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De novo transcriptome assembly: 
a new laccase multigene family from the 
marine-derived basidiomycete Peniophora sp. 
CBMAI 1063
Igor Vinicius Ramos Otero1 , Milene Ferro2, Maurício Bacci Jr.1,2, Henrique Ferreira1 and Lara Durães Sette1* 

Abstract 

Laccases are multicopper oxidases that are able to catalyze reactions involving a range of substrates, including 
phenols and amines, and this ability is related to the existence of different laccases. Basidiomycetes usually have 
more than one gene for laccase, but until now, this feature has not been demonstrated in a marine-derived fungus. 
Peniophora sp. CBMAI 1063 is a basidiomycete fungus isolated from a marine sponge that exhibits the ability to 
secrete significant amounts of laccase in saline conditions. In the present study, we identified laccase sequences from 
the transcriptome of Peniophora sp. CBMAI 1063 and used them to perform different molecular in silico analyses. The 
results revealed the presence of at least eight putative genes, which may encode ten different laccases with peptide 
lengths ranging from 482 to 588 aa and molecular weights ranging from 53.5 to 64.4 kDa. These laccases seem to 
perform extracellular activities, with the exception of one that may represent an intracellular laccase. The 10 predicted 
laccases expressed by Peniophora sp. CBMAI 1063 in laccase-induced media showed different patterns of N-glyco-
sylation and isoelectric points and are divided into two classes based on the residue associated with the regulation of 
the redox potential of the enzyme. None of the predicted laccases showed more than 61% similarity to other fungal 
laccases. Based on the differences among the laccases expressed by Peniophora sp. CBMAI 1063, this marine-derived 
basidiomycete represents a valuable resource with strong potential for biotechnological exploitation.

Keywords: Marine-derived fungi, Multicopper oxidase, Laccase, Transcriptome

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
Laccases (EC 1.10.3.2) are oxidoreductases that are wide-
spread in nature and present in plants, insects, bacteria 
and fungi, though more expressly in the white rot fungal 
group (Giardina et  al. 2010; Rivera-Hoyos et  al. 2013). 
These enzymes seem to perform different physiological 
functions, such as lignin synthesis and degradation, spore 
pigmentation, cell wall elongation and stress defenses 
(Riva 2006; Giardina et al. 2010).

As a multicopper oxidase, the laccase has an active site 
with four copper ions. The copper ions are classified per 
Electron Paramagnetic Resonance (EPR) into three types: 
type 1—paramagnetic, “blue” ion; type 2—paramagnetic 
“non-blue” ion, and type 3—diamagnetic pair ion. In 
general, the type 1 copper ion are linked to two histidine 
residues, one cysteine residue, and one leucine or pheny-
lalanine residue, while one type 2 and a pair of type 3 ions 
form a trinuclear cluster linked to eight histidine residues 
(Claus 2004; Giardina et al. 2010).

Sequence analyses have demonstrated that fungal 
laccases differ from other multicopper oxidases by a 
sequence signature corresponding to four conserved 
regions, namely, L1, L2, L3, and L4. These regions display 
not only the 12 residues that bind the copper ions but 
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also non-ligand residues, which are involved in the three-
dimensional structure of the active site (Kumar et  al. 
2003; Giardina et al. 2010).

Laccases are known to be capable of accepting a range 
of substrates such as phenols, amines, and diols, pro-
moting the oxidation of these substrates while reducing 
molecular oxygen to water (Claus 2004; Riva 2006). Due 
to these features, laccases have been exploited for bio-
technological applications, mainly in the pulp, paper and 
textile industries and biodegradation of a variety of xeno-
biotic compounds (Pezzella et  al. 2015; Viswanath et  al. 
2014).

According to Bonugli-Santos et  al. (2015), enzymes 
from marine-derived fungi may have different proper-
ties in comparison with that those produced by terrestrial 
relatives, due to different environmental conditions, such 
as salinity, temperature, and pressure. Considering the 
tolerance to saline conditions, these microorganisms are 
important microbial resources for biotechnological appli-
cation in bioremediation, including degradation of poly-
cyclic aromatic hydrocarbons (PAH) in ocean and marine 
sediments (Raghukumar et al. 2006; Passarini et al. 2011). 
Additionally, a large number of textile processes can gen-
erate effluents in saline and alkaline conditions, which 
can be efficiently decolorized/degraded by fungi from 
marine environments (Raghukumar et  al. 2008; Verma 
et al. 2010; Chen et al. 2014).

Peniophora sp. CBMAI 1063 is a marine-derived 
basidiomycete that has the ability to express many lac-
cases under saline and non-saline conditions (Bonugli-
santos et al. 2010) and biodegrade 94% of the textile dye 
Reactive Black 5 (RB5) under saline conditions without 
the production of mutagenic products during the pro-
cess (Bonugli-Santos et al. 2016). The culture conditions 
for laccase production by Peniophora sp. CBMAI 1063 
have been optimized, and a patent have been requested 
(Bonugli-Santos et al. 2016).

In a previous study, two putative laccase genes from 
Peniophora sp. CBMAI 1063 were suggested based on 
fragments of approximately 150 bp (Bonugli-santos et al. 
2010). However, complete laccase sequences were not 
available for this fungus. Therefore, the aims of the pre-
sent study were to obtain the complete laccase sequences 
of the marine-derived fungus Peniophora sp. CBMAI 
1063 (after being cultured under optimized conditions 
for laccase production) and to perform in silico analysis 
of all sequences in order to compare them with sequences 
from other basidiomycete fungi.

Materials and methods
Microorganism and culture conditions
Peniophora sp. CBMAI 1063 was isolated from the Bra-
zilian sponge Amphimedon viridis collected in the town 

of São Sebastião, São Paulo, Brazil (Menezes et al. 2010) 
and taxonomically identified as reported by Bonugli-San-
tos et al. (2010). The strain is being maintained using dif-
ferent preservation methods at the Brazilian Collection of 
Environmental and Industrial Microorganisms—CBMAI 
(UNICAMP, SP, Brazil) and at the UNESP Central of 
Microbial Resources—CRM-UNESP (UNESP, SP, Brazil).

The fungus was cultivated for 7 days at 28 °C in a lac-
case expression-optimized medium (patent request 
deposited at Instituto Nacional de Propriedade Indus-
trial—INPI under the number BR102014008502) com-
posed of yeast extract (0.2%), bacteriological peptone 
(0.27%), malt extract (0.14%), d-glucose (0.27%), and arti-
ficial sea water adapted from Kester et al. (1967), ASW: 
0.704%  MgCl2, 0.098%  CaCl2, 0.001%  SrCl2, 1.555% NaCl, 
0.261%  Na2SO4, 0.044% KCL, 0.013%  NaHCO3, 0.006% 
KBr and 0.002%  H3BO3, supplemented with 2  mM 
 CuSO4 as laccase inductor.

RNA extraction and sequencing
Total RNA from Peniophora sp. CBMAI 1063 was 
extracted using the RNeasyPlant Mini Kit (QIAGEN), 
according to manufacturer’s protocol. The integrity of the 
RNA was examined by 0.7% agarose gel electrophoresis, 
and the concentration was estimated using a NanoDrop 
2000 spectrophotometer. The cDNA library construc-
tion and sequencing were performed in 1/3 lane using 
the Illumina Hiseq 2000 platform, paired-end 2 × 100 bp 
according to the manufacturer’s protocol from MACRO-
GEN (Seoul, South Korea).

De novo assembly and functional annotation
The reads quality was assessed using the FastQC 
(Andrews 2010) program. Trimming of reads was per-
formed with trimmomatic (Bolger et al. 2014) using the 
minimum quality filtering (Phred 20) functionality of this 
tool with a sliding window, which scans through reads 
from the 5′ end and removes subsequent bases from the 
3′ end once the average quality score within the window 
drops below a user-specified value (minimum size 50 bp).

De novo assembly was performed using Trinity (Grab-
herr et  al. 2011) with the parameter ‘min_kmer_cov 2’ 
following the method described by Haas et al. (2013). The 
use of this parameter increases the stringency for reads 
being assembled together (Chapman 2015). Thus, only 
the kmers that occur more than once are considered for 
the contigs, and the default is that all kmers are consid-
ered (Johnson 2015). We prepared a set of non-redun-
dant contigs (unigenes) by selecting only the longest 
contigs among the isoforms.

The functional annotation was performed using the 
Blast2GO PRO version (Gotz et al. 2008) that describes 
the unigenes using the BLASTx algorithm (Altschul 
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et al. 1990) with an E-value threshold of 1.0E−3 against 
the NCBI non-redundant (Nr) database to identify pro-
tein domains with the InterProScan (Zdobnov and 
Apweiler 2001) tool and assign the gene ontology (GO) 
and enzyme commission (EC) terms. Annotations using 
Blast2GO were conducted with 1.0E−6 as the E-value 
hit filter, 55 as the annotation cut-off and 5 as the GO 
weight.

Analysis of the laccase sequences
Sequences that returned from the Nr database as laccase 
were submitted to ORF finder (https://www.ncbi.nlm.
nih.gov/orffinder/). The ORFs with the largest lengths 
were selected, and the translated products were aligned 
using ClustalW (Bioedit 7.0). After the alignments, a 
search of the conserved regions L1, L2, L3, and L4 was 
performed according to Kumar et al. (2003), in order to 
obtain only true laccases.

GeneRunner 5.0 was used to determine the size length 
of the coding sequence and the peptide chain. The pep-
tide composition, molecular weight and isoelectric point 
(pI) were determined using ProtParam (http://web.
expasy.org/protparam/) (Gasteiger et al. 2005). The simi-
larity analysis with other fungal laccases and multicop-
per oxidases was performed using MegAlign (DNASTAR 
14.1.0.115) (Eggert et  al. 1998); the DNA and protein 
sequences from other organisms used in this analy-
sis were obtained from the NCBI database. SignalP 4.1 
(http://www.cbs.dtu.dk/services/SignalP/) was used, with 
SignalP 3.0 default, to recognize signal peptide for extra-
cellular activity and predict cleavage sites for Peptidase I 
(Bendtsen et  al. 2004; Petersen et  al. 2011). The predic-
tion of N-glycosylation sites was performed with the 
NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/
NetNGlyc/) (Vite-Vallejo et  al. 2009), and the results 
were confirmed using GlicoEP (http://www.imtech.res.
in/raghava/glycoep/submit.html) (Chauhan et  al. 2013). 
The phylogenetic analysis was performed using MEGA 
6.0 (Tamura et  al. 2013). The distances were calculated 
using the neighbor-joining method and a bootstrap with 
1000 pseudoreplications (Felsenstein 1985; Saitou and 
Nei 1987).

Accession numbers
The raw sequences data from the Peniophora sp. CBMAI 
1063 transcriptome are available at Short Read Archives 
(SRA) GenBank database, deposited under the Accession 
Number No. SRR5799684 (BioProject: PRJNA392894). 
Putative laccase genes were also deposited in Gen-
Bank under the followed Accession Numbers: Lcc1 no. 
MF176136; Lcc2 no. MF176137; Lcc3 no. MF176138; 
Lcc3B no. MF176139; Lcc4 no. MF176140; Lcc5 no. 

MF176141; Lcc5B no. MF176142; Lcc6 no. MF176143; 
Lcc7 no. MF176144; Lcc8 no. MF176145.

Experimental in vitro validation
Two of the laccase sequences obtained from Peniophora 
sp. CBMAI was selected and cloned in Escherichia coli. 
The specific primers to each one of the sequences were 
designed using GeneRunner 5.0 (Additional file 1: Table 
S1). A first RT-PCR was performed according to the 
manufacture’s protocol (RevertAid H Minus Reverse 
Transcriptase—Thermo Scientific) with the oligo-dT 
primer to reverse transcribe the total mRNA of the fun-
gus to cDNA. Afterward, laccase sequences amplification 
was performed by touchdown PCR using the designed 
primers. PCR conditions were as follows: 2  min of ini-
tial denaturation at 94 °C, followed by a touchdown step 
of 30 s from 74 °C to 62 °C (due to the difference of the 
forward and reverse annealing primers), 35 cycles of 30 s 
at 94  °C and 30  s at 62  °C and a final extension step of 
5 min at 72 °C. PCR products were detected by 0.7% aga-
rose gel electrophoresis, purified using the GeneJET gel 
Extraction Kit (Thermo Scientific) according to manu-
facturer’s protocol, and ligated into the pJET 1.2 cloning 
vector (Thermo Scientific). The E. coli DH10B strain was 
used as the cloning host, and six clones were selected to 
be sequenced using the Sanger method at MACROGEN 
(Seoul, South Korea).

Results
Transcriptome annotation
Sequencing generated 11,005,713,864 total bases and 
108,967,464 reads. Trinity de novo assembly gener-
ated 36,981 contigs (including isoforms) with an average 
length of 1552 bp. A total of 16,663 non-redundant con-
tigs (unigenes) were selected. The Blast2GO PRO results 
showed that 10,649 unigenes had significant similarity to 
known proteins in NCBI-Nr, 8367 had significant simi-
larity with the InterPro domains and 3838 unigenes pre-
sented at least one GO term.

Among the unigenes submitted to the NR protein 
database (NCBI), 43% presented high similarity to other 
sequences, and all the top hits were related to terres-
trial basidiomycetes. The Heterobasidion irregulare and 
Stereum hirsutum sequences presented the highest simi-
larities to the Peniophora sp. CBMAI 1063 unigenes 
(Additional file 1: Figure S1).

The unigenes (3838) assigned to GO terms level 2 
were classified into 39 functional groups belonging to 
three categories: molecular functions, biological pro-
cess, and cellular process. Within molecular functions, 
“catalytic activity” and “binding” represented the most 
abundant subcategories with 1260 unigenes and 972 uni-
genes, respectively, while “metabolic processes”, “cellular 
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processes”, and “single-organism processes” were the 
most representative subcategories in biological pro-
cesses, with 1056, 956, and 757 unigenes, respectively. 
Finally, “cell”, with 471 unigenes, was the most represent-
ative functional group in cellular processes (Additional 
file 1: Figure S2).

Among the enzymes expressed by the fungus Peni-
ophora sp. CBMAI 1063, transferases, with 180 unigenes, 
comprised the most representative group, followed by 
hydrolases with 169 unigenes and oxidoreductases with 
111 unigenes.

Analysis and characterization of the laccase transcripts
Forty-seven sequences of laccase were found in the 
transcriptome. Among them, 13 presented all four con-
served regions that are characteristic of known laccases. 
All putative laccases showed similarity to laccases from 
other basidiomycetes and multicopper oxidases from 
another Peniophora species. However, three putative lac-
case sequences were likely pseudogenes lacking a stop 
codon (comp15071_c0_seq1 and comp15071_c0_seq4) 
or presenting a stop codon interposed within the coding 
sequence (comp8257_c0_seq1).

Figure  1 shows the alignment of the 10 putative lac-
case sequences containing the four conserved regions 
and copper ligand sites. The sequences contained 1449–
1767  bp, and all of them presented high GC contents, 
with the percentage ranging from 52.2 to 58.9%. The pre-
dicted polypeptide chain varied between 482 and 588 aa 
with peptide weights ranging from 53.5 to 64.4 kDa. The 
laccases found in the transcriptome represent extracel-
lular laccases, with the exception of Lcc5B, which did 
not show a peptide cleavage site and seemed to be an 
intracellular enzyme. Table  1 shows the complete char-
acterization with base pair length, peptide chain length, 
molecular weight, GC content, cleavage site for Peptidase 
I and theoretical pI, of all 10 putative laccases.

Amino acid sequence analysis revealed that two types 
of laccases were expressed by Peniophora sp. CBMAI 
1063 based on a variable copper type 1 ligand, which 
is related to the influence in the reduction–oxidation 
potential. At the variable position, six sequences con-
tained leucine and four contained phenylalanine.

Except for Lcc5B, all laccases exhibited approximately 
four to ten sites that could be N-glycosylated; some sites 
were common to more than one sequence, and other 
sites were similar to those found in laccases from differ-
ent fungi (Table 2).

The putative laccases of Peniophora sp. CBMAI 1063 
showed high similarity (80–93%) to the multicopper oxi-
dases found in the genome of Peniophora sp. (Nagy et al. 
2015) but presented low similarity (below 60%) to other 
fungal laccases (Table 3).

Fig. 1 Predicted amino acid sequence alignments of all 10 putative 
laccases from Peniophora sp. CBMAI 1063. Amino acids with 100% 
matches are highlighted in black. Numbers above the amino acids 
indicate that they are copper ion-bound. Dots below the amino acids 
indicate conserved regions in the fungal laccases (L1, L2, L3 and L4)
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Data from phylogenetic analysis suggest a gene family 
with eight different genes, due to the formation of eight 
different clades involving all 10 putative laccases. Fur-
thermore, according to the tree (Fig. 2) Lcc3 and Lcc3B 
should be considered identical laccases, as well as Lcc5 
and Lcc5B. However, the amino acid analyses revealed 
that short insertions differentiated these laccases. This 
result leads to a conclusion that the enzymes Lcc3/Lcc3B 
and Lcc5/Lcc5B may arises from alternative splicing of 
the genes Lcc3 and Lcc5, respectively.

The gene family from Peniophora sp. CBMAI 1063 
did not group with other fungal laccases and formed a 
separate cluster that included seven multicopper oxi-
dases from Peniophora sp. However, Lcc8 grouped in a 
separated clade with only one other multicopper oxidase 
(Fig. 2).

In vitro validation
The most expressed laccase, according with FPKM fac-
tor (data not shown), did not present stop codon in its 
sequence and was considered as pseudogene thus two 
other laccases were selected based on high similarity 
with the most expressed laccase also using FPKM fac-
tor (data not shown): Lcc3 and Lcc3B. Although ampli-
fications showed sequences with the expected size, it was 
not possible to clone and sequence fragments from Lcc3. 
Six clones from Lcc3B were sequenced and compared 
with the sequence obtained in the transcriptome. After 
amplification, the Lcc3B sequence showed approximately 
1500-bp band in the agarose gel (Fig. 3). The sequence of 
the cloned fragment was 100% identical to the sequence 
of Comp15071_c0_seq5 from transcriptome (Table 1).

Table 1 Complete characterization of laccase-codifying transcripts from Peniophora sp. CBMAI 1063

Sequence Laccase Length (bp) Peptide chain (aa) Mol. weight (kDa.) GC content (%) Cleavage site Theoretical pI

comp8257_c0_seq2 Lcc1 1554 517 55.5 58.1 20–21 4.25

comp12377_c0_seq1 Lcc2 1554 517 55.9 53.9 22–23 4.21

comp15071_c0_seq2 Lcc3 1647 548 60.5 58.6 19–20 4.68

comp15071_c0_seq5 Lcc3 B 1596 531 58.5 58.9 19–20 4.51

comp15981_c0_seq1 Lcc4 1587 528 58 53.6 22–23 5.51

comp16649_c0_seq3 Lcc5 1545 514 57 52.4 17–18 5.61

comp16649_c0_seq21 Lcc5 B 1449 482 53.5 52.2 No 5.49

comp18825_c0_seq1 Lcc6 1569 522 56.6 53.9 21–22 4.92

comp20510_c0_seq1 Lcc7 1767 588 64.4 55.2 16–17 6.12

comp21360_c0_seq1 Lcc8 1659 552 59.9 57.6 18–19 4.79

Table 2 N-glycosylation site prediction of the 10 putative laccases from Peniophora sp. CBMAI

a Lcc5B does not present peptide signal and may not pass through N-glycosylation process. Italic numbers: site similar to other laccases from Peniophora sp. CBMAI 
1063. Underlined numbers: site similar to laccases from other basidiomycetes
1 Similar to Lcc3-1 from Pycnoporus cinnabarinus (Accession Number AF025481)
2 Similar to Lcc4 from Lentinus sp. (Accession Number KF836751)
3 Similar to Lcc1 from Trametes villosa (Accession Number L49376)
4 Similar to pox1 from Pleorotus ostreatus (Accession Number Z34847)

Laccase N-glycosylation sites

Lcc1 185 380 398 431

Lcc2 47 90 115 185 2394 289 314 380 431 497

Lcc3 39 56 131 201 246 255 420 453 471

Lcc3B 39 114 184 2291,3 2382,3 403 436 454

Lcc4 187 232 322 388 439 4582

Lcc5 248 351 4582 513 570

Lcc5Ba – – – – – – – – – –

Lcc6 48 67 117 289 290 349 359 396 433 454

Lcc7 36 184 291 351 359

Lcc8 185 312 331 350 363 396 433 450 543
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Discussion
According to Giardina et  al. (2010), most of the fun-
gal laccases are glycoproteins with extracellular activity 
and molecular weights ranging from 60 to 70  kDa. The 
majority of putative laccases expressed by Peniophora sp. 
CBMAI 1063 had molecular weights near or higher than 

60  kDa, corresponding to extracellular enzymes. How-
ever, Lcc5B seems to play an intracellular role. The exist-
ence of an intracellular laccase has already been reported 
in Trametes versicolor (Schlosser et  al. 1997), Pleurotus 
ostreatus (Palmieri et al. 2000), and Flammulina velutipes 
(Wang et al. 2015) and may be related in these organisms 

Fig. 2 Phylogenetic tree based on the Lcc1 to Lcc8 sequences, other basidiomycete laccases and putative multicopper oxidases from Peniophora 
sp. (see Nagy et al. 2015). Two complete laccase families from Flammulina velutipes and Coprinopsis cinerea are presented in the tree. The scale bar 
indicates a distance equivalent to 0.1 amino acid substitutions per site
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to the low molecular weight phenol oxidation, cell divi-
sion and elongation processes (Baldrian 2006; Wang et al. 
2015).

Eggert et al. (1998), suggested three classes of laccases 
based on the variable residues that bind the copper type 
1 ion (molecular analysis). Class 1 has methionine, class 2 
has leucine, and class 3 has phenylalanine at this position. 
According to this classification, six putative laccases from 
Peniophora sp. CBMAI 1063 belong to class 2, while four 
laccases belong to class 3. Site-directed mutagenesis of 
the residues that occupy this position seems to interfere 
with the redox potential due to the alteration in the coor-
dination of the T1 copper ion (Xu et al. 1996, 1999). The 
theoretical pI prediction ranged from 4.21 to 6.12, based 
on differences found in the amino acid compositions of 
the putative laccases. These results were expected, and 
together with other results, these data reinforce the idea 
that the laccases from Peniophora sp. CBMAI 1063 may 
act on different substrates under acidic conditions.

Laccases generally have an expressive glycosidic por-
tion, which may represent approximately 10–45% of the 
total mass (Claus 2004). Mannose seems to be the most 
representative carbohydrate in fungal laccases, and in 
association with other sugars, mannose constitutes the 
glycosidic moiety. The glycosidic portion guarantee the 

stability in the enzyme, minimize protease susceptibility, 
signal extracellular activity, and influence redox potential 
(Dwivedi et al. 2011; Vite-Vallejo et al. 2009). In the pre-
sent study, different N-glycosylation sites were predicted 
for nine putative laccases, which presented among 4–10 
possible sites. However, some sites were too close to each 
other to allow simultaneous glycosylation. In this sense, 
sites that were homologous to those found in other fun-
gal laccases could in fact be glycosylated.

The occurrence of multiple laccase genes seems to be 
recurrent in many basidiomycete genomes. The first 
laccase gene family was reported in Agaricus bisporus, 
which exhibited two different laccase genes in the same 
chromosome (Giardina et  al. 2010). Afterward, other 
gene families were reported in Trametes villosa, and F. 
velutipes with 13 and 11 genes (Wang et al. 2015), respec-
tively, and Coprinopsis cinerea with 17 genes (Kilaru et al. 
2006). Representatives of the genus Peniophora were also 
reported as laccase producers with at least five different 
laccase isoenzymes (Niku-Paavola et al. 2004).

However, there were no data in the consulted literature 
related to the presence of a multiple-laccase gene fam-
ily from a marine-derived basidiomycete. In the present 
study, 8 putative laccase genes with 10 possible enzyme 
products were found in the transcriptome of Peniophora 
sp. CBMAI 1063.

According to Valderrama et  al. (2003), most of the 
fungal laccase multigene families arise from duplication 
events. If the duplication occurs after the last specia-
tion, laccase genes from the same family groups will be 
in the same clade in a neighbor-joining analysis. On the 
other hand, if the duplication event occurs before the 
last speciation, these genes may assemble with other lac-
case families. These evolutionary relationships lead to a 
conclusion that the majority of the laccase genes in Peni-
ophora sp. CBMAI 1063 arose from the last speciation, 
except for Lcc8, which may have arisen from an earlier 
duplication event. Although all laccases from Peniophora 
sp. CBMAI 1063 grouped with the multicopper oxidases 
from Peniophora sp., the sequence analysis revealed that 
these multicopper oxidases also exhibited the laccase sig-
nature (data not shown).

Different laccase genes in a single genome suggest that 
the enzymes play different physiological functions in 
the organism. Laccases have been associated with fruit-
ing body development, spore pigmentation, pathogen-
esis, cell elongation, the duplication process, the stress 
response, and lignin bioconversion (Giardina et al. 2010; 
Rivera-Hoyos et  al. 2013). Neighbor-joining analysis 
allowed a prediction laccase function using its similar-
ity to other identified genes. However, none of the puta-
tive genes grouped with a well-identified gene, so further 
studies are needed to unveil all of the functions of the 

Fig. 3 PCR of comp15071_c0_seq5 (Lcc5B) with three different 
polymerases. Bands with the length of approximately 1.500 bp cor-
respond to the predicted size of the sequence. a amplification with 
Pfu platinum DNA polymerase (Thermo Scientific), b 1-kb ladder 
(Promega), c amplification with Taq DNA polymerase (Promega), d 
amplification with Phusion DNA polymerase (Thermo Scientific)
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laccase isoenzymes in the Peniophora sp. CBMAI 1063 
physiology.

In optimized conditions, Peniophora sp. CBMAI 1063 
was able to express at least 10 different laccases based 
on peptide chain length, peptide composition, molecular 
weight, glycosylation pattern, and cellular activity site. 
It is important to highlight that in a previous study car-
ried out by our research group, the marine-derived fun-
gus Peniophora sp. CBMAI 1063, after has being cultured 
in the optimized conditions for laccase production (the 
same conditions used in the present study), was able to 
produce great amounts of laccase only in the presence of 
artificial seawater (saline condition) and copper sulfate 
(data not published yet).

Considering the marine origins of the new putative 
laccases, it is expected a high-salt tolerance from these 
enzymes, which represents a great potential to apply 
them in industrial and/or environmental processes per-
formed under saline conditions. To this end, studies 
related to the expression and characterization of these 
enzymes, involving genetic improvement and heterolo-
gous expression, should be performed.
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