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Abstract 

Clostridium acetobutylicum, a promising organism for biomass transformation, has the capacity to utilize a wide variety 
of carbon sources. During pre-treatments of (ligno) cellulose through thermic and/or enzymatic processes, com‑
plex mixtures of oligo saccharides with beta 1,4-glycosidic bonds can be produced. In this paper, the capability of C. 
acetobutylicum to ferment glucose and cellobiose, alone and in mixtures was studied. Kinetic studies indicated that 
a diauxic growth occurs when both glucose and cellobiose are present in the medium. In mixtures, d-glucose is the 
preferred substrate even if cells were pre grown with cellobiose as the substrate. After the complete consumption of 
glucose, the growth kinetics exhibits an adaptation time, of few hours, before to be able to use cellobiose. Because of 
this diauxic phenomenon, the nature of the carbon source deriving from a cellulose hydrolysis pre-treatment could 
strongly influence the kinetic performances of a fermentation process with C. acetobutylicum.
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Introduction
Lignocellulosic biomass represents an interesting alter-
native to fossil carbon resources (McKendry 2002; 
Mosier et al. 2005; Wyman et al. 2005; Briens et al. 2008; 
Wettstein et al. 2012; Nanda et al. 2014).

Indeed, lignocellulosic biomass can be transformed 
into energy and fuels through a variety of chemical, 
thermo-chemical and biological conversion processes. 
Among biological conversion processes, anaerobic diges-
tion and more specifically fermentation processes are the 
most implemented in industries (Lin and Tanaka 2005; 
Azman et al. 2015), because it offers the most important 
biological conversion ways to transform a wide variety of 
organic materials mainly coming from agroindustry such 
as by-products into fuels and chemical products with 
higher values (McKendry 2002; Briens et al. 2008, Turon 
et  al. 2016). However, fermentation processes need an 

efficient monitoring and control to ensure optimal con-
ditions for productions and yields (Lin and Tanaka 2005; 
Azman et al. 2015).

Bioethanol, one of the main fermentation products, 
is predominantly produced using yeast through the fer-
mentation of easily degradable carbohydrate substrates, 
such as corn starch and sugar cane (Henstra et al. 2007). 
Nonetheless, the utilization of these kinds of substrates 
to produce biofuels threatens food supplies and biodiver-
sity. For this reason, the production of new generation 
biofuels using bacteria may offer an interesting alterna-
tive to this problem (Ranjan and Moholkar 2012; Morone 
and Pandey 2014). As an alternative, some Clostridium 
species can produce acetone–butanol–ethanol (ABE) 
from renewable resources, such as biomass and deriva-
tives (Lee et al. 2008; Tracy et al. 2012; Jang et al. 2012; 
Gu et al. 2014). Butanol can be blended with gasoline or 
used directly as a fuel for transportation (Qureshi and 
Ezeji 2008; Pfromm et  al. 2010; Ranjan and Moholkar 
2012). For this purpose, a diversity of Clostridium strains 
coming from the butyric and butylic groups has been 
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studied (C. saccharoperbutylacetonicum, C. acetobutyli-
cum, C. beijerinckii, C. butyricum) (Lee et al. 2008; Jang 
et al. 2012; Gu et al. 2014).

C. acetobutylicum is one of the most studied species 
thanks to its capability of producing butanol and hydro-
gen by anaerobic fermentation in high yields, from a 
wide range of substrates (Qureshi and Ezeji 2008; Sur-
vase et al. 2011b; Napoli et al. 2011; Li et al. 2012; Jurgens 
et  al. 2012; Gao et  al. 2014; Aristilde et  al. 2015; Raga-
nati et al. 2015). This strain was largely used in the ABE 
fermentation process during the 1910s until the end of 
1950s, because the petrochemical industry development 
led to the decline of this fermentation as an industrial 
process (Jones and Woods 1986). An important feature 
of the ABE fermentation is its biphasic development 
leading to two distinct groups of metabolic products. 
The first phase is the acidogenesis, which is characteris-
tized by acids (mainly butyric, acetic and lactic acid) and 
hydrogen production. During acidogenesis, the cells will 
usually display an active growth including an exponen-
tial growth phase (Andersch et  al. 1983; Hartmanis and 
Gatenbeck 1984). The second phase is the solventogen-
esis, which is characteristized by organic acids re-assimi-
lation and solvent production, with butanol, acetone and 
ethanol as the major products (Monot et  al. 1984). The 
transition between the two phases is the result of strong 
gene expression changes (Grupe and Gottschalk 1992; 
Girbal et  al. 1995).Nowadays, with the depletion of oil, 
renewable processes to replace fossil carbon need to be 
developed. But, a major factor that determines the viabil-
ity of this process is the cost of feedstock. In this regard, 
lignocellulosic biomasses are considered as interesting 
feedstocks for fermentation (Ezeji et al. 2007; Jang et al. 
2012), Whereas its complex structure composed of cel-
lulose embedded in a complex hemicellulose and lignin 
matrix may hinder biological conversion due to a high 
resistance to most chemical and biological pretreat-
ments (Wyman et al. 2005; Kumar et al. 2009; Rinaldi and 
Schüth 2009; Hendriks and Zeeman 2009; Alvira et  al. 
2010; Jurgens et al. 2012).

To enhance the fermentability of cellulose a prelimi-
nary treatment is frequently used. Chemical, thermal 
and enzymatic pre-treatments allow to produce a mix-
ture of carbohydrates and other organic compounds that 
are soluble and accessible to bacteria (Kumar et al. 2009; 
Rinaldi and Schüth 2009; Alvira et al. 2010; Ibrahim et al. 
2015). The conversion of each one of these compounds 
into added-value products and building blocks is crucial 
to increase the efficiency of an integrated bio-refinery, 
and the understanding the metabolism of individual car-
bohydrates and mixtures is very important to lower the 
cost of fermentation process. This and the ability of sac-
charolytic clostridia to use a wide range of carbohydrates 

have prompted research dedicated to the production of 
a cheaper substrates (Jones and Woods 1986; Lee et  al. 
2008; Tracy et al. 2012; Gu et al. 2014).

In addition, the growth of C. acetobutylicum on a mix-
ture of substrates has been already studied using different 
combinations of carbon sources (glucose and xylose, glu-
cose and mannose, d-glucose and glycerol, …) and differ-
ent metabolic responses were obtained according to the 
nutritional environment (Mes-Hartree and Saddler 1982; 
Ounine et  al. 1985; Fond et  al. 1986; Vasconcelos et  al. 
1994; Mitchell et al. 1995; Survase et al. 2011a). Recently, 
the interest in C. acetobutylicum as un effective biofuel 
producer of butanol instead of ethanol from lignocellu-
lose derivated substrates (glucose, cellobiose and xylose) 
has increased, resulting in numerous studies privileg-
ing mainly butanol production from xylose alone or in 
mixture with glucose rather than with cellobiose (Pata-
kova et  al. 2013; Nogué and Karhumaa 2015; Raganati 
et al. 2015; Zhao et al. 2016) whereas this last substrate 
with glucose and other cello-oligosaccharides in mixture 
would be also expected to be major products of lignocel-
lulose degradation.

Indeed, despite a recent proteomic study describing the 
influence of lignin in the metabolic behavior of C. ace-
tobutylicum ATCC 824 with cellobiose as the substrate 
(Raut et al. 2016), the capability of Clostridium strains to 
ferment mixtures of cellobiose and glucose in synthetic 
medium is not well studied yet. Furthermore, bacteria 
have developed mechanisms that allow them to use selec-
tively mixtures of different carbon sources (Mitchell et al. 
1995).

In this study, kinetics of C. acetobutylicum cultivated 
with glucose and/or cellobiose, two substrate models 
representatives of cellulose hydrolysis products were 
compared. Only the acidogenic phase in which the active 
growth phase and substrate consumptions could be stud-
ied was considered. Transitions and re-assimilation of 
acids mechanisms were excluded from this work.

Materials and methods
Microorganism and media
Spores of Clostridium acetobutylicum ATCC 824 were 
maintained in Difco™ Reinforced Clostridial Medium 
(RCM) at ambient temperature. Whereas precultures 
were different for each culture experiment, they were 
prepared rigorously in a similar way. Each experiment 
was started with the spores of C. acetobutylicum. The 
spore culture was diluted to a concentration of 10% in 
10  mL of RCM fresh media (Hungate tubes) and then 
heat shocked at 80  °C for 20  min to induce germina-
tion. Reactivated cultures were incubated in fresh RCM 
medium at 37 °C for 12 h and then transferred into 30 mL 
(pre-culture tubes) of a synthetic medium. In fact, the 
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volume of preculture was prepared depending of the final 
volume of culture in order to get a ratio of 1/4. The syn-
thetic medium was composed of 20 g/L glucose, 0.5 g/L 
KH2PO4, 1.5 g/L (NH4)2SO4, 1 g/L MgCl2, 0.15 g/L CaCl2, 
1.5  g/L yeast extract, 0.01  g/L FeSO4.7H2O, 0.01  g/L 
MnSO4.H2O, 3  g/L CaCO3, 4 × 10−5  g/L biotin. All the 
Chemicals, yeast extract and biotin were provided by 
Sigma Aldrich.

Fermentation
Batch fermentations were carried out in a bioreac-
tor controlled by an Applikon ADI 1030 bio controller 
(Applikon Biotechnology). Throughout all fermentation 
experiments, temperature was maintained at 37  °C and 
pH at 5.5 by the automatic addition of 3 N NaOH, 1 N 
HCl using the biocontroler and a pH probe (Mettler 
Toledo). The bioreactor was initially purged with nitro-
gen to ensure an anaerobic atmosphere and then inocu-
lated with 6% (v/v) active growing pre-cultures into 1.5 L 
of synthetic media with the same composition of the pre-
culture media (without CaCO3 to prevent interference 
with DO measurements). The glucose concentrations for 
the fermentation studies were comprised between 25 and 
35 g/L (138–195 mM), unless otherwise indicated. Other 
experiments with cellobiose were carried out with the 
same glucose-equivalent mass concentration. However, 
controlling residual substrate from pre-culture was not 
possible. For this reason, the initial substrate concentra-
tion was not exactly the same. These variations did not 
alter the study case and the desired results. Each experi-
ence was carried out until complete substrate consump-
tion. All the experiments were performed at least in 
duplicate.

Analyses
Cell density was measured at 600 nm using a spectropho-
tometer (HITACHI U-2000). The relationship between 
the cell dry weight and the optical density was established 
thanks to a calibration made by triplicate using spectro-
photometer at 600 nm. The correlation factor found was 
0.346  g/L cell dry weight per unity of absorbance. This 
value was in agreement with others related in the litera-
ture (Kim et al. 1984).

Glucose, cellobiose, acetone, ethanol, butanol, acetic 
acid, lactic acid and butyric acid concentrations were 
measured by high-performance liquid chromatography 
equipped with a refractive index detector and an ultra-
violet–visible spectroscopy (HPLC-RID-UV) using a 
Aminex HPX 87  h column. The samples were filtered 
with a 0.2 µm filter and the injection volume was 10 µL. 
The oven kept the column at 45 C; the mobile phase was 
a 25  mM sulfuric acid (H2SO4) solution. The analysis 
time was 35 min in isocratic mode.

Calculations
The main products of glucose or cellobiose fermenta-
tion by C. cellulolyticum were acetate, Butyrate, etha-
nol, butanol, acetone, lactate, H2, and CO2, as previously 
described (Vasconcelos et  al. 1994) Carbon recoveries 
were calculated from the production of metabolites, and 
biomass, present in the supernatant. Biomass was taken 
into account on the basis of the cell dry weight and a 
mean biomass formula of C4H7O2N (Guedon et al. 1999). 
According to the metabolic scheme (Vasconcelos et  al. 
1994), the conversion of glucose to products can be writ-
ten as follows:

For example, from the last stoichiometric equation, each 
acetone molecule produced is associated to the forma-
tion of 3 CO2 molecules. Therefore, the CO2 production 
was calculated on the basis of product formation, as the 
sum of [acetate], 2*[butyrate], [ethanol], 2*[butanol], and 
3*[acetone] concentrations.

CO2 production was calculated as the sum of [acetate], 
2*[butyrate], [ethanol], 2*[butanol], and 3*[acetone] 
concentrations.

Results
General growth and metabolic features of Clostridium 
acetobutylicum ATCC 824 cultivated with glucose or 
cellobiose
Kinetics of growth and metabolism of C. acetobutyli-
cum with glucose or cellobiose as the carbon and energy 
source were performed with precultures carried out with 
either glucose or cellobiose (Fig. 1). Pre cultures and cul-
tures performed with the same carbon source were com-
pared with precultures and cultures performed with the 
switched substrates. The pH was set at 5.5 in order to 
favor acidogenesis, resulting In butyric, acetic and lactic 
acids, as the main products whatever the substrate used.

The carbon balances for these experiments were com-
prised between 90 and 98%, indicating that most of 
the carbon substrates and products have been taken 

glucose + 2ADP + 2NADH → 2 ethanol + 2ATP

+ 2NAD+
+ 2CO2 + 2H2

glucose + 4 ADP + 2NAD+
→ 2 acetate + 4 ATP

+ 2NADH + 2CO2 + 2H2

glucose + 3ADP → butyrate + 3ATP

+ 2NADH + 2CO2 + 2H2

glucose + 2ADP + 2NADH → butanol + 2ATP

+ 2 NAD+
+ 2CO2 + 2H2

glucose + 2ADP + 2NAD+
→ acetone + 3ATP

+ 2NADH + 3CO2 + 2H2
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Fig. 1  Kinetics of growth and metabolism of glucose or cellobiose as the substrate by C. acetobutylicum. a Glucose as the substrate (136 mM) 
and glucose-pregrown cells as the inoculum. b Cellobiose as the substrate (67 mM) and glucose-pregrown cells as the inoculum. The dashed line 
represents le beginning of the lag phase after glucose was exhausted. (c) Cellobiose as the substrate (67 mM) and cellobiose-pregrown cells as the 
inoculum. d–f are the respective product kinetics of (a–c). Each graph is representative of at least three independent experiments (n = 3)
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into account. Therefore, resulting kinetics can be fully 
interpreted.

Figure  1a shows the growth kinetic of C. acetobutyli-
cum on glucose inoculated with a preculture grown with 
the same substrate. Taking into account the residual sub-
strate coming from the preculture, the initial glucose 
concentration was 136 mM (25 g/L). After approximately 
13 h of culture, all the glucose was completely consumed 
and no lag phase was observed since the culture rapidly 
entered in exponential phase. In these experimental con-
ditions, a maximal specific growth rate (µmax) of 0.26 h−1 
was reached after 3 h of culture whereas a maximal cell 
concentration of 2.36 g/L (dry cell weight) was obtained 
when glucose was entirely depleted. Glucose fermenta-
tion by C. acetobutylicum was accompanied by the accu-
mulation of acidic products (Fig.  1d) such as butyric, 
acetic and lactic acid up to 74, 40 and 9 mM respectively, 
whereas butanol was a minor product with a production 
of only 8 mM.

Figure 1b and c report the growth kinetics of C. aceto-
butylicum with cellobiose (67 and 61 mM respectively) as 
the carbon and energy source, and with glucose or cello-
biose as the respective preculture substrates.

When inoculated with a preculture cultivated with 
glucose, an immediate and short growth phase occurred 
during the 3 first hours of culture (Fig. 1b). During this 
phase, no cellobiose was used, whereas glucose coming 
from preculture (7.2  mM) was completely exhausted. 
Then, the consumption of cellobiose by C. acetobutyli-
cum occurred until exhaustion and was associated with 
an active cell growth.

Interestingly, as indicated by the dashed line (Fig. 1b), 
the use of cellobiose was accompanied by a short lag 
phase during approximately 2  h after glucose exhaus-
tion. Then the growth of C. acetobutylicum started and 
reached a µmax of 0.21 h−1 and maximal biomass concen-
tration of 3.7 g/L after 12 h of culture.

As observed during fermentation kinetics performed 
with glucose in Fig.  1a, the product pattern obtained 
with cellobiose as the carbon source and with glucose as 
the preculture substrate (Fig. 1e) is similar since butyric 
(76 mM), acetic (35 mM) and lactic acids (5.5 mM) were 
the main products at the end of the culture whereas 
butanol accumulated at a low concentration.

Figure  1c displays the growth kinetic of C. acetobu-
tylicum with cellobiose as the substrate (61  mM) after 
an inoculation with a preculture grown with cellobiose. 
In less than 11  h, all the cellobiose was fully consumed 
by C. acetobutylicum, resulting in an active cell growth 
without apparent lag phase. In these conditions, a µmax 
of 0.23  h−1 and a maximal cell concentration of 3.4  g/L 
after 8 h of culture were observed. Similarly to the pre-
vious kinetics (Fig.  1a, b), the product pattern obtained 

with cellobiose as the carbon source in the fermentation 
broth and in precultures (Fig. 1f ) are similar (Fig. 1d, e), 
indicating that neither the carbon source in precultures, 
nor the carbon source in cultures have an influence on 
the carbon distribution during fermentation.

However, when pre-cultures were grown with glucose 
as the substrate (Fig. 1b), an adaptation stage of C. aceto-
butylicum seems to be important before to be able to use 
cellobiose as the main carbon and energy source.

Fermentation of glucose and cellobiose mixtures by C. 
acetobutylicum
In order to get a better understanding of the lag phase 
observed during the cellobiose culture inoculated with 
pre-cultures performed with glucose (Fig.  1b), experi-
ments using mixtures of glucose and cellobiose were per-
formed with either glucose and cellobiose pre-cultures 
as the inoculum. These experiments were carried out in 
similar conditions to the previous ones. Glucose and cel-
lobiose were entirely consumed and typical acidogenesis 
product profiles were observed in batch fermentations. 
In these experimental conditions, the carbon recoveries 
were a bit lower than previously and comprised between 
85 and 87%.

Figure  2a reports sequential consumption of glucose 
and cellobiose as well as growth kinetics observed when 
pre-cultures were performed with glucose. In this experi-
ment, the culture medium contained a glucose and cel-
lobiose mixture with respective initial concentrations of 
47 and 43.3 mM.

During this fermentation process, no lag phase was 
observed and glucose was the first substrate to be con-
sumed by cells. In these experimental conditions, a µmax 
of 0.28 h−1 was measured; resulting in a cell concentra-
tion of 2  g/L. Cellobiose began to be consumed by C. 
acetobutylicum in a second time and only when glucose 
was completely exhausted after 4.5  h of culture. During 
the first 2 h of cellobiose utilization, a temporary growth 
cessation was observed. Then, cellobiose was fully con-
sumed, in association with a second growth, resulting 
in a maximal cell concentration of 3.2 g/L, and a µmax of 
0.22 h−1. However and as initially observed in Fig. 1b, a 
lag phase was observed when glucose was exhausted sug-
gesting that an adaptation phase may be required before 
cellobiose utilization by C. acetobutylicum.

Figure  2b reports sequential consumption of glucose 
and cellobiose as well as growth kinetics observed when 
the fermentation process was inoculated with cellobiose 
pregrown cells. The respective initial concentrations of 
glucose and cellobiose in the bioreactor were 58.7 and 
38.8 mM. Interestingly, a lag phase of 4 h without any glu-
cose or cellobiose consumption was observed. Then cells 
started to use glucose until exhaustion. Then cellobiose 
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utilization started about 2  h after glucose was entirely 
depleted. However, the maximal growth rate was barely 
slower with cellobiose (µmax of 0.22  h−1), compared to 
glucose (0.27 h−1). Product patterns (Fig. 2c, d) obtained 
with mixtures of glucose and cellobiose were similar to 
those previously observed in Fig. 1e–g whatever the cul-
ture conditions.

In this study, results strongly suggest that glucose is 
definitely the preferred substrate, since it is always used 
in first place, even if pre-cultures were performed with 
cellobiose are exposed to a mixture of glucose and cel-
lobiose. However, glucose consumption does not start 
immediately a lag phase is always observed when carbon 
substrates in pre cultures and in cultures are different, 
suggesting that a physiological adaptation may occur, 
resulting in a growth cessation. In fact, glucose and 

cellobiose are able to influence the consumption of each 
other by C. acetobutylicum.

Discussion
In this study, fermentations of glucose and/or cellobiose 
by C. acetobutylicum were performed in batch mode. 
Mono-substrate cultures showed that C. acetobutyli-
cum is able to grow with cellobiose as efficiently as with 
glucose.

With glucose as the substrate, kinetics of growth, sub-
strate consumption and products formation were in good 
agreement with previous studies (Jones and Woods 1986; 
Girbal et al. 1995). Interestingly, no major difference was 
observed when cellobiose was the sole carbon substrate: 
specific growth rates measured with both substrate were 
almost similar, and no significant change in fermentation 
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patterns (acidogenic phase) was observed. In fact, little 
was known about the cellobiose metabolism by C. aceto-
butylicum and such a study was never deeply investigated 
so far. Indeed, only studies dedicated to enzymatic activi-
ties expressed by C. acetobutylicum during the fermenta-
tion of cellobiose were reported in the literature (Allcock 
and Woods 1981; Mes-Hartree and Saddler 1982; Lee 
et al. 1985; López-Contreras et al. 2000.

However, and contrary to C. thermocellum (Weimer 
and Zeikus 1977), cultures grown on glucose/cellobiose 
mixtures demonstrated that C. acetobutylicum was una-
ble to co-utilize both substrates at the same time and glu-
cose was consistently the preferred carbon source. In the 
present work, growth cessations were always observed 
after glucose exhaustion and before cellobiose utilization, 
resulting in a second growth phase.

This phenomenon was reported for the first time by 
(Monod 1942), and was called “diauxie”. It is nowadays 
better known under the generic term of catabolic repres-
sion since some substrates have the ability to repress the 
expression of genes encoding catabolic enzymes and/or 
protein transporters, as already described in bacterial 
species (Magasanik 1961; Brückner and Titgemeyer 2002; 
Deutscher et al. 2006; Deutscher 2008; Görke and Stülke 
2008) but these mechanisms are not the same for each 
strain and their complete characterization is still being 
studied.

Besides, the effect of carbon source on cell growth and 
fermentation products by C. acetobutylicum has been 
previously studied for different mixtures (Vasconcelos 
et  al. 1994). In continuous cultures, C. acetobutylicum 
grown with glucose at neutral pH, produced only acids. 
In the same conditions, but with substrate mixtures of 
glucose and glycerol, alcohols were produced in higher 
yields but no catabolic repression was observed with 
these carbon sources. However, the repression of lactose 
transport system by glucose (Yu et  al. 2007) as well as 
diauxic growths of C. acetobutylicum cultivated on mix-
tures of xylose and glucose (Jiang et al. 2014) have been 
reported, demonstrating that these mechanisms are of a 
great importance and participate to the control of carbon 
catabolic fluxes of cells depending on the nature of car-
bon sources.

In this study, similar mechanisms could be involved 
according to our results. Indeed, two putative PTSs 
(phosphotransferase systems) operon genes, strongly 
induced by cellobiose with functions connected to cel-
lobiose metabolism, were reported by Servinsky et  al. 
(2010), suggesting that C. acetobutylicum displays multi-
ple mechanisms to import, phosphorylate and hydrolyse 
B-glucosides for entry into glycolyse. Besides, the similar-
ity of the C. acetobutylicum PTS to PTSs found in other 
well characterized low GC gram positive bacteria, has led 

to the suggestion that they may also play a role in car-
bon catabolite repression (Behrens et al. 2001; Saier and 
Reizer 1992; Singh et al. 2008; Tangney et al. 2003).This 
hypothesis was reinforced by the fact that a recent pro-
teomic study revealed that such PTS operons, especially 
those involved in cellobiose uptake in C. acetobutylicum 
was shown to be down regulated in the presence of lignin 
residues, in mixture with cellobiose (Raut et al. 2016). In 
this study, our results suggests that an analogous phe-
nomenon may exist that was never reported for C. aceto-
butylicum when cultivated with mixtures of glucose and 
cellobiose, and therefore is an original contribution to the 
comprehension of carbohydrate metabolism by Clostrid-
ial sp.

Besides, diauxic growths observed during the kinetic 
studies may have a great importance for ABE fermenta-
tion processes of pretreated (ligno) cellulosic biomass. 
From a technological point of view, this observation may 
be of critical importance if industrial substrates mixes 
were to be used for hydrogen and/or other chemical 
precursor productions by C. acetobutylicum, since sub-
strate consumption discontinuities could occur and may 
affect production performances and productivities of 
processes.

More studies with other complex mixtures of cellulosic 
derivatives as well as with various operating conditions 
will help to understand how C. acetobutylicum can man-
age its carbohydrate metabolism in order to perform an 
efficient ABE production process.
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