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Effect of decanoic acid 
and 10‑hydroxydecanoic acid on the 
biotransformation of methyl decanoate 
to sebacic acid
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Abstract 

Biotransformation of fatty acid methyl esters to dicarboxylic acids has attracted much attention in recent years; 
however, reports of sebacic acid production using such biotransformation remain few. The toxicity of decanoic acid 
is the main challenge for this process. Decane induction has been reported to be essential to activate the enzymes 
involved in the α,ω-oxidation pathway before initiating the biotransformation of methyl decanoate to sebacic acid. 
However, we observed the accumulation of intermediates (decanoic acid and 10-hydroxydecanoic acid) during the 
induction period. In this study, we examined the effects of these intermediates on the biotransformation process. The 
presence of decanoic acid, even at a low concentration (0.2 g/L), inhibited the transformation of 10-hydroxydecanoic 
acid to sebacic acid. Moreover, about 24–32% reduction in the decanoic acid oxidation was observed in the presence 
of 0.5–1.5 g/L 10-hydroxydecanoic acid. To eliminate these inhibitory effects, we applied substrate-limiting conditions 
during the decane induction process, which eliminated the accumulation of decanoic acid. Although the productivity 
of sebacic acid (34.5 ± 1.10 g/L) was improved, by 28% over that achieved using the previously methods, after 54 h, 
the accumulation of 10-hydroxydecanoic acid was still detected. The accumulation of 10-hydroxydecanoic acid even 
under the decane limiting conditions could be an evidence that oxidation of 10-hydroxydecanoic acid could be the 
rate-limiting step in this process. The improvement of this reaction should be an important objective for further devel-
opment of the production of sebacic acid using biotransformation.
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Introduction
Sebacic acid, a 10 carbon containing dicarboxylic acid 
(DCA), is an important precursor in the production 
of nylon and polyamides (PAs), primarily PA-4,10 and 
PA-5,10 (Chung et  al. 2015). Like other medium-chain 
DCAs, the commercial process for the production of 
sebacic acid depends on chemical methods, principally 

involving alkaline oxidation of vegetable oils, such as 
castor oil, in which 2-octanol is generated as a byprod-
uct (Green et al. 2000; Azcan and Demirel 2008; Metzger 
2009). However, the production of medium-chain DCAs 
through chemical routes has several problems, particu-
larly the use of harsh production conditions and gen-
eration of by-products. Biological processes for the 
production of DCAs can overcome these limitations 
because they require milder conditions (Huf et al. 2011; 
Song et al. 2013).

Recently, the biological production of DCAs, espe-
cially via diterminal oxidation by hydrocarbon-degrad-
ing microorganisms or metabolic engineering of other 
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microorganisms, such as E. coli, has been a focus of sev-
eral studies (Yi and Rehm 1982; Picataggio et al. 1992; Liu 
et al. 2004; Sathesh-Prabu and Lee 2015; Cao et al. 2017; 
Lee et  al. 2017; Yu et  al. 2017). One of the commonly 
reported pathways for the production of DCAs involves 
diterminal oxidation of alkanes, resulting in the conver-
sion of both the terminal methyl groups into carboxyl 
groups. The entire conversion process is referred to as the 
α,ω-oxidation pathway (Kester and Foster 1963; Ratledge 
1984). The mechanisms of oxidation in this pathway have 
been extensively studied (Eschenfeldt et al. 2003; Cheng 
et  al. 2005; Huf et  al. 2011; Werner and Zibek 2017). 
Remarkably, this biotransformation process appears to be 
more feasible today for producing DCAs, and metabolic 
engineering of E. coli could be a breakthrough technol-
ogy for production of these compounds either from glu-
cose or fatty acids in the future.

Despite the popularity of alkanes as the main substrates 
for biotransformation processes, fatty acids and fatty 
acid methyl esters (FAMEs) have received more atten-
tion recently because they are considered as renewable 
resources. Fatty acids are naturally produced by plants 
whereas FAMEs are produced from transesterification of 
vegetable oils (Fukuda et al. 2001; Berchmans and Hirata 
2008). Therefore, their use as the main raw material for 
DCA production can reduce the consumption of fos-
sil fuels and would, thereby, prevent the aggravation of 
global warming. Recently, some researchers have eluci-
dated the process of biotransformation of methyl laurate 
to dodecanedioic acid (Funk et al. 2017; Lee et al. 2017). 
These findings showed that Candida tropicalis could 
secrete several kinds of lipases and esterases for hydro-
lyzing FAMEs to fatty acids before converting them to 
DCAs (Galán-Ladero et  al. 2010). Accordingly, FAMEs 
could be used as chief substrates for large-scale produc-
tion of DCAs.

The biotransformation of FAMEs has been widely 
used for the production of dodecanedioic acid (12 car-
bon chain of DCAs) from dodecane (Yi and Rehm 1982; 
Picataggio et  al. 1992), methyl dodecanoate (Funk et  al. 
2017), or a combination of the two (Lee et al. 2017). How-
ever, the use of this strategy for the production of sebacic 
acid has not been much reported (Shiio and Uchio 1971; 
Beardslee et  al. 2014; Chung et  al. 2015). Researchers 
have used decane induction for biotransformation of 
methyl decanoate to sebacic acid (Beardslee et al. 2014). 
Particularly, decane induction was performed using 
10  g/L decane for 6  h before methyl decanoate was fed 
into the fermenter for biotransformation. However, while 
examining this method, we found the accumulation of 

decanoic acid and 10-hydroxydecanoic acid during the 
decane induction period even at lower concentrations of 
decane, which possibly could decrease the productivity of 
sebacic acid.

The toxicity of decanoic acid is considered to be a 
major limitation in the biological production of sebacic 
acid. Notably, medium-chain fatty acids, including deca-
noic acid, were reported to be cytotoxic (Viegas et  al. 
1989; Stevens and Hofmeyr 1993; Green et al. 2000; Liu 
et al. 2013); these compounds can either kill microorgan-
isms or inhibit their growth (Desbois and Smith 2010). 
Moreover, the minimum inhibitory concentration of 
decanoic acid is very low. For instance, the growth of Sac-
charomyces cerevisiae was inhibited by 0.25  mM deca-
noic acid (Stratford and Anslow 1996) and even 12  μM 
decanoic acid exhibited 17% inhibition of growth in S. 
cerevisiae (Alexandre et  al. 1996). Thus, the accumula-
tion of decanoic acid inactivates the cells and ceases the 
production of sebacic acid. Furthermore, decanoic acid 
remaining in the fermenter broth could cause foaming. 
Similar to the production of DCAs, the presence of deca-
noic acid in the fermenter can decrease the pH, and alka-
line solution added to restore the pH in the fermenter 
(Hill et al. 1986) can react with the remaining fatty acid 
compounds to produce soap. This phenomenon is unde-
sirable because it drastically increases the level of broth, 
even to the point of overflowing from the fermenter. It is, 
therefore, critical to maintain decanoic acid-free condi-
tions during the biological production of sebacic acid.

In this study, we investigated the effect of decanoic 
acid and 10-hydroxydecanoic acid on the α,ω-oxidation 
pathway. To enhance the biological production of sebacic 
acid, we attempted to remove their accumulation by per-
forming decane induction using the continuous feeding 
method. In this process, the feeding rate of decane was 
regulated such that no decane remained in the fermenter 
broth. Thus, we used a substrate limiting condition dur-
ing the induction period for sebacic acid production.

Materials and methods
Microorganism
A mutant of C. tropicalis American Type Culture Collec-
tion (ATCC) 20962 that was isolated via direct evolution 
using a continuous culture was used in this study. This 
strain has higher tolerance to decanoic acid than C. tropi-
calis ATCC 20962.

Flask experiments
Several colonies from agar plates were transferred to 
20  mL yeast mold (YM) containing 3  g/L yeast extract, 
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3  g/L malt extract, 5  g/L peptone, and 10  g/L dextrose 
in a 250-mL baffled flask and cultivated overnight. Two 
milliliters of the cultivated broth was transferred to the 
growth medium containing 75 g/L glycerol, 6.7 g/L yeast 
nitro base without amino acids, 10  g/L yeast extract, 
3 g/L ammonium sulfate, 5.9 g/L potassium dihydrogen 
phosphate, and 1.15  g/L dipotassium hydrogen phos-
phate. In the flask experiments, glycerol was selected as 
the carbon source instead of glucose. The use of glucose 
produces many organic acids, which are unfavorable for 
this process. After 24 h of growth, the entire broth from 
the growth flask was transferred to a conversion flask. 
After transferring the broth, the composition of com-
ponents in the conversion flask was as follows: 50  g/L 
glycerol, 6.5  g/L yeast nitro base without amino acids, 
3 g/L yeast extract, 1.82 g/L potassium dihydrogen phos-
phate, and 15 g/L dipotassium hydrogen phosphate, with 
additional substrates (decane, decanoic acid, methyl 
decanoate, 10-hydroxydecanoic acid, or a mixture of 
these substrates). Decanoic acid was stocked as potas-
sium decanoate, which was produced by mixing potas-
sium hydroxide and decanoic acid in demineralized 
water. The flask experiments were conducted in duplicate 
to ensure the credibility of results.

Fermentation experiments
Several colonies from agar plates were transferred to 
20 mL YM solution and cultivated overnight. The culture 
was then transferred to 180 mL seed culture medium in 
a 2-L baffled flask and inoculated overnight. The compo-
sition of the seed culture medium was as follows: 20 g/L 
glucose, 5  g/L yeast extract, 0.5  g/L sodium chloride, 
3.5 g/L potassium nitrate, and 5 g/L potassium dihydro-
gen phosphate. This culture was used as the seed for the 
main fermenter. The composition of the main fermenter 
broth was as follows: 50 g/L glucose, 15 g/L yeast extract, 
0.5 g/L sodium chloride, 3.5 g/L potassium nitrate, 5 g/L 
potassium dihydrogen phosphate, and 0.5  g/L antifoam. 
The fermenter (CNS, Daejeon, South Korea) was oper-
ated at 30  °C and 1  vvm of aeration. The agitation was 
in the range of 600–1000 rpm. The pH of the broth was 
maintained at 5.5 by adding 6.5  N sodium hydroxide. 
After glucose depletion, glucose solution (mixture of 
800 g/L glucose and 40 g/L yeast extract) was fed to the 
fermenter until the cell concentration reached an opti-
cal density of 80. The glucose feeding speed was between 
7.5 and 12.5 g/L/h. After the desired optical density was 
reached, the glucose feeding rate and pH were adjusted 
to 2–2.5  g/L/h and 7.5, respectively. Thereafter, decane 
induction was conducted with either a single bolus 

addition/pouring (Beardslee et al. 2014), which is called 
the previous induction method, or the continuous feed-
ing method. In the previous induction method, 10% v/v 
decane was poured into the fermenter after the growth 
phase was over, whereas 0.65  g/L/h decane was fed in 
the continuous feeding method. After completion of the 
induction, methyl decanoate was fed into the fermenter 
at a feeding rate between 0.6 and 0.7 g/L/h. When decane 
induction was performed by the pouring method, the 
methyl decanoate feeding rate was adjusted to prevent 
the sudden accumulation of fatty acid. The fermenta-
tion experiments were conducted in duplicate with at 
least three data measurements to ensure the credibility of 
results.

Analytical method
The biomass concentration was analyzed by measuring 
the absorbance at 600 nm using a UV spectrophotometer 
(Uvikon XL, Secomam, France). The glucose concentra-
tion was analyzed with a glucose analyzer (YSI 2700 Bio-
chemistry Analyzer; Yellow Springs Instrument, USA).

The concentrations of sebacic acid, decane, decanoic 
acid, and 10-hydroxydecanoic acid were determined 
using gas chromatography as explained previously 
(Mishra et  al. 2016). Gas chromatography (DANI Mas-
ter GC; DANI Instruments SpA, Italy) was performed 
using an Rtx-5 column (Restek Corporation, USA). The 
oven temperature ranged from 70 to 237  °C, and the 
injector and detector temperatures were 280 and 300 °C, 
respectively. Prior to the analysis, 100  μL culture broth 
was mixed with 100 μL internal standard and was acidi-
fied with 100  μL of 5  N H2SO4. Tetradecanedioic acid 
(10  g/L) was used as the internal standard. The acidi-
fied samples were extracted with 300–500  μL diethyl 
ether. The solvent phase was then separated and mixed 
with N,O-bis(trimethylsilyl) trifluoroacetamide/BSTFA 
at 2:1 (v/v). The final solution was then analyzed by gas 
chromatography.

Results
Biotransformation of methyl decanoate to sebacic acid 
using decane induction: current limitations
The biotransformation of methyl decanoate to sebacic 
acid was conducted in a 5-L fermenter (Fig.  1). After 
decane induction, methyl decanoate was fed into the 
fermenter, initially at a slow feeding rate (0.35  g/L/h) 
that was increased step-wise until it reached the desired 
value. The purpose of slower substrate feeding rate was 
to allow the cells to adapt to the toxicity of decanoic acid, 
which was produced from methyl decanoate. After 54 h, 
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27.0 ± 2.14 g/L sebacic acid (0.50 ± 0.04 g/L/h) was pro-
duced using this method.

The intermediates of the α,ω-oxidation pathway, pri-
marily decanoic acid and 10-hydroxydecanoic acid, were 
observed to accumulate during the decane induction 
period to specific concentrations. The accumulation of 
decanoic acid occurred in a shorter time compared to 
that required for the accumulation of 10-hydroxydeca-
noic acid. Moreover, the concentration of 10-hydroxyde-
canoic acid during the accumulation period was higher 
than that of decanoic acid.

Effect of decanoic acid and 10‑hydroxydecanoic on the 
α,ω‑oxidation pathway
We determined the effect of decanoic acid and 
10-hydroxydecanoic acid, especially of the latter com-
pound, accumulated during the induction period, on the 
α,ω-oxidation pathway because very little information is 
available in this regard, as of date. Firstly, the toxicity of 
decanoic acid was tested in the flask culture during the 
production of sebacic acid from 10-hydroxydecanoic 
acid (Fig. 2). In the absence of decanoic acid, C. tropicalis 
completely converted 1  g/L of 10-hydroxydecanoic acid 
to sebacic acid after 5  h in the flask culture. However, 
decanoic acid, even at 0.2  g/L, inhibited the conversion 
of 10-hydroxydecanoic acid to sebacic acid. Furthermore, 
there was almost no 10-hydroxydecanoic acid conver-
sion when the decanoic acid concentration was higher 
than 0.4  g/L. These results indicated that decanoic acid 
inactivated the cells when its concentration exceeded the 
inhibitory concentration for this strain (0.4 g/L).

Next, the effects of 10-hydroxydecanoic acid on the 
rate of decanoic acid oxidation were examined in the 
flask culture (Fig.  3). The consumption rate of deca-
noic acid in the presence of 10-hydroxydecanoic acid 
(between 0.5 and 1.5 g/L) was 24–32% lower than in the 
absence of 10-hydroxydecanoic acid, showing the inhibi-
tion of the decanoic acid oxidation reaction. Additionally, 
the amount of sebacic acid produced was proportional 
to the initial concentration of 10-hydroxydecanoic acid; 
sebacic acid was mainly produced from 10-hydroxydeca-
noic acid in this experiment.

Subsequently, the effect of 10-hydroxydecanoic acid on 
the oxidation of decane was examined in a flask culture 
(Fig.  4a). The presence of 10-hydroxydecanedioic acid 
triggered the accumulation of decanoic acid (from the 
oxidation of decane) and cell deactivation after 12  h of 
induction (36 h of cultivation). This phenomenon did not 
occur when there was no 10-hydroxydecanoic acid in the 
broth (Fig. 4b). In addition, the decane consumption rate 
was decreased when 10-hydroxydecanoic acid was pre-
sent in the broth.

Based on these data, we concluded that both the inter-
mediates negatively affect the biological production of 
sebacic acid. Therefore, their elimination is important for 
the robustness of the process.

Decane induction by continuous feeding method
To prevent the accumulation of decanoic acid and 
10-hydroxydecanoic acid, a modification of decane 
induction method, by continuous feeding instead of 
pulse pouring, was performed in a 5-L fermenter. 
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Fig. 1  Biotransformation of methyl decanoate to sebacic acid using 
an evolved Candida tropicalis strain with decane induction method. 
This experiment was adapted from that described in a previous 
report after several modifications (Beardslee et al. 2014). After the 
completion of the growth phase, decane induction was conducted 
for 10 h using 10% v/v decane. Thereafter, methyl decanoate was 
fed slowly (and subsequently increased in a sequential manner) after 
decane induction to avoid the accumulation of decanoic acid. Error 
bars represent standard deviation of three measurements from two 
independent runs. OD optical density, SA sebacic acid, DA decanoic 
acid, 10-HDA 10-hydroxydecanoic acid, MD methyl decanoate. 
Symbols: : optical density; : sebacic acid concentration; 

: 10-hydroxydecanoic acid concentration; : decanoic acid 
concentration; : decane concentration; : methyl decanoate 
feeding rate; *methyl decanoate feeding rate was counted on the 
initial volume basis
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After completion of the growth phase, approximately 
0.65 g/L/h decane was fed into the fermenter for induc-
tion (Fig.  5). Importantly, decane feeding rate was 
adjusted such that there was no decane remaining 
in the fermenter broth. After approximately 10  h of 
induction, methyl decanoate was fed at a similar feed-
ing rate. Approximately 34.5 ± 1.10  g/L sebacic acid 
(0.64 ± 0.02  g/L/h) was produced after 54  h of fermen-
tation using this method. In this method, the fermenter 
broth contained almost no decanoic acid. However, the 
accumulation of 10-hydroxydecanoic acid in the fer-
menter broth was still observed.

Discussion
As observed in previous studies, decane induction was 
necessary for the activation of enzymes involved in the 
α,ω-oxidation pathway prior to the biotransformation of 
methyl decanoate to sebacic acid (Beardslee et al. 2014). 
In a preliminary test (Additional file  1: Figure S1), the 

possibility of using potassium decanoate (represented as 
decanoic acid) or methyl decanoate as inducers for these 
enzymes was examined in flask cultures. The results 
of this experiment confirmed that the toxicity of deca-
noic acid interferes with the activation and even inac-
tivates the cells (when potassium decanoate or methyl 
decanoate were used as inducers at concentrations as 
low as 0.4 g/L). In contrast, this negative trend was not 
observed when decane was used for induction. Therefore, 
decane induction was inevitable for the biotransforma-
tion of methyl decanoate to sebacic acid.

There were two main limitations in the previous decane 
induction process (by pouring/single bolus addition 
method) for achieving higher sebacic acid productivity 
(Fig. 1). First, an adjustment of the feeding rate of methyl 
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decanoate (for decanoic acid adaptation) was required at 
an early period of methyl decanoate transformation. If 
this method was not followed, the fermentation would 
fail because of marked accumulation of decanoic acid 
and loss of the cell viability (Additional file 1: Figure S2). 
However, this solution was undesirable since it could 
decrease the sebacic acid productivity. Consecutively, 
higher feeding rate of methyl decanoate was an interest-
ing proposition for enhancing the production of sebacic 
acid. Second, the accumulation of intermediates, espe-
cially decanoic acid, would pose extra risk for the stable 
production process because of its toxicity (Fig.  2). As 
reported earlier, decanoic acid was found to be cytotoxic 
for cells. Therefore, elimination of this compound during 
fermentation was a major objective in the biological pro-
duction of sebacic acid.

Remarkably, substrate-limiting conditions during the 
decane induction period were effective enough for over-
coming these limitations; it could especially eliminate the 
accumulation of decanoic acid as well and could remove 
the decanoic acid adaptation period in the early stage of 
methyl decanoate transformation (Fig.  5). Notably, this 
decane induction method provided a huge improvement 
in the biotransformation of methyl decanoate to sebacic 
acid (Table  1). Besides strain improvement, appropri-
ate decane induction strategy was important to achieve 
a higher production of sebacic acid (Beardslee et  al. 
2014). Thus, the application of this method would have a 

significant effect in the large-scale production of sebacic 
acid.

In addition, low solubility of decanoic acid in water 
could become a critical issue during this biotransfor-
mation process. In fermenter broth, methyl decanoate 
can be hydrolyzed to decanoic acid and methanol using 
lipases and esterase of C. tropicalis (Galán-Ladero et al. 
2010). Practically, maintaining pH of 7.5 could ensure 
the solubility of decanoic acid. Because the pKa value 
of decanoic acid was lower than 7.5, it existed in a dis-
sociated form in the fermenter broth and reacted with 
NaOH. The product of this reaction, sodium decanoate, 
was easily soluble in water. Notably, the main purpose 
of this pH control was for the solubility of sebacic acid 
instead of decanoic acid (Liu et al. 2004).

Additionally, the detail transport mechanism of 10-car-
bon chain of fatty acids was still debatable. Shorter car-
bon chains of fatty acids are transported by diffusion; 
however, longer carbon chains could be transported by 
either freely or by mediation of some protein (Hettema 
and Tabak 2000). Detailed study about these phenomena 
could be an interesting topic for further researches.

In the method described in the present study, the accu-
mulation of 10-hydroxydecanoic acid was still detected 
in the fermenter broth even under decane limiting con-
dition. Interestingly, this finding might be a proof that 
oxidation of 10-hydroxydecanoic acid is a bottleneck (the 
rate-limiting step) in the biological production of sebacic 
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acid using C. tropicalis. Additionally, the accumulation 
of 10-hydroxydecanoic acid was always observed after a 
long time in biotransformation, usually after more than 
60 h of the cultivation time (more than 40 h of biotrans-
formation) even without increasing the methyl decanoate 

feeding rate (data not shown). Previously, evidence for 
a similar bottleneck in the production of dodecanedioic 
acid by Yarrowia lipolytica has been provided (Gatter 
et  al. 2014; Werner and Zibek 2017). Further investiga-
tions are necessary to confirm these phenomena.

Because of the inhibition caused by decanoic acid 
(Figs.  3 and 4), elimination of this compound from the 
fermenter broth is essential for stabilizing the biotrans-
formation process. Besides improving the oxidation 
of alkanes or fatty acids (Eschenfeldt et  al. 2003; Funk 
et  al. 2017), increasing the oxidation reaction rate of 
10-hydroxydecanoic acid could be another important 
aim to further improve this biotransformation process. 
Various prospective solutions for increasing the specific 
activity of the enzymes involved in this reaction, such 
as overexpression of the relevant enzymes in C. tropica-
lis, cloning of alternative enzymes from other microor-
ganisms, or protein engineering, would be required for 
overcoming this limitation. The enzymes of C. tropica-
lis involved in this reaction, especially fatty alcohol oxi-
dase and fatty alcohol dehydrogenase, have been studied 
extensively (Kemp et al. 1988; Eirich et al. 2004; Lu et al. 
2010). In this context, the overexpression of FAO1 gene 
of Y. lipolytica was reported to increase the productivity 
of dodecanedioic acid (Gatter et al. 2014).

As the conclusion, decane induction by continuous 
feeding would be essential for large scale biotransfor-
mation of methyl decanoate to sebacic acid. However, 
accumulation trend of 10-hydroxydecanoic acid was 
still observed even under decane limiting condition; 
this finding might be an early evidence that oxidation 
of 10-hydroxydecanoic acid is a bottleneck in the pro-
cess when using C. tropicalis. To increase productivity 
of sebacic acid, study about these phenomena could be 
an important research area. Besides that, further inves-
tigation about transport phenomena of decanoic acid in 
the cell membrane also would be an interesting research 
topic in the future.
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Fig. 5  Biotransformation of decane and methyl decanoate to sebacic 
acid using an evolved Candida tropicalis strain. In this experiment, 
decane was fed continuously during the induction period before the 
transformation of methyl decanoate. Error bars represent standard 
deviation of four measurements from two independent runs. Sym-
bols: : optical density; : sebacic acid concentration; : 
10-hydroxydecanoic acid concentration; : decanoic acid concen-
tration; : decane concentration; : methyl decanoate feed-
ing rate; : decane feeding rate; *decane and methyl decanoate 
feeding rates were counted based on the initial volume basis

Table 1  Research progress on the biotransformation of decane and methyl decanoate to sebacic acid

a   Not enough information
b   Decane induction by single bolus addition of 10 g/L decane (induction time: 6 h)
c   Decane induction by single bolus addition of 1% v/v decane (induction time: 10 h)
d   Decane induction by substrate limitation condition/continuous feeding (0.65 g/L/h decane for 10 h)

Microorganisms Substrates Titer (g/L) Productivity (g/L · h) References

C. cloacae 310 Decane 0.427 –a Shiio and Uchio (1971)

Engineered C. tropicalis Decane 0.94 –a Chung et al. (2015), Beardslee et al. (2014)

Engineered C. tropicalis Decane + methyl decanoate ± 13b –a Beardslee et al. (2014)

C. tropicalis mutant Decane + methyl decanoate 27.0 ± 2.14c 0.50 ± 0.04 This study

C. tropicalis mutant Decane + methyl decanoate 34.5 ± 1.10d 0.64 ± 0.02 This study
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