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Abstract 

Root exudates are chemical compounds that are released from living plant roots and provide significant energy, 
carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora 
associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of 
the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a com‑
prehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard 
soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this 
strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole 
growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome 
consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants 
associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of 
note, the coexistence of genes encoding several iron–sulfur cluster independent isoenzymes in the genome indi‑
cated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also 
unraveled the unique features of d-lactate dehydrogenase of strain S5.2 in the study. Collective information of this 
work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.
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Introduction
Root exudates are rhizodeposits that are released from 
living plant roots into the surrounding rhizosphere (Uren 
2007). These compounds mainly consisted of water-sol-
uble sugars, organic acids, and amino acids, providing 
significant energy sources for microbes inhabiting the 
rhizosphere and its vicinity (Brimecombe et  al. 2001). 
This represents a form of plant–microbe interaction that 

enables colonization and development of active micro-
bial populations in plant roots and the surrounding soil 
(Bais et al. 2006; Haichar et al. 2008; Nihorimbere et al. 
2011). Although the nature of exudates varies according 
to growth stages of a given plant, the composition of root 
exudates is also influenced by environmental factors such 
as pH, temperature, availability of nutrients, and presence 
of microorganisms (Nihorimbere et  al. 2011; Singh and 
Mukerji 2006). Furthermore, the differences in exudation 
profiles directly impact the composition of the micro-
flora inhabiting the specific niche that the rhizosphere is 
(Singh and Mukerji 2006; Mondy et  al. 2014). The exu-
dates shape the microflora associated with the plant, and 
further influences plant health and productivity, hence 
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a better understanding of the trophic link that is estab-
lished between the plant and the associated bacteria is 
necessary.

Grapevine (Vitis vinifera L.) is a non-climacteric fruit 
crop that grows as deep-rooted perennial plant (Archana 
et al. 2011). Pseudomonas spp. namely Pseudomonas flu-
orescens, P. lini, P. mendocina, P. putida, and P. syringae 
were among the soil inhabitants commonly found at both 
the acidic and alkaline soils of these native grapevines 
(Chan et al. 2016; Chenier et al. 2008; Chong et al. 2012, 
2016; Karagöz et  al. 2012). Our previous investigation 
on microbiota inhabiting the vineyard soil in Riquewihr, 
France has led to the isolation of P. mendocina strain S5.2 
that harbor resistance traits towards various heavy met-
als (Chong et al. 2012).

In this study, a further elucidation of utilization of 
grapevine related compounds was conducted to gain 
insight on the intricate interaction occurring between 
the strain and the grapevine. Our work aimed at inclu-
sively determining the phenotypic and genomic profiles 
associated with grapevine exudate utilization. With ref-
erence to the collective reports of various organic acids 
detected from grapevine and rootstock related exudates, 
a gene-trait matching approach followed by a compara-
tive analysis was employed to unravel the complete pro-
file of genetic determinants associated with the displayed 
utilization of the carbon compounds by this strain.

Materials and methods
Isolation and identification of bacteria
Pseudomonas mendocina strain S5.2 was isolated from a 
vineyard soil in Riquewihr, in the Alsace region of France. 
Isolation of this strain was performed using KG mini-
mal medium as previously described (Chong et al. 2016). 
Routine maintenance of the culture was performed on 
Luria–Bertani (LB) (Merck, NJ, USA) medium at 28 °C.

Identification of the strain was conducted via 16S 
rRNA gene sequencing followed by phylogenetic analy-
sis and pairwise similarity analysis using EzBioCloud 
database (http://www.ezbiocloud.net/identify) (Kim 
et  al. 2012). Phylogenetic analysis was performed using 
molecular evolutionary genetic analysis (MEGA) version 
6.06 (Tamura et al. 2013) with the list of hits from EzBio-
Cloud 16S rRNA database. Scanning electron micros-
copy (SEM) observation of strain S5.2 was performed 
with osmium tetroxide fixing and ethanol dehydration 
procedures followed by viewing using a SEM TM3030 
(Hitachi, Japan) device in accordance to Lau et al. (2014) 
with minor modification.

Phenotype microarray analysis
The carbon utilization profile of strain S5.2 was assessed 
using the 96-well PM1 and PM2A plates (Biolog, USA). 

In brief, the overnight cultured bacterial colonies were 
inoculated into IF-0a GN/GP base inoculating fluid 
(Biolog, USA) to reach 85% transmittance (T) according 
to the manufacturer’s protocol. Aliquots (100  µl) of cell 
suspension and 1× Biolog redox dye mix A were inocu-
lated into each well of the plates respectively, followed 
by incubation at 28 °C. The utilization and growth of 192 
different carbon substrates from the plates were moni-
tored for 48 h with readings taken at 15 min intervals.

The kinetic information was recorded and quantified 
using OmniLog OL_FM_12 kinetic software (Biolog, 
USA) followed by data analysis (Bochner et al. 2001). In 
the event of bacterial growth, photographic readings of 
colour intensity resulted in dye reduction were repre-
sented in OmniLog units (OU) (Khatri et  al. 2013). The 
threshold for positive bacterial growth was established 
at 100 OU, calculated with the subtraction of maximum 
growth value with the first reading (0 h).

Genome sequencing, assembly and annotation
Genomic DNA of P. mendocina S5.2 was purified using 
MasterPure DNA Purification Kit (Epicentre, Illumina 
Inc., Madison, Wisconsin, USA) followed by purity meas-
urement and quantification using NanoDrop 2000™ 
spectrophotometer (Thermo Scientific, MA, USA) and 
Qubit 2.0® fluorometer (Life Technologies, MA, USA), 
respectively. Sequencing library was prepared from puri-
fied genomic DNA according to the guidelines of Tem-
plate Preparation Kit (Pacific Biosciences, Inc., CA) with 
library size targeted at 20  kb. Sequence collection was 
then carried out in 2 SMRT cells using P6/C4 chemistry 
on a PacBio RS II platform (See-Too et al. 2016).

De novo assembly of the long reads was performed 
using the Hierarchical Genome Assembly Process 
(HGAP) version 2.0 using the PacBio SMRT portal. 
Gepard dotplot program (Krumsiek et  al. 2007) was 
employed to verify the circularity of the resulted contigs 
followed by circularization of overlapping ends using 
minimus2 pipeline in AMOS software package (Trean-
gen et  al. 2011). Genome annotation was subsequently 
performed using Rapid Prokaryotic Genome Annotation 
(PROKKA)(Seemann 2014).

Bioinformatics analyses
Candidate genes potentially involved in the metabolism 
of carbon sources were validated using the rapid annota-
tion subsystems technology (RAST) server (Aziz et  al. 
2008) and NCBI prokaryotic genome annotation pipe-
line (PGAP). Subsequently, MEGA version 6.06 was also 
employed for multiple sequence alignment of the amino 
acids. Additionally, pairwise average nucleotide identity 
(ANI) analysis using strain S5.2 and other relative Pseu-
domonas spp. was conducted using JSpeciesWS (http://

http://www.ezbiocloud.net/identify
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jspecies.ribohost.com/jspeciesws/) with above cutoff 
more than 95% (Richter et  al. 2016). Lastly, the synteny 
and comparative analysis on the genes of interest were 
conducted based on SyntTax web server using default 
parameter followed by manual verification (Oberto 2013).

Results
Properties of P. mendocina strain S5.2
SEM showed that cells of strain S5.2 were 1.5–2.5 µm in 
length and 0.8–1.0 µm in width (Additional file 1: Figure 
S1). Pairwise similarity analysis on EzBioCloud database 
followed by phylogenetic analysis using complete nucleo-
tide sequences of 16S rRNA showed that strain S5.2 was 
closely related to P. mendocina NBRC 14162T (Additional 
file 2: Figure S2). This observation was later verified with 
ANIb analysis (Additional file 3: Table S1).

Organic acid utilization profiling
Among the 192 putative carbon sources tested, P. men-
docina S5.2 was able to utilize 58 compounds as sole car-
bon sources. With reference to the grapevine and root 
exudates related organic acids, positive utilization was 
detected for l-lactic acid, succinic acid, d-malic acid, 
l-malic acid, d, l-malic acid, citric acid and fumaric acid, 
with average OU values at 243 ±  55 and growth value 
up to 293 with citric acid as sole carbon (Table  1). The 
inability of the strain to utilize oxalic, sorbic and all enan-
tiomers of tartaric acids with average growth values of 
26 ± 7 was also observed (Table 1).

Genome properties
The genome of P. mendocina S5.2 contained a ~ 5.12 Mb 
circular chromosome and a ~ 0.25 Mb megaplasmid that 
was later designated as pPME5. They were assembled in a 
single contig each with average coverages of 181.55× and 
206.96× obtained for the chromosome and pPME5 plas-
mid, respectively. The mean G+C content of the chromo-
some (62.4%) was found to be higher than that of pPME5 
(54.7%). Among the 4641 predicted protein coding genes, 
a total of 3747 (80.7%) could be associated with clear 
functions. In contrast, only 24 out of 319 (7.5%) open 
reading frames of pPME5 were predicted to have known 
functions (Table 2).

Genomic features associated with organic acid utilization
The collective genomic and phenotypic information in 
the study has enabled the identification of genes for the 
specific carbon utilization. The circular chromosome of 
P. mendocina strain S5.2 was found to harbor a series 
of orthologous genes and operons associated with utili-
zation traits of grapevine and root related organic acids 
(Fig. 1; Table 1).

For utilization of succinic acid, the sdhCDAB operon 
encoding succinate dehydrogenase (SDH) complex, a tri-
carboxylic (TCA) cycle enzyme was identified (Table 3). 
The reported catalysis of SDH involves the oxidation 
of succinate to fumarate, coupled with the reduction of 
ubiquinone to ubiquinol (Ackrell et al. 1992; Westenberg 
and Guerinot 1999).

Table 1  Utilization of grapevine and root exudates related compounds as sole carbon source by P. mendocina strain S5.2

Microplate Plate position Carbon source Growth observed Omnilog unit (OU)

PM1 A5 Succinic acid + 288

B9 l-Lactic acid + 257

C3 d, l-Malic acid + 255

C7 d-Fructose − 36

C9 α-d-Glucose + 233

D11 Sucrose − 32

E2 m-Tartaric acid − 17

F2 Citric acid + 293

F5 Fumaric acid + 256

G11 d-Malic acid + 126

G12 l-Malic acid + 270

PM2A C2 l-Glucose − 22

D12 Butyric acid + 159

F2 Malonic acid + 206

F4 Oxalic acid − 25

F9 Sorbic acid − 21

F11 d-Tartaric acid − 18

F12 l-Tartaric acid − 21

http://jspecies.ribohost.com/jspeciesws/
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Besides, an operon associated with lactic acid utiliza-
tion encoding putative NAD-independent lactate dehy-
drogenase (iLDH) activity was also present. This enzyme 
possibly catalyzes the oxidation of lactate to pyruvate, a 

feature essential for most lactate-utilizing bacteria (Diez-
Gonzalez et al. 1995; Gao et al. 2015; Gibello et al. 1999; 
Goffin et  al. 2004). Components of this operon also 
included a lactate permease (lldP), l-lactate dehydro-
genase (lldD) and d-lactate dehydrogenase gene (dld) 
indicating that strain S5.2 could degrade both lactate 
enantiomers (Table 3). Adjacent to these genes was lldR 
that encoded a transcriptional regulator possibly control-
ling the expression of the above-described genes. Com-
parative analysis with other Pseudomonas strains showed 
a high degree of synteny for the lldRPD genes (Fig.  2). 
Although sharing the identical flavin adenine dinu-
cleotide (FAD)-binding site with all compared strains, 
sequence similarity search showed that the dld of strain 
5.2 was similar only to those of some Pseudomonas spp., 
Alcaligenes spp., and Deftia spp. strains.

Table 2  General features of  the P. mendocina strain S5.2 
genome predicted in PGAP

Genetic elements Chromosome Plasmid pPME5

Size (bp) 5,120,146 252,328

G+C content (%) 62.4 54.7

Protein coding genes 4641 319

Genes with predicted functions 3747 24

rRNA genes (5S, 16S, 23S) 4, 4, 4 0, 0, 0

tRNA genes 66 4

Other RNA genes 4 0

Fig. 1  Organization and synteny of putative gene clusters and operons correlated to succinic, malic, fumaric and citric acids utilization of P. mendo-
cina S5.2
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The growth of P. mendocina strain S5.2 was observed in 
the presence of malic acid enantiomers. Two distinctive 
genes encoding malate dehydrogenase (SfcA) and malate 
quinone oxidoreductase (MQO) were found  (Table  3). 

These enzymes shared a general activity catalyzing the 
oxidation of malate to oxaloacetate. SfcA is a cytoplas-
mic malate dehydrogenase that reversibly oxidizes malate 
and is a principal enzyme in the TCA cycle that requires 

Table 3  Identified ORFs in the chromosome associated with organic acid and sugar metabolism of P. mendocina strain 
S5.2

Locus tag Annotation/predicted Role ORF Position in genome Size (bp) Orientation

Succinic acid (Succinate + ubiquinone → fumarate + ubiquinol)

DW68_012890 Succinate dehydrogenase (iron–sulfur subunit) sdhB 2,790,535–2,791,242 708 ←
DW68_012895 Succinate dehydrogenase (flavoprotein subunit) sdhA 2,791,254–2,793,026 1773 ←
DW68_012900 Succinate dehydrogenase (cytochrome b small subunit) sdhD 2,793,030–2,793,398 369 ←
DW68_012905 Succinate dehydrogenase (cytochrome b560 subunit) sdhC 2,793,392–2,793,766 374 ←
Lactic acid

DW68_005140 d-Lactate dehydrogenase dld 1,090,088–1,091,806 1719 ←
DW68_005145 l-Lactate dehydrogenase lldD 1,091,811–1,092,950 1140 ←
DW68_005150 l-Lactate permease lldP 1,093,035–1,094,726 1692 ←
DW68_005155 Lactate responsive regulator lldR 1,095,022–1,095,789 768 →
Malic acid (malate ⇌ oxaloacetate)

DW68_020815 Malate dehydrogenase sfcA 4,486,244–4,487,512 1269 ←
Malic acid (malate → oxaloacetate)

DW68_008120 Malate:quinone oxidoreductase mqo 1,719,586–1,721,193 1608 →
Fumaric acid (fumarate ⇌ Malate)

DW68_007085 Fumarate hydratase class I fumA 1,503,228–1,504,751 1524 ←
DW68_014875 Fumarate hydratase class II fumC 3,205,005–3,206,399 1395 →
Citric acid (citrate → isocitrate)

DW68_010115 Aconitate hydratase A acnA 2,182,629–2,185,370 2742 →
DW68_013280 Aconitate hydratase B acnB 2,870,427–2,873,027 2601 →

Fig. 2  Left phylogenetic analysis of putative d-lactate dehydrogenase (DLD) of strain S5.2 relative to other Pseudomonas, Alcaligenes faecalis and 
Deftia spp. Right comparison and synteny of lldRPD and dld genes among different strains. Positions of the compared DLD related genes in the 
phylogenetic tree were marked in respective shapes
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nicotinamide adenine dinucleotide (NAD) as an electron 
acceptor (van der Rest et  al. 2000). Alternatively, MQO 
is FAD-dependent, membrane associated protein that 
irreversibly oxidizes malate and donates electrons to qui-
nones of the electron transfer chain (Kather et al. 2000).

Following the fumaric acid utilization phenotype, the 
genome also harbored genes encoding two classes of 
fumarate hydratase, namely FumA and FumC (Table  3). 
FumA is a class I fumarase that catalyzes the interconver-
sion of fumarate to malate and requires iron–sulfur (Fe–
S) cluster as a cofactor (Chenier et  al. 2008; Flint et  al. 
1992). In contrast, FumC does not rely on Fe–S clusters 
for hydration of fumarate to malate (Chenier et al. 2008; 
Hassett et  al. 1997). Coexistence of the isoenzymes in 
the genome may permit the strain to better survive 
under iron deficiency conditions. Genes for aconitate 
hydratases, AcnA and AcnB were also detected (Table 3) 
in the genome ensuing the proficient metabolism of cit-
ric acid reported above. Acn proteins catalyze the stere-
ospecific isomerization of citrate to isocitrate and require 
Fe–S as an enzyme cofactor, as does FumA (Beinert and 
Kennedy 1993; Mailloux et al. 2006).

Discussion
The present work has demonstrated the carbon utiliza-
tion signature of P. mendocina strain S5.2 in relation with 
in silico identification of genomic features associated 
with grapevine organic acid utilization. Tartaric, malic, 
oxalic, lactic, citric and succinic acids are among the 
main organic acids detected in grapevines and root exu-
dates across various genotypes (Andersen and Brodbeck 
1989; Cançado et al. 2009; Dharmadhikari 1994; Kliewer 
1966; Li et  al. 2013; López-Rayo et  al. 2015; Mato et  al. 
2007). The illustrated utilization profile of these organic 
acids by P. mendocina strain S5.2 has provided new 
insights into the diversity of carbon utilization by P. men-
docina. Subsequently, the gene-trait matching approach 
has demonstrated that these organic acids are catabolic 
substrates for the strain, involving the concerted actions 
of enzymes featured in TCA cycle and possibly other 
metabolic pathways. Such profile may also reflect on the 
specific nutrient requirements of the strain towards the 
given niche of the rhizosphere, in which the composition 
of the deposited exudates was affected by the aforemen-
tioned environmental factors (Nihorimbere et  al. 2011; 
Singh and Mukerji 2006).

As an update on the previously reported draft genome 
of P. mendocina strain S5.2, the availability of complete 
genome sequences has allowed accurate definition of 
gene coordinates and recognition of paralogous gene 
families. Of note, the unique feature of DLD gene of 
strain S5.2 was highlighted in this study through amino 
acid sequence alignment and phylogenetic analysis. 

Despite sharing a high degree of synteny and similar-
ity for genes encoding LldR, LldP and LldD, the DLD of 
strain S5.2 did not group with the putative DLD2/fer-
rodoxin of most Pseudomonas spp. Instead, the DLD of 
strain S5.2 shared higher similarity withs DLD of P. alca-
liphila and other betaproteobacteria strains (Alcaligenes 
faecelis and Deftia sp.) (Fig. 2). Essentially, phylogenomic 
analysis conducted by Gomila and coworkers (2015) 
showed that P. mendocina and P. alcaliphila were in 
fact clustered under P. oleovorans group which is closely 
related to P. aeruginosa group. Hence such differential 
grouping of DLD even among the closely related groups 
of Pseudomonas might represent distintive catalytic 
mechanism required for d-lactate metabolism.

On the other hand, the identification of several isoen-
zymes has indicated differential catabolic preferences 
in relation with changes in environmental factors. For 
instance, the identification of Fe–S independent isoen-
zymes for utilization of malic acid, MQO and fumaric 
acid, FumC could be an indication of the essentiality of 
these enzymes during iron deficiency events. In addi-
tion, the absence of MQO has been shown to impede 
utilization of acetate, ethanol and acyclic terpenes in 
Pseudomonas strains, hence implying the essentiality of 
MQO in the metabolic versatility of strain S5.2 (Förster-
Fromme and Jendrossek 2005; Kretzschmar et al. 2002).

Interestingly, strain S5.2 was shown to exhibit some 
resistance to copper (Chong et  al. 2012). It is also pos-
sible to relate the carbon utilization profile with heavy 
metal resistance traits. Indeed, various carbon sources 
can serve as an effective electron donor for a given metal 
resistance, as observed with the reduction rate of hexa-
valent chromium [Cr(VI)] and trivalent iron [Fe(III)] 
by Cellulomonas sp. ES6 in presence of molasses ver-
sus pure sucrose (Field et al. 2013). Also, a combination 
of various carbon sources was required for chromium 
reduction by Klebsiella sp. PB6 and by a bacterial con-
sortium in contaminated sediments (Smith et  al. 2002; 
Wani and Omozele 2015). Given the heavy metal resist-
ant traits displayed by Pseudomonas strains in previous 
studies (Chan et  al. 2016; Chong et  al. 2012, 2016), the 
preferences in utilizing the specific carbon compounds 
for in situ remediation of copper and other metal ions for 
instance in vineyard environments should be conducted 
in future research.

In conclusion, the present work has demonstrated the 
carbon utilization signature of P. mendocina strain S5.2, 
together with in silico identification of genomic features 
associated with grapevine organic acid utilization. Taken 
together with the relative cooper resistance identified 
earlier (Chong et  al. 2012), this work demonstrates the 
remarkable adaptation of P. mendocina strain S5.2 to the 
grapevine and vineyards environment.
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