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Abstract 

Microbial induced carbonate precipitation (MICP) is a common occurrence of geochemistry influences in many fields, 
such as biological, geographical, and engineering systems. However, the processes that control interactions between 
carbonate biomineralization and biofilm properties are poorly understood. We develop a method for real time, in situ 
and nondestructive imaging with confocal scanning microscopy. This method provides a possible way to observe 
biomineralization process and the morphology of biomineralized deposits within biofilms. We use this method to 
show calcite biominerals produced by Pseudomonas aeruginosa biofilms which extremely change biofilm structures. 
The distribution of calcite precipitation produced in situ biomineralization is highly heterogeneous in biofilms and 
also to occur primarily on the bottom of biofilms. It is distinct from those usual expectations that mineral started to 
precipitate from surface of biofilm. Our results reveal that biomineralization plays a comprehensive regulation func‑
tion on biofilm architecture and properties.
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Introduction
Microbial biomineralization is a ubiquitous process in 
almost all kinds of natural environments (Benzerara et al. 
2006; Grotzinger and Knoll 1999). A typical example of 
biomineralization is the formation of stromatolites in 
sedimentary environment as a result of microbial medi-
ated inorganic precipitation from the ambient environ-
ment (Perri and Spadafora 2011). Biomineralization is 
also involved in many anthropogenic processes, lead-
ing to unfavorable consequences that either reduce the 
effectiveness of engineering approaches or cause adverse 
effects. Biomineralization induced membrane clogging 
could reduce the performance of water filtration in a 
wastewater treatment plant. Presence of mineralized bio-
films in medical devices, such as catheter, lead to serious 
infections of patients (Stickler 2008; Warren 2001; Jacob-
sen et al. 2008). Many studies have reported that at least 

200 kinds of bacteria were involved in calcium carbon-
ate biomineralization (Li et  al. 2015), including Pseud-
monas, Sporosarcina, Azotobacer, etc. Microorganisms 
induced carbonate precipitation by a variety of microbial 
metabolisms, such as photosynthesis, urea hydrolysis 
and nitrification, which dramatically changes saturation 
index (SI) of calcium carbonate. Microbial metabolism 
alters chemical compositions within the biofilm and in 
ambient environments, leading to conditions that favor 
the precipitation of carbonate minerals. While these bio-
geochemical processes have been thoroughly studied at 
macro scale (Lian et al. 2006), the details that how bacte-
ria and microbial activities are involved in the minerali-
zation processes are still poorly known (Reid et al. 2000).

Biomineralization usually appears in biofilms, which 
has heterogeneous structure with aggregation of surface 
attached microbial cells (Shiraishi et al. 2008; Wimpenny 
et al. 2000). With its special structure and characteristics, 
the interplay between biofilms and local chemical envi-
ronment was shown up and make highly diverse condi-
tions inside and outside of biofilms (De Beer et al. 1994; 
Ramsing et al. 1993). The activities occurred in biofilms, 
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such as cellular respiration and amino acid sequence 
reveal the spatial variation of oxygen utilization. Previ-
ous studies believed that the extracellular polymeric 
substance (EPS) formed by biofilms was a crucial con-
sideration for investigating microbes physiological func-
tions and activities (Giuffre et  al. 2013; Braissant et  al. 
2003). These ex situ research also found EPS could regu-
late spatial position of precipitation while mineralization. 
In absence of microscale chemical gradients, nucleation 
models estimate that the crystals produced by biofilms 
distribute randomly in EPS (Arp et  al. 2001). Most cur-
rent studies of biofilms and biomineralization suggest 
that precipitation of mineral appears on the biofilm sur-
face primarily (Zhang and Klapper 2010). However, these 
studies and models are not suitable for in  situ observa-
tion as lacking information of mineral formation in bio-
films, such as spatial patterns. Accordingly, the regulation 
mechanisms of original precipitation and entire accumu-
lation of mineral deposits are still not understood.

A few well designed flow cells were utilized to culti-
vate organisms which make it possible to control certain 
conditions and probe into the biofilms growth. Drip-flow 
reactors support a comfortable place for culturing bio-
films in free-surface and slow flow conditions (Goeres 
et  al. 2009). Even through this system was suitable for 
microsensor monitoring, it can’t serve in  situ imaging, 
as microbial colony grown on the glass slides should be 
removed from the system and check. More recently, the 
interactions between heterogeneous biofilms and com-
plex environment has propelled several flow cell designs 
to develop for biofilm growth observation in controlled 
chemical conditions. The effect of bulk fluid flow on bio-
film growth has been observed in circular pipes (Horn 
et  al. 2003), semicircular pipes (Teodósio et  al. 2011), 
square or rectangular channels (Pereira et  al. 2002; 
Stoodley et  al. 2002). Ever since the microscope experi-
ments of multi-channel flow cells were realized on stage 
and achieved nondestructive imaging of biofilm, this 
carrier made of Plexiglas had been broadly used (Chris-
tensen et al. 1999; Wolfaardt et al. 1994). A novel micro-
fluidic flow cell provides the capability of reliable control 
of flow distributions and chemical gradients in biofilm 
studies (Song et al. 2014), and is thus adapted in the cur-
rent study to investigate the biomineralization processes.

Here, based on the rather mature research methods 
and experiments of Pseudomonas aeruginosa on micro-
biology, this study was aimed at developing a real time, 
in situ and nondestructive visual method to observe and 
reveal the processes of calcium carbonate biominerali-
zation and mineral formation within P. aeruginosa bio-
films and estimate the consequent variation of biofilms 
properties. We utilize microfluidic flow cell as a car-
rier to show images and processes of mineral formation 

resulting from biomineralization in order to present the 
spatial distribution of mineral deposit and influence on 
the biofilm structure by detaching cells.

Materials and methods
Experimental systems set up
Experiments were carried out according to a novel 
designed flow cell (Fig.  1) consisted of glass cover slips 
and polydimethylsiloxane (PDMS) to achieve the whole 
processes of biofilm culture and reaction with biominer-
alization medium. Microbial colony growth and biomin-
eralization processes were observed in this system, a 
double-inlet flow cell has two inlets for introducing two 
different fluids in order to achieve the chemical gradients 
within the flow cell under controlled conditions. The flow 
cells are composed of glass cover slips fixed on elastomer 
PDMS bodies. By the design of flow cell, the inner cham-
bers and channels were all formed in PDMS. It supports 
continuous culturing of biofilms under a user-controlled 
growth medium, as described previously (Song et  al. 
2014), and glass cover slip supplies an even, strict, and 
transparent interface suitable for optical operation and 
further imaging.

Strains and inoculation procedure
We used PAO1-gfp (ATCC 7700) with improved genes 
which expresses green fluorescent protein (GFP) in these 
studies (Liu et al. 2009; Zhang et al. 2011). In the natural 
environment, P. aeruginosa is a normal biofilm-forming 
organism which was studied as a model organism for 
many biofilm studies (Mann and Wozniak 2011), it is also 
an opportunistic pathogen (Goeres et al. 2009) which has 
many advantage with fine properties for experimentation. 
The colony was moved to 3 ml of sterile tryptic soy broth 
(TSB) in a culture tube and through an overnight shak-
ing at 225 rpm and 37 °C. For the mid-log phase culture, 
fifty microliters of this culture was transferred to 3  ml 
of sterile tryptic soy broth (TSB), at 225 rpm and 37 °C, 
and then diluted with sterile 1% TSB to OD600 =  0.01 

Fig. 1  Double-inlet microfluidic flow cell design: 3D rendering of the 
chambers and channels (Song et al. 2014)
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for inoculation into the flow cells. To quantify the tur-
bidity of liquid cultures was used optical density (OD) 
measured at 600 nm, which was used as a corresponding 
measure of cell density. Under no flow (stagnant) condi-
tion, inoculated bacteria were injected into flow cell and 
attach to the cover slip for 1  h, and then continuously 
pumped into nutrient with 1% TSB medium. To avoid the 
disturbance by the medium, the biofilms were inoculated 
and cultured for 3 days to grow mature at a flow rate of 
10 ml h−1.

Calcium carbonate biomineralization in biofilms
The stock solutions of NaHCO3 (1  M) with purity of 
99.5 to 100.5% (Sigma-Aldrich) and CaCl2 (0.5 M) (99%; 
Sigma-Aldrich) were sterilized with 0.2 μm cellulose ace-
tate membrane filters for preparing. PAO1-gfp biofilms 
grown for 3  days as described previously were continu-
ously feed with a saturated Ca(HCO3)2 solution con-
taining 15  mM (each) CaCl2 and NaHCO3 in 1% TSB. 
This saturation solution was pumped into flow cells for 
12–17 h at the flow rate of 10 ml h−1 to grow the biofilms 
and biominerals. As in this experiment, the calcium car-
bonate solution was oversaturated and 1% TSB was well 
diluted, the influence of organic ligands can be ignored. 
The SI was calculated by Eqs. 1 and 2:

where [Ca2+] and [CO3
2−] are the concentrations of 

Ca2+ and CO3
2− in solution, KS is the calcite solubil-

ity product constant. pH of this solution is 7.6 and the 
SI logΩ =  1.88. logKS = −8.46 under atmospheric par-
tial pressure of carbon dioxide (pCO2) (Plummer and 
Busenberg 1982). All these data were measured at room 
temperature (22 °C). To avoid the disturbance of mineral 
medium on biofilm morphology (dome-shaped colonies 
surrounded by lawns like cells), biofilms were grown 
under the condition without biomineralization medium. 
After biofilms matured, supersaturated calcium carbon-
ate medium were injected to stimulate biomineralization 
within biofilms.

Confocal imaging
Confocal laser scanning microscopy (CLSM) (Leica 
TCS SP2) was utilized to perform in  situ imaging with 
a 63×  oil objective. The GFP fluorescence of biomass 
was excited by a 488  nm argon ion laser. Mineral pre-
cipitates was imaged by the reflection signal of excitation 
laser which was detected in a window between 483 and 
493 nm. These two signals were recorded synchronously 
by CLSM. Velocity software package (PerkinElmer, 
Inc.) was used to visualize and quantitatively match the 

(1)IAP = [Ca
2+

][CO
2−
3

]

(2)Ω = LAP/Ks

biofilm biomass and mineral deposits. Fiji was used for 
analysis of mineral particles. Firstly, binary format of the 
image was obtained by adjusting an adequate threshold-
ing, and the particle areas were identified and calculated 
with the Particle Analysis function in Fiji. The biomass 
was quantitatively measured with a matlab program for 
analysis of biofilm spatial pattern (BioSPA).

Confocal Raman microscopy
Confocal Raman microscopy (Princeton Instrument 
TriVista CRS) was utilized to determine mineral com-
position of biomineralized deposits. Before scanning, 
the flow cell was rinsed with DI water for 12 h under the 
same flow rate to eliminate the residual chemicals and 
then dried under the ambient atmosphere. The cover-
glass was then gently retrieved from the flow cell and 
Raman scanning was performed. The CRS has a 514 nm 
argon ion laser, and is equipped with a 100×  objective 
optical microscope and a liquid nitrogen cooled charge-
coupled device (CCD) detector. The sample was scanned 
at a range of 100–1600 cm−1 Raman shift with a step of 
1.6 cm−1.

Monitoring of cell detachment during biomineralization
Colony-forming unit (CFU) counting with the efflu-
ent samples from the flow cell was performed to moni-
tor the cell detachment over the course of experiment. 
To validate the sterilization of the experimental system, 
two effluent samples were collected at 1 and 2  h before 
the introduction of biomineralization media. The efflu-
ent samples were then collected at 0, 1, 3, 4, 5 and 17 h 
during the process of biomineralization. As the control, 
separate experiments were also operated in untreated 
biofilms. All the samples were vibrated to make cells fully 
dispersed before plating.

Results
Biomineral morphology and mineralogy analysis
First of all, we had confirmed that the mineral medium 
was nontoxic to PAO1-gfp cells (See Additional file  1: 
Fig. S1). Growth of the biofilm and formation of the min-
eral deposits are shown in Fig. 2. P. aeruginosa has been 
known to produce very thick and mushroom types bio-
film structure. We observed both flat and mushroom 
type morphology during the experiment (Figs. 2b, 4). In 
the biomineralization experiment where biofilms were 
exposed to supersaturated calcium carbonate medium, 
the flow cell was covered with green fluorescence sig-
nal, indicating coverage of P. aeruginosa biofilm (Fig. 2b). 
However, the green fluorescens signal was character-
ized with four voids, which was probably attributed to 
the presence of precipitated mineral deposits. The laser 
reflectance signal was then measured with the confocal 
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microscope to test this hypothesis. The reflection sig-
nal showed four island-like area that were significantly 
brighter than the rest area. More interestingly, the out-
lines of these blocks perfectly matched the outlines of 
the four voids in the green fluorescence signals, indicat-
ing the structuring of materials with different reflection 
properties inside the biofilm.

To further verify the mineral composition of the inset 
material, we measured the mineralogy of these mate-
rial with confocal Raman microscopy in a separate 
experiment. The spectra of precipitates within biofilms 
matched calcite Raman standard spectra in normal 

pressure and temperature (Fig.  3). The spectra showed 
the most notable peak at 1088 cm−1, which is caused by 
the symmetric stretching vibration of internal carbon-
ate ion, the in-plane bending peak at 712 cm−1, and the 
lattice mode peak at 153  cm−1. Our results were also 
consistent with other findings investigating biominerali-
zation induced calcite formation under natural or labo-
ratory settings (Boquet et  al. 1973; Morita 1980; Fujita 
et al. 2000). Aragonite is also a common calcium carbon-
ate mineral produced by microbe. However, the Raman 
spectra of aragonite is featured with two in-plane bend-
ing peaks at 701 and 705 cm−1 and the lattice mode peak 

Fig. 2  Imaging of mineral deposits in P. aeruginosa biofilms by confocal laser reflection. Calcium carbonate minerals and biofilm morphology were 
imaged in PAO1-gfp. a Minerals imaged by laser reflection show in blue, b cells show in green (PAO1-gfp)

Fig. 3  a Raman spectra of biomineralized calcium carbonate minerals in a P. aeruginosa biofilm. The highest Raman shift intensity appears at 
1088 cm−1, indicating the presence of carbonate minerals. The primary peaks match those in a calcite standard spectrum (shown in b), indicating 
that the biomineralized deposits are calcite and not aragonite
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at 205 cm−1 (Wehrmeister et al. 2010), which was differ-
ent from the spectra observed in the current experiment. 
Moreover, calcite has trigonal system crystal structure, 
and the carbonate ion appears as equilateral triangle, 
resulting in stable mineral structures. However, arago-
nite has orthorhombic system crystal structure, which 
is not stable and can be readily transformed to calcite. 
Different crystal structure yield distinct ion resonance 
states, which lead to distinct features in Raman spectra. 
Therefore, it is highly likely that calcite minerals were 
precipitated and inserted in the biofilm during biominer-
alization experiment.

These results clearly indicate that the combination of 
confocal laser scanning microscopy and confocal Raman 
microscopy provide an effective method to investigate 
the composition and morphology of mineral deposits 
induced by biomineralization within biofilms. It should 
be noted, both of these methods are nondestructive, and 
particularly are feasible for real time observation and 
quantitative analysis of mineral in situ precipitation pro-
cesses within biofilms.

Spatial patterns of calcium carbonate biomineralization
It is also interesting to notice that the mineral depos-
its produced during the experiments showed distinct 
distribution patterns (Fig.  4): fine calcite particles that 
deposit at the surface of the biofilm and large granular 
calcite particles that root from the base of the flow cell. 
The differences in the sizes and distribution patterns of 
the mineral deposits are likely associated with the two 
production pathways of calcite: deposition of abiotically 
produced fine calcite particles and biomineralization 

induced large calcite granules. To verify this hypothesis, 
a flow cell with P. aeruginosa biofilm was inverted and the 
biomineralization experiment was performed under the 
same experimental conditions. As expected, the surface 
of the biofilm was free of fine calcite particles while large 
calcite granules grown from the base of the flow cell were 
still observed (Fig.  4d). Mineral particle size distribu-
tion further supported this hypothesis (Fig. 4e): the min-
eral deposits in the prior experiment was featured with 
large fractions of fine particles, with  ~80% of the parti-
cles  <100  µm2, while the mineral deposits in the latter 
experiment were all >200 µm2.

Interactions of biofilm and mineral deposits
The methods of laser reflection and fluorescence base on 
CLSM were used to observe and image calcium carbonate 
biomineralization and its spatial patterns within biofilms. 
We observed that the formation of inset calcite granules 
in the biofilm caused spatiotemporal collapse of the bio-
film structure. The cells resided in biofilm were gradually 
replaced by the biomineral calcite formed, and the vol-
ume of biomass displaced was consistent with the volume 
of calcite formed (Fig.  5a). Under the invasion of grow-
ing biominerals, a dramatic detachment of cells in bio-
film happened inevitably (Fig. 5b). Cell concentrations in 
the flow cell effluent were similar under both conditions 
and were at a magnitude of 107 CFU ml−1. The number 
of CFU in the flow cell effluent significantly increased in 
biofilms under biomineralization treatment (Fig. 5b). The 
most prominent point of the cell concentration reached 
109 CFU  ml−1 at 4  h, which was two orders of magni-
tude larger than the other points before introduction of 

Fig. 4  Biofilm traps precipitated fine calcite particles from bulk flow: a–c are under deposition mode and d is under suspension mode (control). a 
and b are xy planes of the same biofilm colony but at different depths. a is near bottom and b is near top. Mineral particle size distributions of a and 
b are plotted in e
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biomineralization. The cell number detachment increas-
ing was not observed in control experiments, which con-
firmed that the observed cell detachment from biofilms 
was yielded by biomineralization.

Discussion
Using confocal microscopy, three dimensional real-time 
observation of calcium carbonate biomineralization in 
biofilms (PAO1-gfp) were achieved. On the feasible basis 
of flow cells, the confocal laser scanning microscopy 
provided fluorescence images of biofilms and reflection 
signal of mineral deposits, among these, the mushroom 
shape of biomass with green fluorescence was observed 
and the mineral deposits presented blue and irregular 

shape with clear outline. The shape of mineral deposits 
matched the vacancy of biofilms identically.

According to the different crystal structure, calcium 
carbonate can be mainly divided into three morphology 
of minerals, calcite, aragonite and vaterite (Wehrmeister 
et al. 2010). Even though confocal laser reflection achieve 
the observation of the distinction between mineral 
deposits and biofilms, the detailed mineralogy com-
position of the deposits could not be determined. We 
developed a combined method of confocal laser scan-
ning microscopy and confocal Raman spectroscopy to 
delineate the morphology and identify the composition 
of the mineral deposits. The mineralogy of biominerali-
zation products is calcite by spectra analysis of mineral 
deposits with confocal Raman spectroscopy. The spectra 
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Fig. 5  a Time series visualization of mineral growth and biofilm morphology. The same field of view was imaged at 3, 4, 5 and 17 h, the scale grid 
is 23 μm. b Detachment of cells from the biofilm during biomineralization. The cell concentration in the flow cell effluent was monitored for 2 h 
before biomineralization. Biomineralization medium were introduced at t = 0. Cell counts in the flow cell effluent significantly increased during 
biomineralization, indicating that biomineralization induced detachment of cells from the biofilm. Increased cell detachment was not observed in 
biofilms under control conditions (untreated biofilms)
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of calcite was distinct between aragonite by identifying 
Raman shift yielded by lattice vibration. The simultane-
ous obtainment of fluorescence (biomass) images and 
reflection signal (mineral deposits) makes it realize for 
a real time, in  situ and nondestructive observation on 
the processes of biomineralization and mineral deposits 
producing.

A continuous controversy about how the microbial 
action influences carbonate precipitation in super-
saturated environments and the function of microbial 
processes during the mineralization process has been 
existing for a long time. Previous studies reported that 
trapping of the abiotic particles was the primary route 
that accumulate mineral precipitates in the biofilm 
(Wuertz et  al. 2003). Our results clearly showed that 
both trapping of abiotic calcite fine particles and biomin-
eralization induced formation of calcite granules were 
two responsible mechanisms that P. aeruginosa biofilm 
accumulate minerals. Even though the in situ biominer-
alization and abiotic particles trapping occurred simul-
taneously in supersaturated environment, the abiotically 
formed calcite particles was confirmed to accumulate 
only on the surface of the biofilm. Moreover, the abioti-
cally formed calcite fine particles are morphologically 
different from the in situ biomineral of calcite. In short, 
the saturation degree of calcium carbonate, inherent 
physiology of biofilm and surrounding environment the 
biofilm located are combined into the regulatory mecha-
nism of microbial and abiotic precipitation processes. In 
addition, both of processes make contribution to micro-
bial carbonate sequestration (Riding 2000).

Biofilm is well known to present varying and struc-
tured microenvironments as the synergistic effect of cell 
metabolism and delivery restriction (Stewart and Frank-
lin 2008). We prospected to discover the same heteroge-
neity of in  situ biomineralization as the heterogeneous 
calcite precipitation observed within biofilms. Based on 
prior theoretical predictions (Zhang and Klapper 2011), 
we also predicted that in  situ biomineralization will 
appear on the biofilm surface primarily, yet, according 
to series of contrast and control experiments, microbial 
induced mineral deposits started to occur at the bot-
tom of biofilms and grow upward, which is strikingly 
distinct patterns from the previous researches and rela-
tive hypothesis (Fig. 4). Hence, the observation results of 
biomineralization spatial distribution along with time we 
found which challenges usual common sense on MICP. 
Moreover, this study consider that the processes of 
microbial actions in situ dominate the biomineralization 
regulation, rather than ions release from bulk liquid in 
biofilms. Parallel result about spatial patterns of calcium-
rich granules had also been published (Ren et al. 2008).

The mineral deposits was reported to influence the 
inner and external solution transportation patterns by 
altering the physiology of cells resident in biofilm (Hall-
Stoodley et  al. 2004; Uppuluri et  al. 2010). Cell detach-
ment variation measured by CFU counting methods 
demonstrated that formation of mineral deposits affect 
the metabolism of inner cells and change the settlement 
state (Fig.  5). The in  situ biomineralization which leads 
to biofilm morphology change and structure collapse is 
treated as a crucial modulator for biofilm physiology.

Biofilm EPS was reported to promote biomineralization 
by providing ions and nucleation sites (Ercole et al. 2007). 
However, the functions of EPS in calcite in situ biomin-
eralization is difficult to determine. Our results shown 
that there is no correlation between biomineralization 
patterns and the EPS density of biofilms (PAO1-gfp). 
Only some abiotic fine particles were trapped can’t estab-
lish a necessary connection of EPS and in  situ biomin-
eralization. Meanwhile, even though some researchers 
had found only active cells (biofilms) could induce min-
eral precipitation (Decho 2010; Zamarreno et  al. 2009), 
mechanisms on how metabolism influences the processes 
of biomineralization are not well understood. Further 
research is needed to determine the accurate mechanism 
and develop effective experimental methods to investi-
gate the mechanism that microbial processes that regu-
lates biomineralization.

In general, this study provides a series of new experi-
mental and visualization methods for investigating the 
in  situ biomineralization in P. aeruginosa biofilms. The 
findings about spatial distribution patterns of biomin-
erals would contribute to relevant further research of 
practical issues on MICP, such as microbial carbonate 
sequestration, lithiases with other serious complications 
and tracing biosignature record on Earth. The visualiza-
tion methods can be used as a new tool combining with 
fluorescence imaging methods and widely applied in 
solving in situ microbial reaction kinetics and other bio-
geochemical processes.
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