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thermotolerant and fast‑growing fungus 
Lichtheimia ramosa H71D and biochemical 
characterization of the thermophilic xylanase 
LrXynA
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Abstract 

The zygomycete fungus Lichtheimia ramosa H71D, isolated from sugarcane bagasse compost, was identified by 
applying phylogenetic analysis based on the DNA sequence of the Internal Transcribed Spacer (ITS), and subsequent 
secondary structure analysis of ITS2. L. ramosa H71D was able to grow over a wide range of temperatures (25–45 °C), 
manifesting optimal growth at 37 °C. A 64 kDa xylanase (named LrXynA) was purified from the culture supernatant 
of L. ramosa H71D grown on 2% carboxymethylcellulose (CMC), as the only carbon source. LrXynA displayed optimal 
activity at pH 6 and temperature of 65 °C. The enzyme retained more than 50% of its maximal activity over a broad 
range of pH values (4.5–7.5). Enzyme half-life (t½) times at 55, 65 and 75 °C were 80, 25, and 8 min, respectively. LrXynA 
showed higher affinity (kM of 2.87 mg/mL) and catalytic efficiency (kcat/kM of 0.651 mg s/mL) towards Beechwood 
xylan in comparison to other substrates such as Birchwood xylan, Oat-spelt xylan, CMC, Avicel and Solka floc. The 
predominant final products from LrXynA-mediated hydrolysis of Beechwood xylan were xylobiose and xylotriose, 
suggesting that the enzyme is an endo-β-1,4 xylanase. Scanning electron microscopy (SEM) imaging of sugar cane 
bagasse (SCB) treated with LrXynA, alone or in combination with commercial cellulases, showed a positive effect on 
the hydrolysis of SCB. To our knowledge, this is the first report focusing on the biochemical and functional characteri‑
zation of an endo-β-1,4 xylanase from the thermotolerant and fast-growing fungus Lichtheimia ramosa.
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Introduction
Xylan is next in order to cellulose, in terms of the major 
structural components of plant cell walls, and is the sec-
ond most abundant renewable polysaccharide in nature 
(Collins et al. 2002). Xylan is a complex, highly branched 
heteropolysaccharide and its structure varies between 
different plant species. The homopolymeric backbone 

chain of xylan consists of 1,4-linked β-d-xylopyranosyl 
units, that to a varied extent can be substituted with glu-
curonopyranosyl, 4-O-methyl-d-glucuronopyranosyl, 
α-l-arabinofuranosyl, acetyl, feruloyl or p-coumaroyl 
side-chain groups (Kulkarni et  al. 1999). The complete 
hydrolysis of xylan requires the action of several enzymes, 
including endo-1,4-β-d-xylanase (EC3.2.1.8), which is 
crucial for xylan depolymerization (Polizeli et  al. 2005). 
Xylanases, as glycoside hydrolase members, are able to 
catalyze the hydrolysis of the glycosidic linkage (β-1,4) of 
xylosides, leading to the formation of a sugar hemiacetal 
and the corresponding free aglycone (Hatanaka 2012). 
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Xylanases and the microorganisms that produce them are 
interesting because they have extensive biotechnological 
applications. These enzymes are currently used in waste 
management in order to degrade xylan for the produc-
tion of renewable fuels and chemicals. Likewise, they are 
used in food, agro-fiber, and paper and pulp industries, 
where xylanases help to reduce environmental impact 
(Collins et  al. 2002). Oligosaccharides produced from 
the action of xylanases are further used as functional 
food additives or alternative sweeteners with beneficial 
properties (Pellerin et  al. 1991). In terms of biotechno-
logical application, thermostable enzymes have several 
generic advantages as the high specific activity, that is 
often associated with this kind of enzymes, reduces the 
required amount of enzyme and prolongs hydrolysis time 
due to greater stability than that exhibited by mesophilic 
enzymes (Viikari et al. 2007).

Many reports exist on thermophilic and mesophilic 
microorganisms signifying that bacteria and fungi are 
major producers of thermostable xylanases (Sunna and 
Antranikian 1997; Collins et al. 2002). In terms of fungi, 
most xylanases characterized to date are derived from 
Ascomycetes and Basidiomycetes; in particular, meso-
philic fungi belonging to the genera Aspergillus and 
Trichoderma are preeminent in xylanase production 
(Polizeli et  al. 2005). Production of thermostable xyla-
nases has been reported for several filamentous fungi 
including Laetiporus sulphureus (Lee et  al. 2009), Tal-
aromyces thermophiles (Maalej et al. 2009), Thermomyces 
lanuginosus (Singh et  al. 2003), Nonomuraea flexuosa, 
Thermoascus aurantiacus (Zhang et  al. 2011), and the 
Zygomycete fungus Rhizomucor miehei (Fawzi 2011).

Zygomycetes are able to grow on a wide variety of car-
bon sources at different temperatures, oxygenation rates, 
and pH values (Ferreira et  al. 2013). Recently, Zygomy-
cetes are receiving increased attention in the biotech-
nological context for the production of a wide range of 
metabolic products e.g., organic acids, enzymes, and 
biofuels such as bioethanol and biodiesel (Ferreira 
et  al. 2013). The genus Lichtheimia (syn. Mycocladus, 
Absidia) belongs to the Zygomycete class and includes 
saprotrophic microorganisms that can be isolated from 
decomposing soil and plant material (Alastruey-Izqui-
erdo et al. 2010). Members of this genus are considered 
to constitute thermotolerant fungi, as they can grow at a 
wide range of temperatures, from 20 to 53 °C, with 37 °C 
presenting the best temperature for growth, where it 
occurs most rapidly (Voigt et al. 1999; André et al. 2014). 
This rapid growth rate of filamentous fungi belonging to 
the Zygomycete genus Lichtheimia makes them pertinent 
to the study of enzymes involved in the breakdown of 
plant material and offers possible advantages for a bio-
technological application.

There are few studies on carbohydrate-active enzymes 
in the Zygomycetes fungi belonging to the Lichtheimia 
genus. Lichtheimia blakesleeana was described as a 
producer of phytase and xylanase (Neves et  al. 2011). 
Additionally, Lichtheimia ramosa has been reported 
as a producer of xylanase, carboxymethylcellulase 
(CMCase), an ample producer of β-glucosidase in wheat 
bran-based medium (Gonçalves et  al. 2013), and also 
a producer of amylases, β-glucosidases, CMCase, and 
xylanases, via solid state bioprocess, utilizing fruit waste 
from the Brazilian savannah (de Silva et al. 2013). Nev-
ertheless, to our knowledge, there are no studies on 
the biochemical and catalytical properties of xylanases 
from a filamentous fungus belonging to the Zygomycete 
genus Lichtheimia.

Taxonomy of Mucorales has traditionally been based 
on microscopic morphology and mating experiments; 
however, molecular phylogeny has revealed that diversity 
within and between species is much greater than antici-
pated, also leading to a proliferation of the number of 
taxa recognized (Walther et al. 2013). The internal tran-
scribed spacer region (ITS) consists of three parts: ITS1, 
ITS2 and the highly conserved 5.8S rDNA exon located 
between them. ITS2 usually has a conserved secondary 
structure with four helices which appear to be essential 
for successful excision of ITS2 from the precursor rRNA 
(Caisová et al. 2011). The ITS2 has been viewed as a pos-
sible useful marker for taxonomic classification, at a wide 
range of levels (Coleman 2003), because of its high diver-
gence in sequence and assumed conservation in structure 
(Schultz et al. 2005). Additionally, it has been suggested 
modeling this cloverleaf-like structure as a novel tool 
for phylogenetics (Wolf et  al. 2005). Furthermore, the 
ITS2 has been proposed as a candidate for the DNA 
fungi barcodes because it possesses a number of valuable 
characteristics (Yao et  al. 2010). In Mucorales, the ITS 
region turned out to be an appropriate barcoding marker 
(Walther et al. 2013).

Hence, the aim of this work was to use phylogenetic 
analysis to identify the H71D strain, isolated from sug-
arcane bagasse compost, and undertake the purification 
and biochemical characterization of a secreted xylanase 
from this thermotolerant and fast-growing fungus.

Materials and methods
Microorganisms and growth conditions
The strain H71D was isolated from composting soils 
and kindly donated by Dr. Sergio Trejo-Estrada research 
group (CIBA-IPN, Tlaxcala. México).

For spore production, the fungus was grown on potato 
dextrose agar (PDA) medium plates and incubated at 
37  °C for 72  h. Spore collection was performed and a 
suspension thereof, which was read at λ =  650  nm and 
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adjusted to achieve an Absorbance of 0.5, which is equiv-
alent to 5 × 106 spores/mL (Tien and Kirk 1988).

For genomic DNA preparation and xylanase produc-
tion, the strain H71D was grown in the liquid culture 
media described by Mandels and Sternburg (1967), with 
some modifications as follows. The culture basal medium 
contained in g/L: yeast extract 1; (NH4)2SO4 1.4; KH2PO4 
2.0; Urea 0.3; CaCl2 0.3; MgSO4 7H2O 0.3; and 1  mL/L 
of trace element solution containing (g/L): FeSO4 7H2O 
0.05; MnSO4 H2O 0.016; ZnSO4 7H2O 0.014; CoCl2 
0.02. The culture basal medium was supplemented with 
2% (w/v) CMC as the only carbon source, unless oth-
erwise stated. The medium was sterilized for 15  min at 
121 °C and 15 psi. Flasks of 250 mL containing 50 mL of 
medium were inoculated with 500  µL of spore solution 
of the desired concentration, and flasks were incubated at 
37 °C for 9–12 days on an orbital shaker at 160 rpm.

Identification of the H71D strain
The identification of the strain H71D was made using 
morphological characteristics and the DNA sequence of 
the ribosomal DNA ITS2 region as a molecular marker. 
Morphological characterization followed the key pub-
lished elsewhere (Hoffmann 2010). For molecular analy-
sis, the genomic DNA was extracted from mycelia of 
H71D strain grown in liquid medium after 3  days of 
incubation at 37  °C and orbital agitation at 160  rpm, as 
described above. The mycelium was obtained by cen-
trifugation (7000  rpm at 4  °C for 20  min); then, it was 
ground with liquid nitrogen, and this material was used 
for genomic DNA extraction, by using the DNeasy Blood 
& Tissue kit (QIAGEN, Valencia, CA). The ITS2 region 
was amplified from genomic DNA by PCR using the Hot-
Star HiFidelity Polymerase Kit (Qiagen, Valencia, CA), 
and the barcoding primer pair ITS4 and ITS5 previously 
reported (White et  al. 1990). The DNA sequence of the 
ITS2 region from H71D was compared with those ITS2 
sequences from strains deposited at NCBI-GenBank, 
by using BLASTn available at the NCBI server (https://
www.ncbi.nlm.nih.gov/). The phylogenetic analysis was 
carried out using ITS2 sequences from Lichtheimia spe-
cies (Table 1), employing as outgroup the ITS2 sequence 
from Dichotomocladium elegans CBS 695.76 (GenBank 
Accession: HM999950), which has previously been used 
for the same purpose (O’Donnell et  al. 2001). The mul-
tiple alignments were conducted by using the Clustal 
X program (version 2.0) (Larkin et  al. 2007), and the 
FindModel program (https://www.hiv.lanl.gov/content/
sequence/findmodel/findmodel.html) was used to select 
the model that best describes the data to generate a bet-
ter tree. The phylogenetic analysis was conducted by 
the method of maximum likelihood using PhyML with 
100 bootstrap replicates. The secondary structure of the 

ITS2 from the strain H71D was predicted by using the 
RNAfold WebServer (http://rna.tbi.univie.ac.at/cgi-bin/
RNAfold.cgi), with the following setup: (i) minimum 
free energy (MFE), (ii) partition function and avoid iso-
lated base pairs for fold algorithms, (iii) with no dangling 
end energies, and (iv) RNA parameters: Turner model 
(Mathews et al. 2004) at 37 °C. For comparison purpose, 
the ITS2 sequence from L. ramosa GQ342874 strain was 
selected and analyzed under the same conditions. Hence, 
the H71D strain was identified as L. ramosa H71D strain 

Table 1  GenBank accession numbers of the DNA sequences 
from members of the genus Lichteimia used in this study

Strain Specie ITS GenBank Access Number

H71D L. ramosa KY311837

CBS 100.17 L. corymbifera GQ342885

CBS 100.31 L. corymbifera GQ342879

CBS 100.51 L. corymbifera GQ342886

CBS 429.75 L. corymbifera GQ342878

CBS 519.71 L. corymbifera GQ342889

CBS 109940 L. corymbifera GQ342881

CBS 100.28 L. hyalospora GQ342896

CBS 100.36 L. hyalospora GQ342898

CBS 102.36 L. hyalospora GQ342895

CBS 173.67 L. hyalospora GQ342893

CBS 518.71 L. hyalospora GQ342894

CBS 291.66 L. ornata GQ342891

CBS 958.68 L. ornata GQ342890

CNM-CM 4978 L. ornata GQ342892

AS 3.4808 L. ramosa GQ342867

CBS100.24 L. ramosa GQ342876

CBS100.49 L. ramosa GQ342858

CBS 223.78 L. ramosa GQ342877

CBS 271.65 L. ramosa GQ342875

CBS 582.65 L. ramosa GQ342874

CBS 649.78 L. ramosa GQ342849

CBS 124197 L. ramosa GQ342870

CBS 124198 L. ramosa GQ342848

CNM-CM 3148 L. ramosa GQ342872

CNM-CM 3590 L. ramosa GQ342869

CNM-CM 4261 L. ramosa GQ342854

CNM-CM 4337 L. ramosa GQ342852

CNM-CM 4427 L. ramosa GQ342853

CNM-CM 4537 L. ramosa GQ342873

CNM-CM 4849 L. ramosa GQ342855

CNM-CM 5111 L. ramosa GQ342871

CNM-CM 5171 L. ramosa GQ342864

CBS 420.70 L. sphaerocystis GQ342900

CBS 647.78 L. sphaerocystis GQ342899

CBS 648.78 L. sphaerocystis GQ342901

CBS695.76 D. elegans HM99995

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html
https://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
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and deposited on “Colección de Cultivos Microbianos” 
(CDBB CINVESTAV-IPN, México) with access num-
ber CDBB–H–1939. The ITS2 DNA sequence from L. 
ramosa H71D strain was deposited in the GenBank data-
base with Access Number KY311837.

Determination of optimum growth temperature
To determine the optimum growth temperature, L. 
ramosa H71D strain was analyzed based on its radial 
growth (cm) on Petri dishes with PDA at different tem-
peratures (25, 30, 35, 37, 40 and 45  °C) during 6  days. 
PDA plates were inoculated with small circles taken from 
the edge of a 2 days old colony. The plates were incubated 
at the different temperatures indicated above, and the 
diameter was measured every 8  h for 48  h. The growth 
rate, measured in centimeters per hour, was calculated 
for each plate and temperature.

Enzyme and protein assays
Xylanase and cellulase activities were determined by 
measuring the amount of reducing sugars released, quan-
tified by the DNS method at 540 nm (Miller 1959), using 
xylose or glucose as a standard. For xylanolytic activity, 
the assay mixture contained 25  µL of enzyme prepara-
tion, 975  µL of 0.2% Beechwood xylan (Sigma-Aldrich, 
St. Louis, MO, USA) in 50  mM citrate buffer, pH 6; 
subsequently, the mixture was stirred and incubated at 
65  °C for 5  min. For cellulolytic activity, the assay mix-
ture contained 100  µL of enzyme preparation, 900  µL 
of 0.3% CMC (Sigma-Aldrich, St. Louis, MO, USA) 
in 50  mM acetate buffer, pH 5.6; then, the mixture was 
stirred and incubated at 50 °C for 10 min. Enzyme activ-
ity was expressed as U/mL, where U corresponds to the 
µmoles of xylose/glucose released per minute, under 
assay conditions. All tests were carried out in triplicate 
and error bars represent the standard deviation. Protein 
concentration was measured using Bradford reagent 
(Sigma-Aldrich, St. Louis, MO, USA), and bovine serum 
albumin (Life Technologies, Grand Island, NY, USA) as 
the standard.

Xylanase and cellulase production
For enzyme production, the H71D strain was grown in 
the liquid culture media as described by Mandels and 
Sternberg (1967), with some modifications as described 
above. Culture basal medium was supplemented with 
2% (w/v) Beechwood xylan or 2% (w/v) CMC. The cul-
ture medium was sterilized for 15 min at 121 °C and 15 
psi. Flasks of 2.8 L with 500 mL of medium were inocu-
lated with 5 mL of spore solution at the desired concen-
tration. Then, cultures were incubated at 37 °C for 9 days 
and orbital agitation at 160 rpm. Every 12 or 24 h, aliquot 
samples of 5 mL were taken from each flask. The pellet 

was obtained by centrifugation at 7000  rpm at 4  °C for 
20  min, and was used to determine fungal biomass by 
the dry weight method; whereas the culture supernatant 
was used for extracellular enzyme (xylanase and cellu-
lase) assays. The results presented are expressed as the 
mean ± standard deviation of three replicates.

Enzyme purification
The culture supernatant (800 mL) was treated with ammo-
nium sulfate (70% saturation). The precipitate was col-
lected by centrifugation (8500 rpm, 4 °C for 15 min), then 
the pellet was resuspended and dialyzed against buffer 
A (50 mM Tris- HCl buffer pH 8, 0.1 mM PMSF, and 5% 
(v/v) glycerol). After dialysis, the protein preparation was 
loaded onto anion exchange UNOsphere Q (Bio-Rad), and 
cation exchange UNOsphere S (Bio-Rad) columns (col-
umn volume, 15 mL). Absorbed proteins were eluted from 
the column with a linear gradient of KCl (0.025–1 M) in 
buffer A, at a constant flow rate of 2 mL/min, and 2 mL 
fractions were collected. Fractions with xylanase activity 
were pooled and analyzed by 10% SDS-PAGE.

Electrophoretic analysis
SDS–Polyacrylamide gel electrophoresis (SDS–PAGE) 
was performed using a polyacrylamide gel 10% according 
to the method described by Laemmli (1970). The gel was 
stained with Coomassie Brilliant Blue R-250 (Bio-Rad). 
Molecular weight (MW) was estimated by linear regres-
sion with reference to a broad range molecular weight 
protein standard (Bio-Rad).

Zymogram analysis
The zymogram of xylanolytic activity was performed 
according to the methodology described by Royer and 
Nakas (1990), with some modifications as follows. Briefly, 
protein samples were separated on 10% polyacrylamide 
gels co-polymerized with 1% Remazol Brilliant Blue 
linked to xylan (RBB-X), under denaturing conditions. 
Protein samples were resuspended in SDS sample buffer 
with 5% (v/v) 2-β-mercaptoethanol, then samples were 
boiled in a water bath for 5  min. After electrophoresis, 
the gel was rinsed with distilled water and incubated in 
50 mM citrate buffer, pH 6 at 50 °C for 2.5 h.

Carbohydrate content
The amount of carbohydrates was determined by the 
Anthrone method (Leyva et  al. 2008). A 0.2% of cold 
Anthrone solution was prepared in sulfuric acid. One 
milliliter of solution was slowly mixed with 500 µL of a 
sample preparation. This mixture was incubated at room 
temperature for 5 min, boiled for 10 min in a water bath, 
and then, tubes were placed on ice for 5 min. The samples 
were read at 640 nm, and the percentage of glycosylation 
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was calculated according to the total amount of protein 
present in the sample. The standard curve was made with 
mannose.

Biochemical properties
Optimal pH and pH stability
The effect of pH on the xylanolytic activity of LrXynA 
was determined by varying the pH of the reaction mix-
tures using 50  mM citrate–phosphate buffer (pH 3–7), 
and 50 mM phosphate buffer (pH 6 to 8). Reaction mix-
tures were incubated at 50 °C for 10 min. For pH stability 
assay, the enzyme was preincubated in the above men-
tioned buffers, without substrate, at 50 °C for 3 h. Subse-
quently, the remaining xylanolytic activity was measured 
under standard conditions (65 °C and pH 6.0 for 5 min), 
and compared to the activity displayed by the untreated 
enzyme.

Effect of temperature on LrXynA activity and stability
The effect of temperature on the enzymatic activity of 
LrXynA was estimated by conducting the activity assay 
at different temperatures ranging from 30 to 80  °C in 
50  mM citrate–phosphate buffer, pH 6. Reaction mix-
tures were incubated for 5  min under standard condi-
tions. The thermostability of the enzyme was investigated 
after preincubation at 55, 65 and 75 °C without substrate. 
Residual enzyme activities at specific time points were 
determined under standard conditions, (65  °C, pH 6.0, 
for 5  min). To determine half-life (t½) of the enzyme, 
aliquot samples were withdrawn at different time inter-
vals and residual enzymatic activity was measured under 
standard conditions.

Substrate specificity of LrXynA and kinetic parameters
The xylanolytic activity of LrXynA was determined under 
optimal assay conditions using 1% (w/v): Beechwood 
xylan, Birchwood xylan, Oat-spelt xylan, CMC, Avicel or 
Solka floc as the substrate. The kinetic parameters kM and 
Vmax of LrXynA were determined under optimal condi-
tions for enzyme activity using Beechwood xylan as sub-
strate, at a concentration ranging from 0.05 to 1%. The 
kinetic parameters kM and Vmax were determined and 
calculated from the Nonlinear least squares regression 
applied to the Michaelis and Menten (http://statpages.
org/nonlin.html).

Effect of metal ions and EDTA
To study the effect of various metal ions (Ca2+, Cu2+, 
Fe2+, Hg2+, Li, Mg2+, Mn2+, Na+, Ni2+ and Zn2+), and 
the chelating agent EDTA on the activity of LrXynA, the 
enzyme was independently incubated with metal ions or 
EDTA, at final concentrations of 1 and 5 mM under opti-
mal assay conditions (65 °C, pH 6 for 5 min). The activity 

was expressed as the percentage of the activity observed 
in the absence of any compound.

Analysis of LrXynA hydrolysis products
Thin-layer chromatography (TLC) of LrXynA hydroly-
sis product was carried out as follows. Purified enzyme 
(50  µL, 3 U/mL) was mixed with 50  µL of 1% (w/v) 
Beechwood xylan in 50  mM citrate buffer, pH 6. The 
reaction proceeded at 40  °C, and aliquot samples were 
taken after 0, 12, 24, 36, 48 h of incubation. TLC was car-
ried out at room temperature using as mobile phase a 
mix of butanol:ethanol:water 5:3:2 (v/v). The plate was air 
dried, sprayed with H2SO4 15% and bake at 100 °C for 2 h 
after color development.

Enzymatic hydrolysis of sugar cane bagasse (SCB)
SCB used in this work was previously characterized by 
Pavón-Orozco et  al. (2012). The hydrolysis experiments 
were carried out to a final concentration of 15  mg/mL 
of SCB in a 50 mM citrate buffer pH 5, at 37 °C for 88 h 
and orbital shaking at 120 rpm. Enzymes used were, LrX-
ynA (X) from the L. ramosa H71D strain (this work), a 
commercial cellulase from Aspergillus niger (A) (Sigma-
Aldrich, USA) and a commercial cellulase from Tricho-
derma viridae (T) (Calbiochem, USA), kindly donated 
by Dr. Plinio Guzmán Villate (CINVESTAV-Irapuato). 
In addition, reaction mixtures with different molar ratios 
from 0 to 100% of X combined with A or T were used. In 
all assays, the final molar concentration of the enzymes 
was kept constant at 34 mM. All preparations were sup-
plemented with 0.01 mM β-glucosidase (Sigma-Aldrich, 
USA), to prevent potential inhibition by product, and 
with 0.02% sodium azide, to avoid contamination dur-
ing kinetics. Aliquot samples (400 µL) were taken every 
8 h during 88 h, time points were analyzed for reducing 
sugars (glucose as standard) by the DNS method (Miller 
1959). The hydrolysis reaction was stopped by boiling the 
samples 5 min, followed by centrifugation at 10,000 rpm 
for 5  min. Hydrolysis experiments were performed in 
triplicate. A total amount of 15 mg/mL of SCB in 50 mM 
citrate buffer, pH 5.0, 0.01 mM β-glucosidase and sodium 
azide 0.02%, was used as a blank. For control one, the 
blank was supplemented with the specified proportion 
of X. For control two, the blank was supplemented with 
the specified proportion of A or T. Therefore, a blank 
and two controls were used for each reaction mixture 
and data obtained were used to calculate the amount of 
reducing sugars released from each reaction.

Scanning electron microscopy (SEM) analysis
The effect of xylanase/cellulase activity on the surface of 
SCB, before and after enzymatic treatments of SCB with 
xylanase (X) from the L. ramosa H71D strain (this work), 

http://statpages.org/nonlin.html
http://statpages.org/nonlin.html
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and a commercial cellulase from Aspergillus niger (A) or 
from Trichoderma viridae (T), were analyzed by SEM 
imaging. Sample preparations for SEM were dried in a 
muffle at 50  °C, and then placed directly on a graphite 
layer, coated with gold and finally observed at 10 kV with 
an amplification of ×50 and ×3,000 on a JEOL (JSM 6510 
LB) at the Electronic Microscopy Laboratory (CGSE, 
CINVESTAV-IPN, México).

Results
Identification of H71D strain
The H71D strain was identified based on morphological 
characteristics and molecular markers. Morphological 
characteristics of H71D strain were comparable to those 
described for the type species of L. ramosa (Hoffmann 
2010), e.g., sporangia were light gray colored, subsporan-
gial septum was absent, and sporangiospores were ellip-
soidal (data not shown).

Taxonomic identification was carried out based on 
the DNA sequence of the ITS2, as a molecular marker. 
Thirty-six ITS2 DNA sequences from members of the 

genus Lichtheimia were selected from the GenBank for 
phylogenetic analysis and listed in Table  1. The phylo-
genetic tree was created by the method of maximum 
likelihood using the PhyML (HYK85 model) with 100 
bootstrap replicates. Findings here indicate that the 
H71D strain belongs to L. ramosa clade, which was fur-
ther corroborated by a high bootstrap value (Fig.  1). 
This molecular analysis also revealed that the ITS2 DNA 
sequence from H71D strain is very similar (98% of iden-
tity) to those sequences from L. ramosa GQ342876, 
GQ342875, and GQ342874.

To confirm the identity of L. ramosa H71D, the second-
ary structure of the ITS2 region from strain H71D was 
compared to that from L. ramosa GQ342874, as both 
ITS2 regions are very similar (99% identity, 100% cover), 
and analyzed by RNAfold WebServer using the RNA 
Turner model, (Mathews et  al. 2004) at 37  °C. Notably, 
the ITS2 DNA sequences from L. ramosa H71D and L. 
ramosa GQ342874 differ in only three nucleotides, corre-
sponding to changes U→C, A→G and C→A, indicated 
by arrows (Fig.  2). These nucleotide changes did not 
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Fig. 1  Phylogenetic tree inferred from ITS DNA sequences from Lichtheimia species. The tree was inferred under PhyML algorithm using an HKY85 
model. The numbers on the branches correspond to the robustness (bootstrap values) obtained from 100 replicates
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Fig. 2  ITS2 secondary structures of strains a H71D and b GQ342874, determined with the RNA model Turner, 2004 (RNAfold Web Server); the most 
significant differences in the sequences that determined the secondary structure are indicated with black arrows
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result in different specific structures; however, the sec-
ondary structures showed differences in the MFE values 
of − 242.60 and − 245.30 kcal/mol for L. ramosa H71D 
and L. ramosa GQ342874, respectively.

Determination of optimum growth temperature
To determine the optimum growth temperature of L. 
ramosa H71D, the fungus was cultured on Petri dishes 
with PDA medium at 25, 30, 35, 37, 40 and 45  °C for 
6  days. The optimum growth temperature of L. ramosa 
H71D was 37 °C, with a radial growth of 3.6 cm after 48 h 
of incubation (Fig. 3a).

Xylanase and cellulase production
To evaluate the production of xylanase and cellulase 
activities, L. ramosa H71D was cultured at 37 °C in modi-
fied Mandels and Sternberg liquid media, using 2% (w/v) 

CMC or 2% (w/v) Beechwood xylan as carbon source. 
Xylanase and cellulase synthesis was induced with both 
carbon sources. Greatest xylanase activity was produced 
on CMC (2.1 U/mL) after 4 days of incubation, whereas 
the greatest cellulase activity was observed in the pres-
ence of Beechwood xylan (0.091 U/mL), after two and a 
half days of incubation (Fig. 3b). The xylanolytic activity 
onset occurred on the first day of culture, whereas high-
est activity was reached after 4 days of incubation; sub-
sequently, xylanase activity remained constant for the 
next 4 days. Due to the xylanolytic activity was higher on 
CMC than on Beechwood xylan, the growth kinetic of L. 
ramosa H71D was investigated using CMC as the only 
carbon source (Fig. 3b). Zymogram analysis of the culture 
supernatant from L. ramosa H71D grown on CMC, after 
4 days of incubation at 37 °C, revealed at least five bands 
with xylanolytic activity (Fig. 4a).

Purification of LrXynA
An extracellular xylanase was purified from the culture 
supernatant of L. ramosa H71D grown on CMC as the 
only carbon source. All purification steps are summa-
rized in Table  2. The xylanase was purified 6.4-fold to 
homogeneity with a recovery yield of 38.5% and a specific 
activity of 126.43 U/mg of protein. The purified xylanase 
was separated on 10% SDS-PAGE, and its molecular 
weight was estimated to be 64 kDa (Fig. 4b), and named 
LrXynA. Zymogram analysis of the purified LrXynA, 
using 1% RBB-X as the substrate, showed a single clear 
band (Fig.  4c), thus confirming the xylanase activity of 
LrXynA.
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Fig. 3  Xylanase and cellulose activities during growth of L. ramosa 
H71D. a Radial growth kinetic of L. ramosa H71D at different growth 
temperatures on PDA agar, the diameter was measured every 8 h for 
48 h. b Growth and enzyme activities (xylanase and cellulose) of L. 
ramosa H71D at 37 °C. Dry weight in Mandels and Sternberg culture 
medium (Black up-pointing triangle). Xylanolytic activity produced 
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a carbon source. Cellulolytic activity produced on CMC (Lozenge) or 
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Carbohydrate content
Most xylanases produced by bacteria and fungi reported 
so far are glycosylated. The carbohydrate content of the 
enzyme was determined by the Antrone-sulfuric acid 
method, in order to reveal whether LrXynA is a glycopro-
tein. However, no carbohydrate was detected.

Biochemical properties
The purified xylanase LrXynA from L. ramosa H71D was 
biochemically characterized and the results are described 
below.

Effect of pH on LrXynA activity and stability
The influence of pH on the xylan hydrolysis of LrXynA 
was determined at pH values ranging from 3 to 8 at 50 °C. 
LrXynA showed maximum activity at pH 6 and exhibited 
about 50% of its maximal activity at different pH values 
ranging from 4 to 7.5 (Fig. 5a). The pH stability of LrX-
ynA at different pH values in the range from 3 to 8, after 
3 h of incubation at 50 °C was evaluated. LrXynA was sta-
ble at a broad range of pH (4.5–7), retaining more than 
50% of its original activity (Fig. 5a).

Effect of temperature on LrXynA activity and stability
The effect of temperature on the xylan hydrolysis of LrX-
ynA was determined at different temperatures ranging 
from 30 to 80 °C, at pH 6. LrXynA showed optimal activ-
ity at 65  °C, and displayed 50% of its maximal activity 
over a wide temperature range; from 35 to 70 °C (Fig. 5b). 
In order to evaluate enzyme thermostability, the purified 
LrXynA was incubated at 55, 65 and 75 °C in 50 mM cit-
rate–phosphate buffer, pH 6. The half-lifes of LrXynA at 
55 and 65 °C were 80 and 25 min, respectively (Fig. 5c).

Substrate specificity of LrXynA and kinetic parameters
The substrate specificity of LrXynA was determined 
under optimal assay conditions, using 1% (w/v) Beech-
wood xylan, Birchwood xylan, Oat-spelt xylan, CMC, 
Avicel and Solka floc. LrXynA showed high specificity 
for all of the xylans assayed, manifesting highest affinity 
to Beechwood xylan, whereas no activity was detected 
on CMC, Avicel and Solka floc. To determine the kinetic 
parameters kM and Vmax, the initial reaction rates for 

Table 2  Purification steps of xylanase LrXynA from L. ramosa H71D

Sample Total activity (U) Total protein (mg) Specific activity (U/mg) Yield (%) Purificación (n)

Crude extract 1878.01 95.12 19.75 100 1

70% ammonium sulfate precipitation 991.69 26.24 37.80 52.81 1.9

Ion exchange chromatography 723.12 5.52 131 38.5 6.6
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Fig. 5  Effect of pH and temperature on LrXynA activity and stability. 
a Effect of pH on xylanolytic activity (Black circle) and stability (Black 
square) of LrXynA. LrXynA was incubated in 50 mM citrate–phosphate 
(3–7) or phosphates (6–8) buffer and incubated at 50 °C for 10 min; 
for pH stability, LrXynA was preincubated at 50 °C for 3 h in the same 
buffers. b Effect of temperature on the xylanolytic activity of LrXynA. 
The enzyme was incubated in 0.2% (w/v) Beechwood xylan in 50 mM 
citrate–phosphate buffer, pH 6.0 at different temperatures (30–80 °C). 
c Thermostability of LrXynA at 75 °C (Black up-pointing triangle), 65 °C 
(Black square) and 55 °C (Black diamond suit)
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LrXynA were studied under optimal conditions for 
enzyme activity using Beechwood xylan as the substrate, 
at a concentration ranging from 0.05 to 1%. LrXynA 
exhibited typical kinetics of Michaelis–Menten, with kM 
and Vmax values of 2.421 mg/mL and 6.325 U/mg, respec-
tively (Table 3).

Effect of metal ions on enzyme activity
The effect of several metal ions and EDTA on the enzy-
matic activity of LrXynA was determined at a final con-
centration of 1 and 5 mM each (Table 4). Xylanase activity 
of LrXynA increased 170, 217 and 298% in the presence 
of the metal ions Ca2+, Mn2+ and Fe2+ (5 mM), respec-
tively. The Mn2+ ion increased the activity of LrXynA to 
137 and 217% at a concentration of 1 and 5 mM, respec-
tively; in contrast, the quelant agent EDTA decreased the 
enzymatic activity of LrXynA by 3 and 16%, at concentra-
tions of 1 and 5 mM, respectively. The activity of LrXynA 
was almost completely inhibited by the Hg2+ ion at 1 and 
5 mM (Table 4).

Analysis of LrXynA hydrolysis products
The mode of action of LrXynA towards Beechwood xylan 
was examined by analyzing the production of reducing-
sugar at different times, and the hydrolysis products by 
silica gel thin-layer chromatography (TLC) (Fig.  6). The 
mobility of hydrolysis products after 48  h of incubation 
showed that the main products were xylotriose and xylo-
biose (Fig. 6).

Enzymatic hydrolysis of sugarcane bagasse (SCB)
The xylanase LrXynA from L. ramosa H71D (named as 
X) was functionally characterized by its ability to released 
reduced sugars from SCB alone, or in combination with 
the commercial cellulase from Aspergillus niger (named 
as A) or the commercial cellulase from Trichoderma 
viridae (named as T). The enzymatic hydrolysis of SCB 
(15  mg/mL) was evaluated by either X, A or T (100%), 
and with mixtures of X-A or X-T at different molar 
ratios (25:75, 50:50 and 75:25). In all cases, the reac-
tion mixtures were supplemented with β-glucosidase to 

avoid inhibition by product, maintaining a final enzyme 
concentration at 34  mM. In control experiments with 
all substrates used, β-glucosidase alone did not produce 
any detectable reducing sugars. The tests were carried 
out for up to 88  h, however, 64  h was considered the 
final point because, after this time lapse, the release of 
reducing sugars ceases to be linear. After 64 h of hydrol-
ysis, the xylanase X released 1.54 ±  0.07  µmol/mL, the 
cellulase A released 4.98 ±  0.28  µmol/mL and the cel-
lulase T released 4.16 ± 0.99 µmol/mL of reducing sug-
ars. The hydrolysis at different molar ratios (100, 25:75, 
50:50 and 75:25) was evaluated for the mixtures of X-A 
or X-T. The maximum degradation of SCB was detected 
in the molar ratio of 25X: 75A/T at 64  h. The mix X-T 
released 4.77  ±  0.38  µmol/mL, whereas X-A released 
5.66 ± 0.37 µmol/mL of reducing sugars after 64 h.

Scanning electron microscopy (SEM) analysis
To evidence the impact of the purified xylanase LrXynA 
(X) on the surface of SCB, as well as the effect of this 
enzyme in combination with commercial cellulases (A, 
T), SEM imaging of saccharified SCB was analyzed after 
64 h of incubation at 37 °C (Fig. 7). First, to determine the 
effect of xylanase X on the surface of SCB, the reaction 
mix 100% X was assayed. Then, this methodology was 
used to evaluate a putative cooperative effect between 
xylanase X and a commercial cellulase A or T. For these 
experiments, reaction mixtures with different molar 
ratios (from 0 to 100%) were prepared. For all treat-
ments involving a single enzyme, the biomass surface 
and fibrils became rough and disordered, possibly due to 
the removal of a polysaccharide (Fig.  7, panels C to H), 
compared to that observed for SCB without enzymatic 
treatment (blank), where the biomass surface appears 
integrated and the fibers look plane, smooth and continu-
ous (Fig. 7, panels a, b). When LrXynA was used in isola-
tion, the fiber showed greater porosity and separation of 
microfibrils (Fig. 7, panel d). Interestingly, when the SCB 
was treated with a mix of xylanase/cellulase (25X:75 A or 
T), the surface was disrupted and looked scaly or cracked 
(Fig. 7, panels i–l).

Table 3  Kinetic properties of LrXynA

kM (mg/mL) Vmax (U/mg) kcat (s−1) Catalytic efficiency 
(mL/mg∙s)

Beechwood xylan 2.421 6.325 0.403 0.166

Birchwood xylan 5.155 8.726 0.553 0.107

Oat-spelt xylan 11.66 11.924 0.756 0.065

CMC 0 0 0 0

Solka floc 0 0 0 0

Avicel 0 0 0 0
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Discussion
Several lignocellulolytic enzymes produced by differ-
ent microorganisms have been studied. In the context of 
fungi, Ascomycetes and Basidiomycetes have been widely 
studied; however, very few studies focus on Zygomycetes 
and their enzymes. This is why our study focused on the 
biochemical and functional characterization of one of the 
enzymes involved in the xylanolytic activity produced by 
the thermotolerant Zygomycete, L. ramosa H71D.

Firstly, we identified the H71D strain by its morpho-
logical characteristics and the molecular marker ITS2 
as L. ramosa H71D. Phylogenetically, Mucorales consti-
tute a very old group with considerable molecular dis-
tances between species. The weighted intraspecific ITS 

variability for Zygomycetes is 3.2% (Pawłowska et  al. 
2013); whereas for Ascomycetes vary by 1.96% (Nilsson 
et al. 2008). Furthermore, Walther et al. (2013) emphasize 
the fact that the intraspecific variability in Mucorales dif-
fers among species but can reach more than 5%, as occurs 
in Mucor circinelloides (5.3%) or L. ramosa (7.6%). It has 
been reported that the ITS2 secondary structure analysis 
can improve the phylogenetic resolution obtained from 
the primary sequence (Keller et al. 2008), and the combi-
nation and simultaneous analysis of sequence and struc-
tural ITS2 RNA data supplemented with indel coding 
binaries yielded robust phylogenetic hypotheses as meas-
ured by bootstrap values for ancestral haplotypes (Poczai 
et  al. 2015). Moreover, Alastruey-Izquierdo et  al. (2010) 
studied species boundaries in Lichtheimia using genea-
logical concordance phylogenetic species recognition and 
established that the ITS region is the marker of choice 
for molecular identification of species in Lichtheimia 
because of its high degree of variability and the possibility 
of direct sequencing in most cases. Therefore, due to the 
intraspecific ITS variability observed for L. ramosa, and 
with the aim to give more robustness to the identification 
of the H71D strain, the secondary structure of the ITS2 
region from the H71D strain was analyzed and com-
pared to that from L. ramosa GQ342874, because it is 
one of the sequences with which the H71D strain showed 
greater identity (99% identity, 100% cover). The ITS2 sec-
ondary structures obtained are the same; however, they 
differ in terms of MFE, − 242.60 kcal/mol (H71D strain) 
and − 245.30 kcal/mol (L. ramosa GQ342874), due to the 
three differences in the nucleotide sequence. Hence, phy-
logenetic analysis based on the ITS2 DNA sequence, and 
subsequent ITS2 secondary structure analysis allow us to 
identify the H71D strain as L. ramosa H71D, with a high 
degree of certainty.

Lichtheimia ramosa H71D was able to grow over a wide 
range of temperatures (25-45  °C), manifesting optimal 
growth at 37 °C. A 64 kDa xylanase (named LrXynA) was 
purified from the culture supernatant of L. ramosa H71D 
grown on 2% carboxymethylcellulose (CMC), as the only 
carbon source.

The optimum growth temperature of L. ramosa H71D 
was determined as 37 °C and the colony reached 3.6 cm 
after 48  h of incubation. In agreement to our data, an 
optimum temperature for L. ramosa growth of 35  °C, 
based on its extensive radial growth (5  cm) after 40  h 
of incubation, was reported (Gonçalves et  al. (2013). 
According to the optimum growth temperature of L. 
ramosa H71D (37 °C), this fungus is mesophilic in nature; 
however, L. ramosa H71D can be considered a thermo-
tolerant fungus because it is able to grow over a wide 
range of temperature (25–45  °C). Findings here concur 
with previous reports, e.g., in a study on Mucorales it 

Table 4  Influence of  metal ions and  EDTA on  the xylano-
lytic of LrXynA

Metal ions and EDTA Relative xylanase activity (%)

1 mM 5 mM

Control 100 100

Ca2+ 95.2 ± 2.6 170.5 ± 9.7

Cu2+ 96.7 ± 8.2 72.9 ± 2.4

Fe2+ 157.7 ± 0.8 298.3 ± 4.2

Hg2+ 7.5 7.9 ± 6.0

Li+ 98.4 ± 6.2 121.8 ± 4.4

Mg2+ 119.4 ± 0.5 123.1 ± 11

Mn2+ 137.3 ± 4.6 217.7 ± 4.1

Na+ 105.9 ± 5.15 119.6 ± 6.3

Ni2+ 103.7 ± 7.9 122.5 ± 13

Zn2+ 132.2 ± 2.5 143.1 ± 11.4

EDTA 97.3 ± 4.9 84.6 ± 9.9

X1     X2     X4    X6        0      12     24     36     48
(h)

Xylobiose

Xylotriose

Fig. 6  TLC analysis of Beechwood xylan by LrXynA trough kinetic 
time of 0, 12, 24, 36 and 48 h. Standards: X1 (xylose), X2 (xylobiose), X4 
(xylotetrahose) and X6 (xylohexosa)
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was observed that thermotolerant species had optimum 
growth temperatures above 37 °C, between 37 and 45 °C 
(Hoffmann et al. 2007); in particular, it was reported that 
L. ramosa grew at a temperature that ranged from 24 to 
49 °C (Alastruey-Izquierdo et al. 2010).

The xylanolytic activity produced by L. ramosa H71D in 
the presence of Beechwood xylan or CMC was assessed, 
indicating that xylanase activity was greater when the 
fungus was cultured on CMC compared to than that 
observed for Beechwood xylan as carbon source; thus, 
indicating that CMC is more effective for the production 
of xylanase activity by L. ramosa H71D, under the culture 
conditions tested. Similarly, it was reported that cellu-
lose, cellobiose, and even heterodisaccharide, composed 
of glucose and xylose, induce the production of xylano-
lytic enzymes in Aspergillus terreus (Hrmová et al. 1991). 
The fungus T. reesei also exhibits cellulolytic and xylano-
lytic activity in the presence of cellulose, xylan, or mix-
tures of plant polymers (Amore et al. 2013). Interestingly, 
and in agreement to findings here, when Neurospora 
crassa was cultured on Avicel as the sole carbon source, 
both cellulases and hemicellulases encoding genes were 
induced, and the expression levels of some hemicellu-
lases genes were much higher than those observed when 
N. crassa was cultured on xylan (Sun et al. 2012; Amore 
et al. 2013). The production of xylanases by fungi grown 
on cellulose as the only carbon source has been reported 
in fungi as Hypocrea jecorina (Stricker et  al. 2008) and 
Trichoderma harzianum (Hrmová et al. 1989). Xylanase 
production by L. ramosa H71D (2.1 U/mL) is compara-
ble to that reported for L. ramosa (1.80 U/mL) via solid 
state bioprocess, utilizing waste from Brazilian savannah 
fruit (de Silva et al. 2013); and for L. ramosa (2.54 U/mL) 
grown in wheat bran-based medium (Gonçalves et  al. 
2013).

In this study, we have purified, characterized, and 
quantitatively evaluated the activity of a xylanase from 
L. ramosa H71D. Zymogram analysis of LrXynA using 
10% SDS-PAGE revealed a band with an estimated MW 
of approximately 64 kDa, with xylanolytic activity. Most 
xylanases produced by bacteria and fungi are proteins 
pertaining to a subunit with a wide molecular weight 
range of 8–145 kDa (Beg et al. 2001). LrXynA is not a gly-
coprotein; however, it has been estimated that over half 
the proteins in nature are glycosylated (Apweiler et  al. 
1999). Reports indicate that in the case of xylanases, 

carbohydrate decoration on β-xylosidases contributes 
10–30% of their molecular weight. Exceptionally, fungal 
β-xylosidases from Humicola grisea var. thermoidea and 
Paecilomyces thermophila are not glycosylated (Knob 
and Carmona 2010) and four xylanases (xyn10A, xyn10B, 
xyn11A, xy11B) from Penicillium oxalicum GZ-2 are not 
glycosylated (Liao et al. 2015).

We compared certain biochemical characteristics of 
LrXynA with those of other fungal xylanases. The optimal 
pH assay showed that the enzyme had maximal activity 
at 6, a value which falls within the range (2–8) of optimal 
pH values for several fungal xylanases (Beg et  al. 2001). 
Xylanases obtained from different microorganisms with 
optimal function at pH 6 have been reported, such as 
those from P. oxalicum GZ-2 (Liao et al. 2015), Humicola 
insolens Y1 (Shi et  al. 2015), Remersonia thermophila 
CBS 540.69 (McPhillips et al. 2014). The pH stability data 
of LrXynA (4.5–7) was similar to other isolated xylanases, 
e.g., the xylanase from R. miehei retained more than 90% 
of its activity at pH values of 5 and 6.5 after 60  min at 
50 °C (Fawzi 2011); whereas, the xylanase from Thielavi-
opsis basicola exhibited alkaline stabilities ranging from 
pH 3–11 (Goluguri et  al. 2012), and the xylanase from 
Chaetomium sp. retained more than 80% of its activity 
after 30 min at 50 °C, when tested at the pH range from 
4.5 to 11 (Jiang et al. 2010). The optimal temperature for 
LrXynA was 65  °C, xylanases from other microorgan-
isms exhibited an optimal activity at 65 °C, for example, 
that from Paenibacillus sp. DG-22 (Lee and Lee 2014) 
and Remersonia thermophila CBS 540.69 (McPhillips 
et  al. 2014). This value falls within the range of opti-
mal temperature values of several fungal xylanases. For 
example, 40  °C is the optimal temperature for the xyla-
nase from Leucoagaricus gongylophorus (Moreira et  al. 
2014). Recently, our research group reported an optimal 
temperature of 85  °C for the xylanase TtXynA from the 
thermophilic fungus Thielavia terrestris Co3Bag1, which 
at that moment was the highest optimal temperature for 
fungal xylanases (García-Huante et  al. 2017). Neverthe-
less, there are reports of non-fungal xylanases with opti-
mal temperatures higher than 85  °C, such as SSO1354 
from Sulfolobus solfataricus at 95  °C (Maurelli et  al. 
2008) and XYNB from Dictyoglomus thermophilum at 
100  °C (Li et  al. 2013). Thermostability assays indicated 
that LrXynA displays low thermostability at 75 °C; how-
ever, the enzyme exhibited half-lifes of 25 and 80 min at 

(See figure on previous page) 
Fig. 7  SEM analysis of untreated SCB samples (a, b) and with enzymatic treatment at 37 °C during 64 h of incubation. Using 100% of LrXynA from L. 
ramosa H71D (c, d); 100% of cellulase from A. niger (e, f); 100% of the cellulase from T. viridae (g, h); a mixture (25:75) of LrXynA/cellulase from A. niger 
(i, j), and a mixture (25:75) of LrXynA/cellulase from T. viridae (k, l). On the left side the micrographs are shown with an amplification of ×50, and on 
the right side are shown with an amplification of ×3000
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65 and 55  °C, respectively. At 65  °C, the thermostabil-
ity of LrXynA (t½ = 25 min) is lower than that displayed 
by the xylanase TtXynA (t½ = 23 days) from T. terrestris 
Co3Bag1 (García-Huante et al. 2017) but higher than that 
reported for the xylanase XynAS9 (t½ =  16  min) from 
Streptomyces (Wang et al. 2011).

It has been reported that over 90% of Beechwood and 
Birchwood xylan are composed of xylose. In Beechwood 
xylan, xyloses are mainly linked by 2,4 and 1,4-linkages; 
in Birchwood xylan, xyloses are mainly linked by 1,4-link-
ages, whereas most of the Oat-spelt xylan contains xylose 
and arabinose with minor amounts of glucose and galac-
tose (Liab et  al. 2000). Hence, our results suggest that 
LrXynA has higher affinity towards 1,4-linkages between 
xyloses, present in Beechwood and Birchwood xylans, 
but when the amount of xylose decreases, as in Oat-spelt 
xylan, its affinity also decreases. Other reported xyla-
nases show higher affinity for Beechwood xylan than 
for Birchwood xylan, e.g., XynGR40 (kM =  1.8  mg/mL) 
from the environmental DNA of goat rumen (Wang et al. 
2011) and TtXynA (kM = 0.41 mg/mL) from T. terrestris 
Co3Bag1 (García-Huante et  al. 2017). However, there 
are reports of other xylanases that show greater affin-
ity for Oat-spelt xylan than for Beechwood xylan (Liao 
et al. 2015). LrXynA did not show activity on CMC, Solka 
floc, and Avicel, and reports describe some other xyla-
nases such as xyn10A, xyn10B, xyn11A, xy11B) from P. 
oxalicum GZ-2 to be active towards polymeric xylans; 
although not on other substrates (Liao et  al. 2015). The 
kinetic parameters of LrXynA and the kM and Vmax val-
ues, determined for each of the xylan substrates used in 
this study, are similar to those obtained for other fungal 
xylanases. The LrXynA kM value of 2.42 mg/mL is similar 
to those reported for rXynSW3 xylanase from Streptomy-
ces sp. SWU10 of kM = 2.3 mg/mL (Sukhumsirichart et al. 
2014) and xylanase XYN2 from T. reesei of kM = 2.1 mg/
mL (He et  al. 2009). Likewise, xylanases with kM val-
ues higher than that observed for LrXynA have been 
reported, e.g., endo-1,4-beta xylanase B (kM =  8.9  mg/
mL) from Aspergillus niger BCC14405 (Krisana et  al. 
2005) and Xyn II (kM  =  5.56  mg/mL) from Aspergil-
lus usamii (Zhou et  al. 2008). The Vmax value (6.325 U/
mg) of LrXynA is higher than the Vmax value reported 
for rXynSW3 (0.35 U/mg) of Streptomyces sp. (Sukhum-
sirichart et al. 2014), but it is lower than those reported 
for other xylanases, e.g., xylanase (Vmax = 1235 U/mg) of 
Talaromyces thermophilus (Maalej et al. 2009) and xyla-
nase (Vmax = 113.5 U/mg) of R. miehei (Fawzi 2011).

The general consensus opines that some metal ions and 
reagents significantly affect xylanase activities (Juturu 
and Wu 2012). Therefore, we evaluated the effect of metal 
ions and EDTA on the xylanolytic activity of LrXynA. 
The Fe2+ ion 5  mM is presented as the major activator 

for increasing the activity of the xylanase LrXynA from L. 
ramosa by 298%. However, it has been reported that Fe2+ 
1 mM inhibits the activity of the XYN11A from P. oxali-
cum by 68% (Liao et  al. 2014). The Mn2+ ion increased 
the activity of LrXynA by 137 and 217% at a concentra-
tion of 1 and 5 mM, respectively. The activity of a xyla-
nase from T. lanuginosus DSM 5826 was also stimulated 
by 137% (Lin et  al. 1999), whereas a 40% decrease was 
observed for a xylanase from Streptomyces rameus 
(Li et  al. 2010), in the presence of the metal ion Mn2+. 
The metal ion Hg2+ is known to be toxic to enzymes, 
as it binds to thiol groups present in the active sites of 
the enzyme, causing irreversible inactivation. This ion 
Hg2+ (1 and 5  mM) decreased the xylanolytic activity 
of LrXynA by 93%. It also inhibits 3 out of 4 xylanases 
(xyn10A, xyn10B, xyn11B) from P. oxalicum (Liao et al. 
2015). Other reports state that the Hg2+ ion did not com-
pletely inhibit xylanase activity e.g., the xylanase xyn11A 
(24%, at 10 mM) from P. oxalicum (Liao et al. 2015), and 
the xylanase TtXynA (55%, at 1  mM) from T. terrestris 
(García-Huante et  al. 2017). We also assessed EDTA, 
a metal chelator that may decrease xylanase activity. 
This would suggest that the enzyme needs a metal as a 
cofactor (Knob and Carmona 2010). The chelating agent 
EDTA, at final concentrations of 1 and 5 mM, decreased 
the activity of LrXynA by 3 and 16%, respectively. A 
decrease of 9% in the activity of a xylanase from L. sul-
phureus in the presence of EDTA 5 mM was reported by 
(Lee et al. 2009).

TLC analysis of final products from hydrolysis of 
Beechwood xylan by LrXynA were mainly xylotriose 
and xylobiose; therefore, LrXynA can be classified as an 
endo-xylanase without β-xylosidase activity, as xylose 
was not observed as a product even after 48 h of incuba-
tion. According to Knob and Carmona (2010) xylotriose 
is the smallest oligomer produced by most known xyla-
nases. Nevertheless, other xylanases from fungi, such as 
L. sulphureus (Lee et al. 2009) and P. oxalicum (Liao et al. 
2014) hydrolyze xylans to predominantly produce xylobi-
ose and xylotriose.

The individual action of xylanase LrXynA (X), a com-
mercial cellulase from Aspergillus niger (A), and a com-
mercial cellulase from Trichoderma viridae (T) in the 
hydrolysis of SCB, as well as the effect of LrXynA in 
combination with a commercial cellulase (A or T), was 
quantified by the liberation of reducing sugars during 
the hydrolysis of SCB. Data obtained indicated that a 
positive effect in the hydrolysis of SCB occurred mainly 
in both of the mixtures studied; X-T and X-A. To reveal 
the impact of xylanase LrXynA, alone and in combina-
tion with commercial cellulases A or T, on the surface 
of SCB, samples of this substrate before and after enzy-
matic treatments were analyzed by SEM imaging. The 
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micrographs showed the damage carried out by each of 
the enzymes separately; nevertheless, the damage was 
more noticeable when the enzymes were mixed (X-T and 
X-A). In this case, when xylanase LrXynA (X) was used 
in isolation, the fiber showed greater porosity and sepa-
ration of microfibrils; a similar effect was observed with 
the xylanase QG-11-3 from Streptomyces sp. on euca-
lyptus kraft pulp (Beg et  al. 2000). Furthermore, when 
SCB was treated with the cellulases A or T, the layers of 
fiber appeared to break, exposing the inner channels of 
the fiber. Our findings concur with those that describe 
the action of CELULASE CE 2 from Trichoderma long-
brachiatum (Proenzimas, Cali, Colombia) on SCB (Quin-
tero and Cardona 2009). Hence, a clear positive effect on 
the hydrolysis of SCB was observed when LrXynA was 
combined with any of the commercial cellulase prepara-
tions. This is probably due to the removal of hemicellu-
lose by the action of LrXynA, which leads to an improved 
enzymatic hydrolysis of cellulose fibers by the action of 
the commercial cellulases. A synergic effect that occurs 
between two individual non-complexed pure enzymes 
of two aerobes: CflXyn11A xylanase from Cellulomomas 
flavigena and TrCel7B cellulase from Trichoderma reesei, 
during the hydrolysis of sugarcane bagasse has been pre-
viously reported by our research group (Pavón-Orozco 
et  al. 2012). Overall, data obtained in this work suggest 
that LrXynA may represent an efficacious candidate for 
the degradation of plant cell biomass.

On the basis of morphological characteristics, the 
H71D strain was identified as L. ramosa (sporangia were 
light gray colored, subsporangial septum was absent, and 
sporangiospores were ellipsoidal). Phylogenetic analysis 
was based on the molecular marker ITS and its second-
ary structure. The study of new strains, especially those 
exhibiting fast-growing, as well as the biochemical char-
acterization of its enzymes is important not only from 
an evolutionary point of view but also from an economic 
one, as demand has increased in the agricultural context 
with the production of biofuels from agricultural wastes.

There are few reports on glycosyl hydrolases produced 
by members of the Lichtheimia genus. To our knowl-
edge, this study represents the first report on biochemi-
cal and functional characterization of a xylanase from a 
filamentous fungus belonging to the Zygomycete genus 
Lichtheimia. The xylanase LrXynA from L. ramosa H71D 
is considered heat-tolerant and heat stable; biochemi-
cal properties that make it appropriate for application in 
different biotechnological processes such as the biofuel 
industry, the manufacture of bread and animal feed and 
in the treatment of lignocellulosic residues. The biocon-
version of hemicellulose to value-added products using 
xylanases thus offers many promising applications.
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