, DE, USA).

Bioinformatic analysis
The quantitative insights into microbial ecology (QIIME) 
pipeline (Caporaso et  al. 2010) was used to analyze the 
sequences. After quality checking the FASTQ file, the 
barcode sequences of the amplicons were removed. 
Sequences of 300–440  bp size were filtered and dimers 
and chimeras were removed, based on Ribosomal Data-
base Project (RDB) database, using ultra-fast sequence 
analysis (USEARCH 8.1 to ensure high quality. Opera-
tional taxonomic units were analyzed based on the 
Greengenes 13_8 database (McDonald et al. 2012) iden-
tified with 97% similarity. Principal coordinates analy-
sis (PCoA; based on the Bray–Curtis distance) was 
performed using QIIME 1.9.1. The identification of 
microbial taxa that were significantly associated with the 
incubation time was conducted using multivariate asso-
ciation with a linear model (Morgan et  al. 2012). Asso-
ciations with a Benjamini–Hochberg false discovery 
rate-corrected p value (q value) of < 0.1 were considered 
significant. The raw data was uploaded to NCBI sequence 
read archive database (accession number: DRA006695).

SCFA concentration analysis
CMRP medium supernatants containing the fecal inocu-
lum of the three donors at each incubation time (0, 6, 12, 
18, 24, 36, and 48 h) were transferred to new tubes, and 
aliquots were frozen at − 20 °C for SCFA analysis. Before 
analysis, samples were filtered through membrane fil-
ters (pore size: 0.25  μm). SCFA analysis was performed 

by ion chromatography (IC) using a 940 Professional IC 
Vario (Methrohm, Herisau, Switzerland) composed of 
a two-channel peristaltic pump and a 945 Professional 
Detector Vario conductivity detector, with an 889 IC 
Sample Center (Methrohm). IC Net 3.1 software was 
used to record the data. Ion exclusion was performed on 
a Metrosep Organic Acid 250/7.8 column (Methrohm) 
and 0.1% sulfuric acid was used as the mobile phase, at a 
flow rate of 0.5 mL/min and pressure of 6.99 MPa. Sam-
ples (20  μL) were injected into columns maintained at 
30 °C. The peak height, peak area, and retention time of 
recorded samples and acetic acid, propionic acid, butyric 
acid, valeric acid, and isovaleric acid standards were used 
to measure concentrations.

Results
Pectin degradation by human feces according 
to incubation time
Three samples of feces were anaerobically cul-
tured with pectin, and the total carbohydrates in 
the medium were measured every 6  h after inocula-
tion (Fig.  1a). Almost all of the carbohydrates in the 
medium were consumed within 18  h in all experi-
mental groups. These results suggest that the carbo-
hydrate components in the medium were used by the 
gut microbiota present in the feces, and particularly, 
that the pectin was decomposed and used by the gut 
microbiota. There were differences in the efficiency of 
carbohydrate usage in each sample. The sample from 
donor 3 depleted the carbohydrates from the medium 
more rapidly than the other samples. The amount of 
reducing sugars was determined for each sample with 
increasing incubation time (Fig.  1b). The increase in 
reducing sugar was the highest in donor 3, consist-
ent with the carbohydrate utilization observations. 
The samples from donors 2 and 3 displayed increased 
reducing sugars for the first 9 h, followed by decreas-
ing levels thereafter, while the sample from donor 1 
showed decreased reducing sugars in the medium 
from 6  h onward. This suggests that after the pectin 
was decomposed by the gut microbiota, increasing 
the reducing sugar level, the pectin digestion products 
were consumed, subsequently decreasing the reduc-
ing sugar level. The results also suggest that the gut 
microbiota composition differed between the donors 
because the ratios of reducing sugar production and 
consumption varied. Donor 3 might harbor many 
microorganisms that degrade pectin well, while donor 
1 may harbor more microorganisms that utilize pectin 
degradation products. The carbohydrate contents of 
the sample media were determined by TLC (Fig.  1c). 
This confirmed that various fermentable sugars were 
present in the medium, but most were consumed at 
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early stages. Galacturonic acid, the final degrada-
tion product of pectin, was produced after 6–12  h in 
all samples and was completely consumed at later 
time points. In the donor 3 sample, the production 
of galacturonic acid was faster than in the other sam-
ples, which confirmed that more pectin degradation 
products were produced. These results are consistent 
with the total carbohydrate and reducing sugar analy-
ses described above, and indicates that the intestinal 
microbiota differed in each donor.

Fecal microbial composition of each donor at baseline
To investigate the in vitro fermentation of pectin by the 
human fecal microbiota, we anaerobically incubated 
the feces of the three donors with 1% pectin for 18  h. 
The compositions of the fecal microbiota samples were 
observed at baseline (in raw fecal samples which were 
not mixed with medium or pectin) and after every 6 h of 
incubation time using 16S rRNA gene sequencing.

We first examined the initial fecal microbiota compo-
sitions of each donor. At the phylum level, Firmicutes 

Fig. 1  Total carbohydrates (a), reducing sugars (b), and decomposed pectin products (c) in each donor at various incubation times were analyzed 
by TLC
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(57.39% of average relative abundance) and Bacteroi-
detes (42.11%) were dominant in all three donors, and 
Proteobacteria (0.26%) and Actinobacteria (0.02%) 
were also present in small proportions (Fig.  2a). The 
Firmicutes/Bacteroidetes ratios were higher in donor 1 
(2.21 ratio) and donor 3 (1.52 ratio) compared to donor 2 
(0.78 ratio). We next examined the top 20 most abundant 
genera in each baseline sample (Fig.  2b). Donors 1, 2, 
and 3 had 18, 12, and 11 genera comprising > 1% relative 
abundance, respectively. In all three donors, Bacteroides 
and Ruminococcaceae were the most abundant. The 
relative abundance of Bacteroides in donor 2 was much 
higher (46.34%) than that in donors 1 and 3 (19.20 and 
37.39%, respectively). In addition, each donor displayed 
differences in bacterial abundance. For example, donor 
3 harbored more Lachnospiraceae and Faecalibacterium 
than the others, while donor 1 and donor 2 harbored 
more Streptococcus, unclassified Rikenellaceae, Lactoba-
cillus, Lachnospiraceae, and Prevotella.

Changes in fecal microbial composition during pectin 
fermentation
To evaluate the influence of pectin fermentation on the 
overall structure of the fecal microbiota, we conducted 
PCoA based on Bray–Curtis distances. Samples from 
each donor clustered separately from those of the other 
donors, showing that the donor had the greatest effect 
on microbiome composition, even after incubation with 
pectin for 18  h (Fig.  3). However, among samples from 
each donor, the microbial composition changed with 
increased incubation time. For donor 3, for example, the 

baseline sample was most similar to the sample after 6 h 
pectin incubation, followed by those taken at 12 and 18 h.

To identify microbes whose abundances significantly 
changed with increased incubation time, we explored the 
associations between bacterial abundance and incubation 
time by linear regression analysis. The levels of several 
specific bacteria were associated with time. For exam-
ple, Lachnospira, Sutterella, Dorea, and Clostridium were 
significantly increased over time, while Bacteroides and 
Roseburia were significantly decreased (Fig. 4 and Addi-
tional file 1: Figure S1).

Fig. 2  Baseline fecal microbial compositions of each donor, including the relative abundance of phyla (a) and the 20 most abundant genera (b)

Fig. 3  PCoA based on Bray–Curtis distances of fecal samples 
incubated with pectin for various incubation times
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SCFA formation during pectin fermentation
When we analyzed the SCFA changes in each sample 
every 6  h, we observed rapid increases in acetate after 
6 h, which continuously increased up to 18 h, then rap-
idly decreased by 36 h. Propionate increased after 48 h, 
and while butyrate did not rapidly increase like acetate, it 
increased by approximately 28% by 48 h (Fig. 5).

Discussion
The contributions of the gut microbiome to health and 
nutrition depend on its composition, which is affected by 
different factors, including lifestyle and diet (Conlon and 
Bird 2014). Gut microbiota composition can be changed 
by including indigestible carbohydrates (prebiotics) in 
one’s diet (Flint et al. 2012). Pectin is a prebiotic dietary 
fiber that affects the gut microbiota (Woods and Gor-
bach 2001). In this study, we investigated the utilization 
of pectin by the gut microbiota and analyzed microbiota 
composition changes with in  vitro pectin fermentation 
through metagenomics analysis.

Pectin was mainly degraded between 0 and 18 h in all 
three donors, but the samples showed differences in their 
pectin degradation ability. These differences in substrate 
utility depend on the composition of the microbiome 
(Flint et  al. 2008). When pectin was digested, galactu-
ronic acid is produced (De Vries et  al. 1982). Monosac-
charide such as galacturonic acid is used as an energy 
source by bacteria and contributes to the development 
and maintenance of the gut microbiota (Zoetendal et al. 
2012). In this study, the microbiota of donor 3 showed 
relatively high pectin utilization, and as expected, this 
sample contained higher baseline Lachnospiraceae and 
Faecalibacterium levels than in the other samples. Lach-
nospiraceae has been demonstrated to express carbohy-
drate-active and pectin-degrading enzymes (Biddle et al. 
2013), and Faecalibacterium also has reported pectin 
degradation ability (Lopez-Siles et  al. 2012). In addi-
tion, the sample from donor 2 consumed more galactu-
ronic acid than the others once the reducing sugar level 
increased after 6 h. These results indicate that differences 
in the baseline levels of different microbiome compo-
nents result in differences in pectin degradation and utili-
zation in each donor.

We observed comprehensive overall gut microbiota 
changes after pectin fermentation in all three donors 
compared to their baseline compositions. We not only 
observed differences between each donor’s gut micro-
biota, but also changes with increased incubation time 
by PCoA. We assumed that specific gut microbiota 
were utilizing pectin as a substrate; for example, Prevo-
tella and Butyrivibrio spp., which express pectinolytic 
enzymes (Marounek and Dušková 1999). With increased 
incubation time with pectin, we observed increases in 
Lachnospira, Sutterella, Dorea, and Clostridium. The 

Fig. 4  Significantly changed taxa according to pectin incubation 
time (q value < 0.1)

Fig. 5  Average SCFA concentrations at various pectin incubation 
times
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Clostridium coccoides group (cluster XIVa) includes 
Lachnospira, Dorea, and Clostridium (Lopetuso et  al. 
2013). Lachnospira was the most increased and has been 
reported to use pectin as a substrate (Wojciechowicz 
et  al. 1980) and Lachnospira plays a role that produced 
SCFA (Duvallet et  al. 2017; Jones et  al. 2014). Pectin 
degradation by Lachnospira affects the growth of other 
bacteria, including other saccharolytic bacteria, via cross-
feeding (Salyers and Leedle 1983). Increases in Dorea and 
Clostridium may be due to Lachnospira cross-feeding. 
These results indicate that pectin promotes the presence 
of species in Clostridium cluster XIV, including Lach-
nospira, Dorea, and Clostridium. We also observed that 
some bacteria, including Bacteroides, which can utilize 
pectin (Gibson and Roberfroid 1995), decreased with 
increasing pectin incubation time, possibly due to envi-
ronmental nutritional limitations caused by selective cul-
ture with pectin and carbohydrate consumption.

The production of SCFAs, including acetate, propi-
onate, and butyrate, is affected by the composition of 
the gut microbiota, the utilization of carbohydrate sub-
strates, and the gut environment, including the pH and 
other nutritional factors (Cummings and Englyst 1987; 
Yuan et al. 2006). Walker et al. (2005) reported that the 
production acetate and propionate increased at pH 6.5. 
Lachnospira produces the most pectin lyase at pH 6.1–
6.3 (Silley 1986), and in pectin culture, mainly produces 
acetate and lactate (Dušková and Marounek 2001). The 
Clostridium genus is known to mainly produce butyrate 
(Rajilić-Stojanović and de Vos 2014). Based on this, we 
suggest that Lachnospira produced galacturonic acid 
through the digestion of pectin and acetate, and that this 
environment restrained the growth of Bacteroides by 
causing a mildly acidic pH. Produced galacturonic acid 
affected the composition of the gut microbiota, enhanc-
ing cluster XIVa species belonging to Dorea and Clostrid-
ium, which then produced butyrate (Duncan et al. 2007; 
Walker et al. 2005). We observed decreased acetate after 
18 h of pectin incubation, indicating that not only galac-
turonic acid but also acetate was utilized by bacteria like 
Faecalibacterium to produce butyrate (Duncan et  al. 
2004; Ramirez-Farias et al. 2008).

This result suggests that acetate-producing bacteria 
like Lachnospira and Faecalibacterium caused increased 
butyrate levels via butyrate synthesis using acetate as 
a substrate (Khan et  al. 2012; Rios-Covian et  al. 2015). 
Based on this, it appears that pectin degradation results 
in a gut microbiota growth environment associated with 
the development of acetate and butyrate.

In conclusion, we demonstrate that in Korean indi-
viduals, pectin can change the gut microbiota by meas-
uring total sugar levels and microbial composition 

over time. Pectin was completely degraded by the gut 
microbiota at 6, 12, and 18 h, and Lachnospira and Fae-
calibacterium, which can utilize pectin, were increased. 
Pectin-induced changes in the gut microbiota increased 
the formation of associated SCFAs from 6 h on, when 
pectin was decomposed. Therefore, we confirmed that 
pectin fermentation in gut microbiota samples from 
Korean individuals induced microbiota compositional 
changes. Increased pectin utilization and correspond-
ing changes to gut microbiome composition may be 
beneficial to human health. Further analysis of the gut 
microbiomes of larger numbers of donors, in addition 
to experiments regarding cross-feeding and in  vivo 
gut microbiota changes, would provide more accurate 
results.
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