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Inhibitory effect of streptococci on the 
growth of M. catarrhalis strains and the diversity 
of putative bacteriocin‑like gene loci in the 
genomes of S. pneumoniae and its relatives
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Abstract 

S. pneumoniae is a facultative human pathogen causing a wide range of infections including the life-threatening 
pneumoniae or meningitis. It colonizes nasopharynx as well as its closest phylogenetic relatives S. pseudopneumoniae 
and S. mitis. Both the latter, despite the considerable morphological and phenotypic similarity with the pneumococ-
cus, are considerably less pathogenic for humans and cause infections mainly in the immunocompromized hosts. In 
this work, we compared the inhibitory effect of S. pneumoniae and its relatives on the growth of Moraxella catarrhalis 
strains using the culture-based antagonistic test. We observed that the inhibitory effect of S. mitis strains is kept when 
a hydrogen peroxide produced by cells is inactivated by catalase, and even when the live cells are killed in chloro-
form vapors, in contrast to the pneumococcus whose inhibiting ability disappeared when the cells die. It was sug-
gested that this effect may be due to the production of bacterial antimicrobial peptides by S. mitis, so we examined 
the genomes of our strains for the presence of bacteriocin-like peptides encoding genes. We observed that a set of 
bacteriocin-like genes in the genome of S. mitis is greatly poorer in comparison with S. pneumoniae one; moreover, in 
one S. mitis strain we found no bacteriocin-like genes. It could mean that there are probably some additional oppor-
tunities of S. mitis to inhibit the growth of competing neighbors which are still have to be discovered.

Keywords:  Viridans group streptococci, S. pneumoniae and its relatives, M. catarrhalis growth inhibition, Bacteriocin-
associated gene loci
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Introduction
S. pneumoniae is a facultative pathogen causing a wide 
range of infections in children and adults, often with 
fatal outcome (van der Poll and Opal 2009; Donkor 
2013). It colonizes human nasopharynx and can further 
migrate through the Eustachian tubes to cause otitis 
media, descend the respiratory tract to cause pneumo-
nia or invade the bloodstream through the respira-
tory epithelium to cause bacteremia and meningitis, or 
spontaneously disappear over time (Shak et  al. 2013). 

Along with S. pneumoniae, other streptococcal species 
including the closest phylogenetic relatives of pneumo-
cocci—S. pseudopneumoniae and S. mitis—are com-
mon residents of nasopharynx. Despite the considerable 
morphological and phenotypic similarity, which often 
prevents the correct identification and differentiation of 
these three species, they are very different in degrees of 
injuriousness to humans: while S. pneumoniae is asso-
ciated with life-threatening diseases (pneumoniae or 
meningitis), S. mitis is a commensal causing infections 
mainly in the immunocompromized hosts (Teles et  al. 
2011; Mitchell 2011; Kilian et al. 2008). A special place 
belongs to S. pseudopneumoniae, whose pathogenic 
potential is still controversial (Harf-Monteil et al. 2006; 
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Keith et  al. 2006; Keith and Murdoch 2008; Fuursted 
et  al. 2016). A lot of efforts were expended to explain 
the significant differences in pathogenicity between 
pneumococci and their genetic relatives. It was shown 
that the S. mitis genome contains homologues for many 
pneumococcal virulence factors involved in coloniza-
tion and adherence including genes of surface proteins 
HtrA, ZmpB and PavA, choline-binding proteins LytB, 
LytC, CbpD and CbpE, lipoprotein SlrA etc., whereas 
some of them like the hyaluronidase gene hysA, ply, and 
lytA are absent (Denapaite et al. 2010). Also, in S. mitis, 
the virulence gene repertoire may vary from strain to 
strain. The current concept postulates that the full viru-
lence factor arsenal is required to overcome the human 
immune defense as successfully as S. pneumoniae does 
(Mitchell 2011; Doern and Burnham 2010; Whatmore 
et al. 2000).

Pneumococcus and its relatives are not the only 
inhabitants of the nasopharynx. In accordance with the 
some investigations, more than 600 bacterial species 
can reside in the oral cavity—gateway into the upper 
respiratory tract (Dewhirst et al. 2010). The most com-
mon bacterial families besides Streptococcaceae were 
found Moraxellaceae, Corynebacteriaceae, Pasteurel-
laceae (including the genus Haemophilus) and Staphy-
lococcaceae (Shak et  al. 2013; Pettigrew et  al. 2008), 
which colonize nasopharynx for the first months of life. 
Generally, a composition of the upper respiratory tract 
microbiome varies greatly among individuals and over 
time. It is influenced by many factors such as the host 
genetic background, age, social status, antibiotic use, 
vaccination, season, smoking etc. Among other factors, 
one of the most important is the interaction between 
microbes, including competitive one (Pettigrew et  al. 
2008; Bosch et al. 2013; Chen et al. 2015). In this work, 
we tried to evaluate and compare the competitive 
potential of S. pneumoniae and its closest commensal 
relatives (S. pseudopneumoniae and S. mitis) against 
Moraxella catarrhalis strains using both the traditional 
culture-based antagonistic tests and in silico searching 
of the genes encoding putative antimicrobial peptides 
across the genomes of the study strains. In our view, the 
results of this study can be valuable in terms of the com-
petition inside the microbial community may impact 
nasopharyngeal dynamics and carriage of pathogenic 
or potential pathogenic bacteria. Therefore, an under-
standing of features of microbe–microbe interactions in 
the upper respiratory tract could provide not only the 
better insight into the pathogenesis of respiratory dis-
eases, but maybe new tools to manage a microbial com-
munity for the human.

Materials and methods
Strains and their identification
Nine clinical isolates of viridans group streptococci were 
provided by the different clinical agencies of Moscow. 
Two S. pneumoniae isolates (Spn_357 and Spn_2009) 
were kindly provided by the A.I. Evdokimov Mos-
cow State University of Medicine and Dentistry, and 
they were collected from the patients diagnosed with 
a sepsis or purulent meningitis. Two unencapsulated 
or non-typeable (NT) S. pneumoniae (Spn-NT_13856 
and Spn-NT_2298) as well as two S. pseudopneumoniae 
(Spspn_G42 and Spspn_22725) isolates were acquired 
from the nasopharynx of paediatric patients of the Mos-
cow Scientific Centre of Children Health, who were hos-
pitalized with the different diagnosis, and three S. mitis 
isolates (Sm_11/5, Sm_13/39 and Sm_18/56) have been 
obtained from the Moscow National Agency for Clinical 
Pharmacology and Pharmacy. All isolates were routinely 
characterized by the standard viridans group strepto-
cocci identification tests under acquisition.

Being transferred to our laboratory, isolates were 
streaked out on the plates of Columbia agar (Oxoid Ltd., 
UK) supplied with a 5% of sheep blood, to form isolated 
single colonies; pure cultures were subcultured from sin-
gle colonies after the overnight incubation at 37 °C in air 
with 5% CO2. All strains were re-tested: the optochin 
(OPT) susceptibility and bile solubility tests were made 
using the standard diagnostic optochin or sodium deoxy-
cholate discs (Research Centrum on Pharmacotherapy, 
St. Petersburg, Russia) respectively, in accordance with 
the manufacturer’s instructions. The latex agglutination 
assay was accomplished by using of “Slidex® pneumo-kit” 
(bioMerieux®, France).

Main features of strains under study are presented 
in Table  1. Two strains, Spn_357 and Spn_2009, were 
“ordinary” pneumococci demonstrating the expected 
reactions for all routine identification tests. They were 
susceptible to OPT and sodium deoxycholate (“bile”), 
and agglutinated with the latex particles in “Slidex® 
pneumo-kit” assay. Multilocus sequence analysis (MLSA) 
attributed both isolates to the S. pneumoniae group. 
Two other S. pneumoniae strains, Spn-NT_13856 and 
Spn-NT_2298, were not “ordinary” pneumococci. These 
strains were unencapsulated, or non-typeable (NT), and 
they demonstrated negative reactions in latex agglutina-
tion and bile solubility tests; one strain, Spn-NT_13856, 
was resistant to OPT. Nevertheless, both strains appeared 
in the pneumococcal cluster by MLSA and had sequence 
type ST2996, as MLST procedure showed. This ST was 
firstly assigned to a strain selected in 2006 in Arkhangelsk 
(Russia) and belongs to a large clonal family of the NT 
pneumococci (http://pubmlst.org/spneumoniae). These 
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interesting strains have been discussed in more details in 
(Ikryannikova et al. 2016).

Two S. pseudopneumoniae strains were initially attrib-
uted to the mitis group non-pneumococci by routine 
identification tests. However, in contrast to S. mitis 
strains, these pseudopneumococci reproducibly demon-
strated clear 8–10 mm inhibition zones around the OPT 
discs being cultivated in 5% CO2 atmosphere. According 
to (A decree of the Ministry of Public Health of Russian 
Federation 1985), these strains should be referred to as 
OPT-nonsusceptible. However, in the ambient atmos-
phere, both strains were susceptible to OPT (inhibition 
zone > 14 mm). MLSA analysis unambiguously assigned 
these strains to the S. pseudopneumoniae cluster.

Strains have been kept in the laboratory strains bank at 
− 70 °C in Brain Heart Infusion broth (BD, USA) supple-
mented with 30% of fetal bovine serum (Gibco, USA) and 
20% of glycerol. Also, all strains were deposited into the 
all-Russian collection of microorganisms (http://www.
vkm.ru/) and available on request (see strains VKM iden-
tifiers in Table 1).

Moraxella catarrhalis strains (Mc51, Mc76 and Mc49) 
were provided from the LTD Scientific and Industrial 
Company “Lytech”.

DNA extraction
For all genetic manipulations, total streptococcal DNA 
was extracted using the modified protocol of Miller et al. 
(1988). Briefly, 18  h culture from two blood agar plates 
was harvested and lysed in the Promega Nuclei Lysis 
Solution buffer (Promega, USA). After that, the cellular 
proteins were removed by adding of the saturated NaCl 
solution, and the genomic DNA was concentrated and 
desalted by isopropanol precipitation. Final DNA pel-
let was re-suspended in 50–100 μl of TE buffer and kept 
at 4  °C. For whole genome sequencing, DNA was addi-
tionally purified by using of minicolumns for DNA puri-
fication (“Technoclon”, Russia), in accordance with the 
manufacturer’s instructions.

Genetic identification: MLST and MLSA schemes
Multilocus sequence typing and MLSA were performed 
as described by Enright and Spratt (1998) and by Bishop 

Table 1  Characterization of study strains

pos. positive, neg. negative, n.d. no data, adu adult, ped pediatric, NT non-typeable
a  VKM is all-Russian collection of microorganisms (http://www.vkm.ru/) in which all strains under study are deposited
b  EMSUMD—A.I. Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia; SCCH—Federal State Budgetary Inst. “Scientific Center of Children 
Health” of RAMS, Moscow, Russia; NACPP—National Agency for Clinical Pharmacology and Pharmacy, Moscow, Russia
c  Some zones of inhibition (less than 14 mm) near OPT discs were observed for these strains under culturing in CO2 atmosphere, in contrast to culturing in air, where 
zones of inhibition were 18–20 mm and more
d  Serotypes of pneumococcal strains were determined by inspection of the nucleotide sequences of genes coding the fragments of capsules, in accordance with the 
CDC recommendation (http://www.cdc.gov/streplab/protocols.html) (see “Materials and methods”)

Strain ID 
(VKMa ID)

Species Providerb/iso-
lation year

Isolate source/
patient age

Identification

OPT test (CO2 
atm.)

Bile solubility Latex agglu-
tination test 
(“Slidex® 
pneumo-kit”)

Serotyped Sequence type 
(MLST)

Spn_357
(VKM B-3128)

S. pneumoniae EMSUMD/2008 Cerebrospinal 
fluid/adu

pos. pos. pos. 23F ST 81

Spn_2009
(VKM B-3127)

S. pneumoniae EMSUMD/2008 Blood/n.d. pos. pos. pos. 22 F/A ST 1470

Spn-NT_13856
(VKM B-3125)

S. pneumoniae SCCH/2013 Nasopharynx/
ped

neg. neg. neg. NTb ST 2996

Spn-NT_2298
(VKM B-3126)

S. pneumoniae SCCH/2013 Nasopharynx/
ped

pos. neg. neg. NT ST 2996

Spspn_G42
(VKM B-3123)

S. pseudopneu-
moniae

SCCH/2013 Nasopharynx/
ped

neg.c neg. neg. – –

Spspn_22725
(VKM B-3124)

S. pseudopneu-
moniae

SCCH/2013 Nasopharynx/
ped

neg.c neg. neg. – –

Sm_11/5
(VKM B-3130)

S. mitis NACPP/2009 Nasopharynx/
adu

neg. neg. neg. – –

Sm_13/39
(VKM B-3131)

S. mitis NACPP/2009 Nasopharynx/
ped

neg. neg. neg. – –

Sm_18/56
(VKM B-3129)

S. mitis NACPP/2009 Nasopharynx/
adu

neg. neg. neg. – –

http://www.vkm.ru/
http://www.vkm.ru/
http://www.vkm.ru/
http://www.cdc.gov/streplab/protocols.html
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et  al. (2009) respectively, with minor modifications for 
MLSA scheme described earlier in (Ikryannikova et  al. 
2011). Results were analyzed using the MLST (http://
www.mlst.net) and MLSA (http://viridans.emlsa.net/) 
databases. Vector NTI 9.0 and MEGA 6.0 software was 
used for the manipulations with gene fragments and phy-
logenetic evolutionary analysis.

Multilocus sequence analysis and MLST gene frag-
ments were repeatedly inspected when getting the whole 
genome nucleotide sequences of strains (see below). 
Looking for the MLSA or MLST genes in whole genome 
nucleotide sequences of the strains under study was real-
ized using of the BLAST v. 2.2.23+ software.

Assay for the growth inhibitors production
Screening for the production of inhibitory agents was 
based on a dual-layer agar plate technique. The bottom 
layer consisted of 10 ml of 1.5% LB broth agar (Amresco, 
USA) on which the inhibitor-producing test strain grew, 
and the top layer consisted of 6 ml of soft 0.7% agar (Heli-
con, Russia) containing 1% tryptone, 0.5% yeast extract 
(Oxoid Ltd., UK) and 0.1% NaCl, to support the growth 
of the indicator strain (M. catarrhalis). To screen for 
inhibitory effect, 18 h test strains grown on the Colum-
bia blood agar (Oxoid Ltd., UK) plates were stabbed into 
the bottom LB broth agar layer and incubated for 18 h at 
37  °C in air with 5% CO2. In some cases, LB broth agar 
surfaces were treated with catalase (4000 or 10,000 units 
per plate) before stabbing of the test strain. Indicator 
strains were cultured on the Columbia blood agar plates. 
Cells were harvested by the 10  µl microbiological loop 
and suspended in 300  µl of Brain Heart Infusion broth 
(BD, USA) to 1 MF, and then 100 µl of the indicator strain 
culture was added to the 6 ml of the soft agar and gently 
stirred. The bottom agar layer stabbed by the test strains 
was subsequently overlaid with a thin layer of a soft agar 
containing the indicator strain. Dual-layer plates were 
further incubated at 37 °C in air with 5% CO2. When nec-
essary, the bottom agar layer supporting the growth of 
the test strains was kept in chloroform vapors for 15 min 
and then overlaid with a soft agar containing the indica-
tor strain. Finally, zones of growth inhibition of indica-
tor strain by test strains were inspected after the 10 h of 
growth.

Whole genome sequencing and assembly
Whole genome nucleotide sequences of two strains 
(Spn-NT_2298 and Spn_22725) were obtained by using 
the Roche 454 Life Sciences Genome Sequencer FLX+ 
Genetic Analyzer (Roche 454 Life Science, USA), in 
accordance with the manufacturer’s instructions. Other 
strains were sequenced by using of the Ion Torrent PGM 
Genetic Analyzer (Life Technologies, USA). Details 

of sequencing are given in Additional file  1: Table S1. 
Genomes were assembled by GS De Novo Assembler v. 
2.8 (Roche, USA). Assembly data were annotated using 
the RAST (Rapid Annotation using Subsystem Technol-
ogy, USA http://rast.nmpdr.org/) and NCBI (American 
National Center for Biotechnology Information) PGAP 
(Prokaryotic Genome Annotation Pipeline, USA, http://
www.ncbi.nlm.nih.gov/genome/annotation_prok/) 
Annotation Servers, and published in the GenBank data-
base of the NCBI under Accession Numbers listed in 
Additional file 1: Table S1.

Drawing of whole genome data for the analysis of the 
bacteriocin production associated clusters and getting 
of the additional information of strains
For the looking of genes encoding the potential bacterioc-
ins in the genomes of strains under study, the open web-
resource BAGEL3 (http://bagel.molgenrug.nl/index.php/
bagel3) (de Jong et al. 2010) was used. BAGEL3 is one of 
the most significant world databases of bacteriocin-like 
peptides; this resource have a search tool allowing to 
identify putative bacteriocins on the basis of conserved 
domains, physical properties and the presence of biosyn-
thesis, transport and immunity genes in their genomic 
context. Additionally, we have utilized the results of the 
investigations of Majchrzykiewicz (2011) whose work on 
the study of bacteriocin associated loci in S. pneumoniae 
genome seems to be most detailed.

Looking for the fragments of capsule operon in the 
genomes of the strains under study was performed 
using of the BLAST v. 2.2.23+ software. Investigation of 
the nucleotide sequences of genes coding the fragments 
of capsules was used to determine the serotypes of S. 
pneumoniae strains, in accordance with the CDC rec-
ommendation (http://www.cdc.gov/streplab/protocols.
html).

Results
Inhibitory effect of streptococci on the growth of Moraxella 
catarrhalis
In the cases when the bottom agar layer stabbed with 
the test strains was not treated with catalase, we have 
observed very extensive, often merging zones of M. 
catarrhalis strains growth inhibition. Six test strains 
stabbed uniformly across the agar surface of 9-mm Petri 
dish completely inhibited the growth of indicator strains. 
Treatment of the agar surface with catalase (4000 or 
10,000 units per plate) lead to a drastic decrease of the 
inhibition zones (Table  2). Catalase treatment followed 
by killing of live bacterial cells in chloroform vapors lead 
to the complete suppression of the inhibitory effects of 
pneumococci and pseudopneumococci, but no of S. mitis 
strains (Table 2).

http://www.mlst.net
http://www.mlst.net
http://viridans.emlsa.net/
http://rast.nmpdr.org/
http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
http://www.ncbi.nlm.nih.gov/genome/annotation_prok/
http://bagel.molgenrug.nl/index.php/bagel3
http://bagel.molgenrug.nl/index.php/bagel3
http://www.cdc.gov/streplab/protocols.html
http://www.cdc.gov/streplab/protocols.html
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Comparative screening of gene clusters associated 
with bacteriocin production in VGS strains of the mitis 
group
blp and cibAB loci
In accordance with the data collected for S. pneumo-
niae and its related species, there are at least two gene 
clusters associated with the bacteriocin production: blp 
(bacteriocin-like peptides; earlier pnc or spi) operon and 
cibAB (competence induced bacteriocins) cluster. Both 
are well described (see Ref. Lux et  al. 2007; Son et  al. 
2011; Kjos et al. 2016; Miller et al. 2016; Bogaardt et al. 
2015), although the confusion in names and the location 
of constituent genes, due to their complex structure, still 
occurs.

The reconstruction of blp cluster in genomes of our 
strains is given in Fig.  1a. This locus was similar in all 
pneumococci and pseudopneumococci having an intact 
regulatory part and BIR consisting of a different number 
of bacteriocins- and immunity proteins coding genes. 
Spn_2009 was the exception missing almost all BIR (Bac-
teriocin Immunity Region) genes. Notably, comparing to 
S. pneumoniae strains, pseudopneumococci possessed a 
significantly smaller number of bacteriocin coding genes 
inside the BIR region.

In S. mitis genomes, blp cluster was also present, 
although it was substantially different from S. pneumo-
niae one. The S. mitis blp cluster conserved the regula-
tory blpRH system genes, while the blpC pheromone 
encoding gene as well as the ABC transporter genes were 

lost. Two of three S. mitis genomes contained no bacte-
riocin coding genes inside of the BIR region, although 
there were genes coding putative immune proteins.

Two-peptide class II CibAB bacteriocin is presumably 
the part of fratricidal killing pathway (Guiral et al. 2005). 
It was shown for S. pneumoniae that when becoming 
competent streptococcal cells produce a set of factors 
triggering the lysis of clonal but non-competent relatives. 
This mechanism is named fratricide, and CibAB bacte-
riocin was found to be one of the effectors of this pro-
cess. cibAB cluster was presented in all pneumococcal 
and pseudopneumococcal genomes under study, but was 
not found in two of three S. mitis genomes (Fig. 1b). Note 
that the cibC gene downstream of cibAB was missed in 
the annotations and was deduced by analyses of the cor-
responding nucleotide sequences, based on the nucleo-
tide sequence of S. mitis B6 cibC gene (smi_1957). Thus, 
the cibAB bacteriocin cluster did not appear to be spe-
cific for S. pneumoniae, opposing an earlier suggestion 
(Majchrzykiewicz 2011).

Our next step was to search for genes coding poten-
tial bacteriocin peptides in the genomes of strains under 
study using BAGEL3 web-resource.

Lantibiotic clusters
Besides of the class II bacteriocins, different species 
of the genus Streptococcus may produce class I post-
translationally modified peptides termed lantibiotics 
(Nes et  al. 2007; Hakenbeck and Chhatwal 2007). In 

Table 2  Inhibitory effect of streptococci under study on the growth of M. catarrhalis strains

a  In the cases when the bottom agar layer stabbed with the test strains was not treated with catalase, we have observed very extensive, often merging zones of M. 
catarrhalis strains growth inhibition, or no growth of the indicator strain at all
b  Slash marks the repeat of experiments

Size of zones of the inhibition of M. catarrhalis str. 51 growth by streptococci, mma

+ catalase (4000 units/plate) + catalase (4000 units/plate)
+ chloroform

+ catalase (10,000 units/
plate)

+ catalase (10,000 units/
plate)
+ chloroform

Test strains

 S. pneumoniae

  Spn_357 5/6b 0/0 2 0

  Spn_2009 9/10 0/0 10 0

 NT S. pneumoniae

  Spn-NT_13856 3/8 0/0 2 0

  Spn-NT_2298 8/5 0/0 4 0

 S. pseudopneumoniae

  Spspn_G42 3/2 0/0 4 0

  Spspn_22725 3/5 0/0 2 0

 S. mitis

  Sm_11/5 2/5 9 5 7

  Sm_13/39 3/5 5 4 6

  Sm_18/56 7/12 6 7 7
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Fig. 1  Reconstruction of blp (a) and cibAB (b) gene cluster structures according to genome analysis of nine VGS strains under study. The upper pic-
ture is prepared using of JContextExplorer v. 3.0 program (Seitzer et al. 2013). Homologous genes in compared samples are indicated by the same 
color (excluding the bacteriocin- and immune protein coding genes in the upper picture). Double slash in the lower picture indicates the gap in the 
nucleotide sequence of Spn-NT_13856 (a point of joining of two contigs). Here and further: NCBI identifiers of the first and last genes of genome 
fragments presented are given for Spn_357



Page 7 of 13Ikryannikova et al. AMB Expr  (2017) 7:218 

our strains, only one lantibiotic-like peptide coding 
gene was discovered in the genome of Spn_357: a two-
peptide bacteriocin was part of gene cluster (cluster 
I by Majchrzykiewicz). This cluster included genes 
encoding putative regulation, modification, transport 

and immune proteins (Fig.  2a). This cluster was 
missed in other genomes under study. In Spn_2009, a 
truncated variant of this cluster was found: modifying 
and transport genes were lost including bacteriocin 
genes.

Fig. 2  Graphic representation of lantibiotic clusters I (a) and pld locus (b) based on the genome analysis of strains under study. *P174 is the strain 
described in the work (Maricic et al. 2016) where an unusual tandem of four lantibiotic-like genes was found out. Square brackets point a part of the 
pld locus found in S. mitis strains cluster IV gene locus (see text). Grey fields highlight homologous fragments in different genomes
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One more pneumococcal lantibiotic locus (the pneu-
molancidin, pld, locus) has been described very recently 
by Maricic et al. (2016). It is located on a mobile element 
that has been found in some pneumococcal lineages. A 
special feature of pld locus is unusual tandem array of 
four inhibitory peptides, three of which are absolutely 
required for antibacterial activity (see Fig. 2b). An alter-
native variant of the lantibiotic locus that was described 
for S. pneumoniae ATCC 700669 strain (Maricic et  al. 
2016) includes only one lantibiotic precursor pep-
tide (Fig.  2b). In our strains, the pld locus was found 
in Spn_357 only having an “ATCC 700669-like” struc-
ture (Fig.  2b). We were not able to detect this locus 
in genomes of other study strains; however, a part of it 
namely pldFEKR fragment was found in the nearest 
vicinity of cluster IV in two of three S. mitis strains (see 
below).

Lactococcin 972‑like peptides in genomes of strains 
under study
Two lactococcin 972-like peptides were detected by 
BAGEL3 in our strains. Lactococcin 972 is a IIc class bac-
teriocin obtained from Lactococcus lactis that affects a 
target cell inhibiting cell division by blocking of septum 
formation (Alvarez-Sieiro et  al. 2016). The correspond-
ing loci in pneumococcal genomes were designated as 
clusters III and IV by Majchrzykiewicz (2011). Both 
clusters carry homologous genes, but they are localized 
in different regions of genomes. Both clusters include a 
bacteriocin gene, a putative self-immunity protein and 
ABC transporter downstream. Lactococcin-like genes 
were discovered within the cluster III in Spn_357 and 
Spspn_22725, and within the cluster IV in all genomes 
except S. mitis ones (Fig. 3). In two S. mitis genomes, the 
entire cluster was lost, whereas in Sm_11/5 immune and 
transport genes were preserved, but a structural gene was 
missed.

It should be noted that upstream of the position of 
the cluster IV in pneumococcal genomes, in genomes 
of two of three S. mitis strains we detected fragments of 
the lantibiotic pld operon including genes required for 
pneumolancidin immunity and regulation (pldFEKR) 
(Fig. 3b). In accordance with the arrangement of genes in 
the pld locus, we would expect to find pneumolancidin 
pldA1-4 genes upstream of pldF. Actually, the nucleotide 
sequence in this region included two fragments similar 
to pldA1-3 and pldA4 genes. However, both nucleotide 
fragments were disrupted by stop codons.

Putative bacteriocin‑coding clusters in streptococcal 
genomes
Inspired by results of Majchrzykiewicz, we examined 
two more gene loci presumably related to the bacteriocin 

production activity. Schemes of these loci are given in 
Additional file  1: Figure S1. One of them, cluster V or 
ppu (“pneumococcal peptide of unknown function), was 
thoroughly studied by Majchrzykiewicz, to understand 
whether it produces a functional bacteriocin-like pep-
tide, but no antimicrobial activity specifically related to 
the PpuA bacteriocin-like peptide was revealed. We dis-
covered the ppuA gene in four of nine genomes including 
pneumococci and pseudopneumococci, but not S. mitis. 
Other locus (cluster VI by Majchrzykiewicz) comprised 
of four genes encoding small peptides, putative bacte-
riocins. However, the function of these peptides as well 
as bacteriocin-like potential of the whole cluster is still 
unclear.

Sactipeptide locus in the genome of S. mitis 13/39 strain
One more bacteriocin-like peptide encoding gene was 
discovered in the Sm_13/39 genome, which was attrib-
uted to the sactipeptides. Sactipeptides represent a 
subclass of sulfur-bridged bacteriocins which are char-
acterized by a typical pattern comprising three or four 
cysteine residues separated by a certain number of amino 
acids (Fig. 4). These cysteine residues serve to form intra-
molecular thioether bridges between cysteine sulfurs and 
α-carbons of other amino acids within a peptide (Himes 
et  al. 2016). Upstream and downstream of the putative 
bacteriocin, two radical SAM/SPASM domain-contain-
ing proteins are located that presumably mediate post-
translational thioether linkage formation (Lohans and 
Vederas 2014).

In the remaining studied strains, neither sactipeptide 
bacteriocin nor adjacent radical SAM enzymes encoding 
genes were detected.

The “S. mitis” bacteriocin‑encoding cluster in streptococcal 
genomes
This locus upstream of comAB was first mentioned in 
the paper concerning with the analysis of the S. mitis B6 
genome (11), so we quoted it as “S. mitis” cluster. Later 
it was also mentioned when describing the S. pseudo-
pneumoniae IS7493 genome (Shahinas et al. 2013). This 
obscure locus seems to be very variable in different 
members of the Streptococcus genus. In our pneumococ-
cal strains, it included genes encoding BlpU (BlpO)-like 
bacteriocin and (except Spn_357) a number of putative 
membrane proteins of unclear function (Fig.  5). Tran-
scriptional regulator and multidrug transporter encoding 
genes in this locus of pneumococci and pseudopneumo-
cocci were found. Also, a BOX element directly upstream 
of comAB was conserved in all species excluding two of 
three S. mitis strains.

In two S. pseudopneumoniae, the arrangement of the 
“S. mitis” cluster seems to be the most interesting. First, it 
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Fig. 3  Graphic representation of lactococcin 972 clusters III (a) and IV (b), respectively. Homologous genes in different samples are indicated by the 
same color. Square brackets point a part of the pld locus in S. mitis genomes in the bottom picture. Unfilled arrows mark the fragments of nucleo-
tide sequences which are homologous to pld1-3 or pld4 genes (see text)
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included a fragment of the competence regulon, namely a 
ComDE-like two-component regulatory system. This sys-
tem plays a role at the initial stage of competence, when 

extracellular competence stimulating peptide pheromone 
(CSP) encoded by the comC gene is sensed by histidine 
kinase receptor ComD, which, upon binding of its ligand, 
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transcrip�onal regulator, MutR family
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Fig. 4  Sactipeptide cluster structure on the data of Sm_13/39 genome analysis. In the bottom of picture, the AA sequence of putative bacteriocin 
discovered in the Sm_13/39 genome is given compared with known sactipeptides, subtilosin A and thurincin H
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transfers a phosphoryl group to the response regulator 
ComE. Phosphorylated ComE drives the expression of 
early competence genes (Claverys and Havarstein 2007). 
However, we revealed no homologous of comC gene 
in the vicinity of comDE. Note that we found a compe-
tence regulated cibA-like gene at this locus in both pseu-
dopneumococci strains. At the same time, there is a full 
repertoire of genes of the competence regulon located 
at the position equivalent to that of the S. pneumoniae 
genome in both S. pseudopneumoniae strains.

Second, in addition to BlpU, a large number of the puta-
tive class II bacteriocin-like peptide encoding genes with 
a typical GG-processing site were present in this locus. 
Also, two immune protein encoding genes upstream of 
the field of putative membrane proteins were discovered. 
Finally, a few of excreted peptides of unknown function 
were localized there.

Surprisingly, “S. mitis” cluster was completely lost in 
two of three S. mitis genomes and truncated in the third 
one (Sm_11/5) that preserved only the regulatory comDE 
part.

Discussion
In this study, we investigated an ability of S. pneumoniae 
and its closest commensal relatives—S. pseudopneumo-
niae and S. mitis—to inhibit the growth of M. catarrhalis 
strains. Moraxella catarrhalis have been chosen as indi-
cator strain because it shares the same niche as viridans 
group streptococci—upper respiratory tract—in a human 
body (Bosch et al. 2013; Perez et al. 2014), so we might 
expect a manifestation of established competitive rela-
tionships between these species.

Our experiments show some important features. 
First, VGS streptococci are able to suppress the growth 
of other microorganism, at that this process is probably 
mediated substantially by the production of hydrogen 
peroxide which is inherent for this genus. However, an 
inhibiting ability is partially kept in all the strains under 
study even after inactivation of hydrogen peroxide by cat-
alase. At that, the inhibitory effect of both pneumococci 
and pseudopneumococci on the M. catarrhalis strains 
growth should be probably attributed to the living cells 
of microorganisms, because of the treatment in chlo-
roform vapors leads to the disappearance of this effect. 
On the contrary, the inhibiting ability of S. mitis strains 
does not disappear when the bacterial cells are killed in 
chloroform.

We suggested that this inhibitory effect could be asso-
ciated with the production of bacterial antimicrobial 
peptides, so we scanned the genomes of our strains for 
the presence of appropriate mechanisms for bacteriocins 
production. Note that this work was not aimed the iso-
lation and characterization of an inhibitory substance, 

as well as a systematization of all diversity of bacteri-
ocins from streptococcal genomes available from the 
online databases. We just assumed to identify a basis of 
the inhibitory ability of strains under study which we 
observed in the experiments. Also, it seemed interesting 
to compare “the potential of competitiveness” of patho-
gen S. pneumoniae and commensals S. pseudopneumo-
niae and S. mitis, because the ability of each of these 
species to survive inside a competitive microbial com-
munity affects the clinically important nasopharyngeal 
dynamics.

The results that we obtained were rather unexpected. 
We discovered many opportunities of pneumococci and 
pseudopneumococci to produce bacteriocins, and first 
of all it was associated with the presence of the blp locus 
which was found intact in all S. pneumoniae and S. pseu-
dopneumoniae. In addition to the blp operon, there were 
a number of other loci in the genomes of S. pneumoniae 
and S. pseudopneumoniae which can be associated with 
a possibility to produce bacteriocins. We can only guess 
whether all these loci are joined into the complex system, 
and if so, how this system works, or maybe it is only par-
tially or completely dysfunctional gene clusters that are 
nothing more than the evolutionary heritage. In any case, 
all that ‘potential of bacteriocinogeny”, it seems, was not 
used by these bacteria in the conditions of our experi-
ment, since the inhibitory effect completely disappeared 
when the cells were killed in chloroform vapors.

But the most intriguing observation was the finding of 
significant inhibitory ability of S. mitis strains, which was 
kept even after killing of the test strains in chloroform, 
in conjunction with a virtually complete lack of bacte-
riocin-like peptide encoding genes in their genomes. 
Actually, the “potential of bacteriocinogeny” of S. mitis 
strains involved into this work inferred on the basis of the 
analysis of their genomes looks quite poor in comparison 
with pneumococci and pseudopneumococci. We suc-
ceeded to detect two bacteriocin-like peptide encoding 
genes inside of the blp and cibAB loci of S. mitis Sm_11/5 
strain and only one sactipeptide-like encoding gene in 
the Sm_13/39 strain. No bacteriocin encoding genes 
were discovered in Sm_18/56 genome. A thorough study 
of loci, which are presumably associated with bacteri-
ocin production activity in S. pneumoniae, did not clarify 
the situation with this strain. The significant inhibitory 
potential of alpha-hemolytic streptococci including S. 
mitis against a variety of Gram-positive and Gram-neg-
ative bacteria was observed earlier. The “viridin B”, a bac-
teriocin produced by S. mitis and active against Neisseria 
sicca and coagulase-negative staphylococci, was purified 
and described in a number of papers almost four decades 
ago (Law and Dajani 1978; Dajani et  al. 1978), but the 
sequence of this peptide has remained unknown since 
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then. This substance was obtained in a cell-free form only 
after mechanical disruption of bacteriocinogenic cells but 
has not been isolated from streptococcal culture super-
natants (Dajani et al. 1976), so it’s hard to speculate what 
was it in fact. Much later, a broad inhibitory activity of S. 
mitis strains against different microorganisms including 
S. pyogenes, S. pneumoniae, S. aureus, and B. catarrhalis 
has been demonstrated again (Santagati et  al. 2012). A 
targeted search for the known streptococcal bacteriocin 
genes resulted in finding of salA or sboB (encoding lan-
tipeptides salivaricin A or B, respectively) genes in some 
strains; however, other isolates showing an evident inhi-
bition of the indicator strains did not possess any of these 
bacteriocin activity determinants.

Thus, the origin of inhibition activity of at least one S. 
mitis strain remains unclear. Perhaps, there is some novel 
type of antimicrobial peptides in them that has not yet 
been discovered, or some secreted metabolites which 
are remained to be identified. In any case, we can see 
that commensals S. mitis are able to compete effectively 
for their place in the conditions of our experiment, and 
their competitive tools seem to be different from those of 
pneumococci.
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