
Hu et al. AMB Expr  (2017) 7:69 
DOI 10.1186/s13568-017-0373-6

ORIGINAL ARTICLE

Isolation of nontuberculous 
mycobacteria from soil using Middlebrook 
7H10 agar with increased malachite green 
concentration
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Abstract 

Environmental exposure is considered to be responsible for nontuberculous mycobacterial infections in humans. 
To facilitate the isolation of mycobacteria from soil, Middlebrook 7H10 agar was optimized as an enhanced selective 
medium by increasing the concentration of malachite green. A series of modified Middlebrook 7H10 agar media 
with malachite green concentrations ranging from 2.5 to 2500 mg/L was evaluated using 20 soil samples decontami-
nated with 3% sodium dodecyl sulfate plus 2% NaOH for 30 min. Among these modified Middlebrook 7H10 media, 
the medium with malachite green at a concentration of 250 mg/L, i.e., at the same concentration as in Löwenstein–
Jensen medium, was the most effective in terms of the number of plates with mycobacterial growth. This medium 
was further evaluated with 116 soil samples. The results showed that 87.1% (101/116) of the samples produced myco-
bacterial growth, and 15 samples (12.9%) produced no mycobacterial growth. Of the plates inoculated with the soil 
samples, each in duplicate, 5.2% (12/232) showed late contamination. In total, 19 mycobacterial species were isolated, 
including seven (36.8%) rapidly growing mycobacteria and 12 (63.2%) slowly growing mycobacteria. Our results dem-
onstrate that the modified Middlebrook 7H10 agar with 250 mg/L malachite green is useful for the primary isolation 
of nontuberculous mycobacteria from soil.
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Introduction
Nontuberculous mycobacteria (NTM) are members of 
the genus Mycobacterium, excluding Mycobacterium 
tuberculosis complex and Mycobacterium leprae. M. 
tuberculosis is one of the most important pathogens from 
this genus. It has been estimated by the World Health 
Organization that over one-third of the world population 
is infected with M. tuberculosis (Glaziou et  al. 2013). 
Owing to effective measures, the rates of tuberculosis 
(TB) have gradually declined (Glaziou et  al. 2013), 
whereas those of NTM infections are on the rise in many 
areas (Brode et al. 2014). Consequently, in some countries 
with low TB rates, the incidence of NTM infections has 

been estimated to exceed that of TB (Kotilainen et  al. 
2011; Brode et  al. 2014). Not only are NTM infections 
risky for individuals with reduced immunocompetence 
or lung disease (Gopinath and Singh 2010; Brown-Elliott 
et al. 2012), but there is also increasing evidence showing 
that the incidence of NTM infections has increased 
among immunocompetent patients and patients without 
preexisting lung diseases (Henry et al. 2004; Bodle et al. 
2008; Kotilainen et al. 2011). Although only some NTM 
species (e.g., Mycobacterium avium, Mycobacterium 
kansasii and Mycobacterium fortuitum) are commonly 
pathogenic to humans, more than 90 species of NTM 
have been reported as opportunistic pathogens for 
humans in two independent investigations (Hoefsloot 
et al. 2013; van der Werf et al. 2014).

NTM infections are thought to result from exposure 
to the environment, where NTM species are ubiquitous 
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(Primm et  al. 2004), because human-to-human or 
animal-to-human transmission is rare (Griffith et  al. 
2007), if any (Ricketts et al. 2014). Soil is the likely source 
of NTM responsible for human infections, especially in 
soil-related occupations (e.g., farmers) (Reed et al. 2006; 
Gopinath and Singh 2010; Hamada et al. 2016). However, 
recovery of NTM from soil is relatively difficult because 
NTM attach to soil particles (Falkinham 2002) and the 
surface soil contains non-mycobacteria at concentrations 
of approximately 108 cells/cm3 (Whitman et  al. 1998), 
which may overgrow in NTM isolation. Several studies 
have focused on the comparison and optimization of soil 
decontamination methods (Portaels et  al. 1988; Kamala 
et  al. 1994a; Livanainen 1995; Parashar et  al. 2004) and 
the development of media with enhanced selectivity 
(Ichiyama et  al. 1988; Chilima et  al. 2006; Narang et  al. 
2009; Aboagye et al. 2016) for NTM; however, no robust 
and standardized method for the primary isolation of 
NTM from soil is yet available.

Middlebrook medium has been widely used in myco-
bacterial microbiology (Griffith et al. 2007) and can sup-
port the growth of most NTM (Wallace et  al. 1997). 
Although Middlebrook medium is more prone to con-
tamination than Löwenstein–Jensen medium (LJ) in the 
case of soil samples (Livanainen 1995), no significant dif-
ferences exist in the case of clinical specimens (Somoskövi 
and Magyar 1999; Idigoras et  al. 2000). We noticed that 
the concentration of malachite green (MG), the only com-
pound providing selective pressure for mycobacterial iso-
lation, is 1000-fold lower in Middlebrook medium than in 
LJ (0.25 vs. 250 mg/L) (Atlas and Snyder 2006). Thus, we 
speculated that a modified Middlebrook 7H10 medium 
with an increased MG concentration may be more effec-
tive than LJ as a selective medium for primary isolation 
of mycobacteria from soil. Therefore, we tested the effec-
tiveness of modified Middlebrook 7H10 media with MG 
concentrations ranging from 2.5 to 2500  mg/L and fur-
ther tested an optimized medium for the effectiveness of 
mycobacterial isolation from 116 soil samples.

Materials and methods
Preparation of media
Standard Middlebrook 7H10 (containing 0.25  mg/L 
MG) was prepared (Atlas and Snyder 2006) and a series 
of modified Middlebrook 7H10 media was prepared 
with MG concentrations ranging from 2.5 to 2500 mg/L 
according to a standard protocol for Middlebrook 7H10 
agar preparation (Atlas and Snyder 2006), except that 2% 
fresh MG (Krieg 1981) was added after the nutrients were 
autoclaved rather than being mixed with the nutrients 
before sterilization. The mixed medium was then poured 
into Petri dishes. PANTA-containing Middlebrook 
7H10 agar was prepared similarly, except that MG was 

replaced with polymyxin B (40,000 U/L)–amphotericin 
B (4  mg/L)–nalidixic acid (16  mg/L)–trimethoprim 
(4 mg/L)–azlocillin (4 mg/L) (PANTA; Becton, Dickinson 
and Company, Spark, USA) reconstituted with oleic 
acid–albumin–dextrose–catalase (OADC; Becton, 
Dickinson and Company, Spark, USA) enrichment as 
recommended by the manufacturer. LJ was prepared 
according to a standard protocol (Atlas and Snyder 2006). 
PANTA-containing LJ was prepared similarly to LJ, 
except that PANTA reconstituted in sterile distilled water 
was added to the lysed eggs.

Sample collection
Three sites in Hunan province, China, were chosen for 
soil sampling, including our campus in Changsha city 
as well as a community and a park in Zhuzhou city. Soil 
under trees and herbs at a depth of less than 3  cm was 
collected, as previously reported (Parashar et  al. 2004). 
At each site, 30–50 soil samples were collected between 
September 2015 and August 2016. Repeat sampling was 
not performed within 20 m2.

Sample processing
Sample processing was performed as previously reported 
(Parashar et al. 2004). Briefly, approximately 5 g of wet soil 
was transferred into a new 25-mL sterile centrifuge tube 
and suspended in 15 mL of sterile ddH2O. After vigorous 
shaking for 2 min and standing for 2 min, 1.5 mL of the 
upper one-third of the turbid supernatants was imme-
diately pipetted into a new sterile 2-mL Eppendorf tube. 
The suspension was centrifuged at 8000×g for 15  min 
at 4  °C, and the supernatant was discarded. The pellets 
were resuspended in 1.5 mL of 3% sodium dodecyl sulfate 
(SDS)–2% NaOH and incubated at room temperature for 
30 min. After the incubation, the decontamination solu-
tion was removed by centrifugation. The resultant pellets 
were washed twice with 1.5 mL of sterile phosphate-buff-
ered saline (PBS) and resuspended in 1 mL of sterile PBS 
for mycobacterial isolation.

Comparison of selective media
To optimize the concentration of MG in modified 
Middlebrook 7H10 agar for mycobacterial culture from 
soil, a two-step assay was performed. Firstly, modified 
Middlebrook 7H10 agar with MG at the concentration of 
2.5, 25, 250, and 2500 mg/L were used for NTM isolation 
from 20 soils. LJ, PANTA-containing LJ, Middlebrook 
7H10 and modified Middlebrook 7H10 with PANTA but 
without MG media were also inoculated as controls. Each 
100-μL decontaminated sample was inoculated onto the 
media as mentioned above. The media were incubated at 
30 °C for 2 months and were examined at 2-day intervals 
in the first week and weekly thereafter. Secondly, based on 
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the result that modified Middlebrook 7H10 medium with 
250 mg/L MG were the most effective, the concentration 
of MG in modified Middlebrook 7H10 agar with 100 and 
500 mg/L MG were tested similarly.

Application of optimized selective medium
Based on the results obtained by comparison of growth 
on the selective media, a modified Middlebrook 7H10 
medium with 250  mg/L MG was tested with 116 soil 
samples. Soil used for mycobacterial isolation was treated 
as described above, and each sample was inoculated onto 
the modified selective medium in duplicate for culture at 
30 and 37 °C, respectively.

Bacterial identification
To identify mycobacterial species, partial bacterial rpoB 
gene sequences (Adékambi et al. 2003) were amplified by 
PCR and subsequently sequenced for analysis. Colonies 
grown on the selective medium were selected based on 
their growth rate, morphology, and pigmentation and then 
streaked onto new modified Middlebrook 7H10 medium 
containing 250 mg/L MG using a calibrated loop to repu-
rify the isolates. After staining cells by the Ziehl–Neelsen 
method (World Health Organization 1998) to identify 
acid-fast bacteria, DNA was extracted from the acid-fast 
bacteria by a heat-shock treatment (96  °C for 15  min) in 
combination with centrifugation (16,000×g, 15 min, 4 °C) 
as previously described (Radomski et  al. 2010). A previ-
ously described PCR primer set targeting rpoB (Adékambi 
et  al. 2003) was used for PCR and subsequent DNA 
sequencing. The sequences of the PCR products were 
determined by a commercial company (Biosune).

Accession numbers
Partial sequences of the rpoB gene of 101 identified 
mycobacterial strains were deposited in GenBank, with 
accession numbers from KY400657 to KY400757.

Results
Performance of selective media inoculated 
with decontaminated soil samples
To determine optimal MG concentration in modified 
Middlebrook 7H10 agar for mycobacteria culture from 
soil, we first tested MG concentration ranging from 2.5 
to 2500  mg/L. Modified Middlebrook 7H10 agar with 
25 mg/L MG or lower was insufficient to inhibit nontar-
get bacteria whereas MG at the concentration of 2500 in 
the medium can also suppress mycobacteria. By contrast, 
65% (13/20) of soils inoculated onto Modified Middle-
brook 7H10 agar with 250  mL/L MG produced myco-
bacterial growth. Notably, the number of plates with 
mycobacterial growth (13/20) was the same for the media 
with 250  mg/L MG and PANTA-containing LJ, whereas 
most of the PANTA-containing LJ showed late heavy con-
tamination (Table  1). However, PANTA-containing LJ 
provided stronger selectivity in contrast to the modified 
Middlebrook 7H10 agar with PANTA but without MG. 
To further optimize the concentration of MG in modified 
Middlebrook 7H10 agar, we further evaluated modified 
Middlebrook 7H10 containing 100 and 500  mg/L MG, 
respectively. The results showed that MG at the concen-
tration of 100  mg/L MG in the medium is as effective 
as those modified medium with 250  mg/L MG in terms 
of positive rates and contamination rates. By contrast, 
modified medium with 500  mg/L MG were sub-optimal 
because of fewer positive plates. The performance of these 
10 selective media were summarized in Table 1.

Isolation of mycobacteria from soil samples
Modified Middlebrook 7H10 medium containing 
250  mg/L MG was used to isolate mycobacteria from 
116 soil samples. Of these samples, 87.1% (101/116) pro-
duced mycobacterial growth, and the remaining showed 
no growth of microorganisms. Detailed information of 
soils sampled from the three sites are listed in Table 2 and 

Table 1  Evaluation of 10 selective media for mycobacterial recovery from soil

a  13, 11 of 13 tubes had late contamination

Media No. of media

Positive Contaminated Total

PANTA-containing LJ 13a 18 20

LJ 1 19 20

Modified Middlebrook 7H10 with PANTA but without MG 3 17 20

Middlebrook 7H10 with 0.25 mg/L MG 0 20 20

Modified Middlebrook 7H10 with 2.5 mg/L MG 0 20 20

Modified Middlebrook 7H10 with 25 mg/L MG 4 16 20

Modified Middlebrook 7H10 with 100 mg/L MG 13 0 20

Modified Middlebrook 7H10 with 250 mg/L of MG 13 0 20

Modified Middlebrook 7H10 with 500 mg/L of MG 8 0 20

Modified Middlebrook 7H10 with 2500 mg/L of MG 1 0 20
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some of the plates with mycobacterial growth are shown 
in Fig.  1. Twelve (5.2%) plates showed mycobacterial 
growth identified by PCR targeting rpoB within a month 
after inoculation, whereas contamination occurred 
thereafter.

Mycobacterial isolates
To identify the mycobacterial species isolated from the 
soil samples, 110 isolates were selected based on the 
bacterial growth rate and morphological characteristics, 
and their partial sequences of the rpoB gene were ampli-
fied (Additional file  1: Figure S1) and analyzed after 
acid—fast staining (Additional file 1: Figure S2). Among 
them, 91.8% (101/110, access number: KY400657 to 
KY400757) were identified as members of 19 mycobac-
terial species as shown in Table 3. Nine (8.2%) isolates, 
whose partial rpoB sequence (Additional file 1: Text S1) 
showed less than 95% similarity with those of known 
species in GenBank, were not identified according to 
previously established criteria that intraspecies par-
tial rpoB gene shares more than 97% sequence identity 
(Adékambi et al. 2003, 2006; Adékambi and Drancourt 
2004).

Discussion
Comparison of modified Middlebrook 7H10 agar
Our goal was to optimize a selective medium for primary 
isolation of NTM from soil. Therefore, a less effective 
decontamination method (Parashar et al. 2004; Aboagye 
et  al. 2016) including 3% SDS–2% NaOH was used for 
sample treatment.

Modified Middlebrook 7H10 media with MG concen-
trations higher than 100 mg/L were acceptable in terms 
of the contamination rates. However, both the number 
of plates yielding mycobacteria (Table 1) and the num-
ber of colonies on positive plates decreased when the 
MG concentration was higher than 250  mg/L. A bal-
ance between maximizing the activity of mycobacteria 
and minimizing that of fast-growing microorganisms is 
important when evaluating methods for mycobacterial 
recovery (Radomski et  al. 2010). Thus, modified Mid-
dlebrook 7H10 media with MG at concentrations of 
100–250 mg/L were found to be promising for cultur-
ing NTM from soil.

Comparison of LJ, PANTA‑containing LJ and modified 
Middlebrook 7H10 with 250 mg/L MG
The contamination rates in the modified Middlebrook 
7H10 medium with the same concentration of MG as 
in LJ (250  mg/L) were obviously lower than those in LJ 
(Table  1), indicating that the antimicrobial activity of 
MG in LJ is diminished because MG can be irrevers-
ibly converted to leucomalachite green without bacte-
ricidal activity (Jones and Falkinham 2003) by proteins 
(Duxbury 1993), such as a high concentration of chicken 
egg albumin (Özer and Çaǧlar 2002). Most of the 
PANTA-containing LJ was heavily contaminated even 
though mycobacterial growth was observed before con-
tamination, which is inconsistent with a previous study 
(Aboagye et al. 2016) showing that only 11 of 139 (7.9%) 
samples were contaminated. This discrepancy in the 
results may be attributed to an increased PANTA con-
centration (2.5-fold), which could enhance the inhibitory 
effects on nontarget microbes (Peres et al. 2011), and the 
use of a more effective decontamination method (oxalic 
acid–NaOH) (Livanainen 1995; Aboagye et  al. 2016) in 
the previous study (Aboagye et al. 2016). The use of dif-
ferent soils may also be a reason.

Application of modified Middlebrook 7H10 agar 
with 250 mg/L MG
Considering the diversity of soil microorganisms, a 
modified Middlebrook 7H10 medium with 250 mg/L MG 
rather than 100 mg/L MG was used for further isolation 
of NTM from 116 soil samples. The positive rates of 
theses samples and the number of mycobacterial species 
isolated using this medium were equal to or higher than 
those obtained using other methods based on optimized 
decontamination procedures and/or enhanced selective 
medium when applied to more than 100 soil samples 
(positive rate, 87.1 vs. 18.3–74.7%; number of isolated 
species, 19 vs. 1–19, respectively) (Kamala et  al. 1994b; 
Donoghue et al. 1997; Chilima et al. 2006; Parashar et al. 
2009; Rahbar et  al. 2010; Aboagye et  al. 2016). These 
results suggest that Middlebrook 7H10 medium with 
250  mg/L MG is useful for primary isolation of NTM 
from soil.

It is inevitable that some of the mycobacteria are 
inactivated during mycobacterial isolation because agents 
including NaOH and MG used in the decontamination 
step and the selective medium are harmful to 
mycobacteria (Brooks et  al. 1984). In our method, the 
negative effects of the increased MG concentration on 
NTM can be partly reduced by the use of a less effective 
decontamination method.

In conclusion, our data suggest that the modified Mid-
dlebrook 7H10 medium with 250  mg/L MG is a useful 
selective medium for the recovery of mycobacteria from 

Table 2  Details of soil samples isolated in this study

Site No. of samples Positive samples Positive rates (%)

Campus 33 25 75.8

Community 33 28 84.8

Natural park 50 48 96.0

Total 116 101 87.1
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soil. Alternatively, the MG content in Middlebrook 7H10 
medium may be adjusted to approximately 100  mg/L 
when a sample is less complex.

Abbreviations
NTM: nontuberculous mycobacteria; TB: tuberculosis; LJ: Löwenstein–Jensen 
medium; MG: malachite green; PANTA: polymyxin B–amphotericin B–nalidixic 
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acid–trimethoprim–azlocillin; OADC: oleic acid–albumin–dextrose–catalase; 
SDS: sodium dodecyl sulfate; PBS: phosphate-buffered saline.
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