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Abstract

Polysaccharide is efficient in attenuation of metabolic ailments and modulation of gut microbiota as prebiotics. The
therapeutic effect of Inonotus obliquus polysaccharide (IOP) on chronic pancreatitis (CP) in mice has been validated

in our previous study. However, it is not clear whether IOP is conducive to maintaining the homeostasis between gut
microbiota and host. The aim of this study is to testify the potential effects of IOP on gut microbiota composition and
diversity in mice with CP. The changes in glutathione peroxidase (GSH-Py), total antioxidant capacity (TAOC), tumor
necrosis factor alpha (TNF-a), transforming growth factor beta (TGF-B), lipase and trypsin levels were measured by
commercial assay kits, meanwhile the gut microbiota composition and diversity were analyzed by high throughput
sequencing. The IOP treatment increased GSH-Py and TAOC levels, and decreased TNF-q, TGF-B, lipase and trypsin lev-
els in CP mice. It was also observed that gut microbiota in IOP treated groups were less diverse than others in terms of
lower Shannon diversity index and Chao 1 estimator. IOP increased the proportion of Bacteroidetes and decreased that
of Firmicutes at phylum level. Bacteroidetes was found positively correlated with GSH-P, and TAOC, and Firmicutes cor-
related with TNF-g, TGF-f3, and lipase. In conclusion, administration of IOP could regulate gut microbiota composition
and diversity to a healthy profile in mice with CP, and some bacterial phylum significantly correlated with characteris-

tic parameters.

High throughput sequencing
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Introduction

Chronic pancreatitis (CP) is a progressive and permanent
destruction of the pancreas leading to insufficient exo-
crine and endocrine, and often chronic disabling pain.
The complications of CP commonly include diabetes mel-
litus, cholangitis, ascites and even carcinoma of pancreas
(Inui et al. 2013; Phillips 2012). In developed countries,
CP incidence ranges from 3.5 to 10 per 100,000 popula-
tions, while the unhealthy lifestyle has caused a gradual
rise in CP (Witt et al. 2007). Nowadays in China the inci-
dence of CP is about to surpass 1% which is 20 times
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and indicate if changes were made.

higher than that in 1950s. The consumption of alcohol
as well as genetic and environmental factor might cause
CP (Braganza et al. 2011). Currently, oxidative stress has
been implicated as a potential mechanism in etiology
and pathology of CP (Zhou et al. 2015). 3, 5-Diethoxy-
carbonyl-1,4-dihydrocollidine (DDC) is a kind of SOD
inhibitor that may cause oxidative damage and following
fibrosis in pancreas (Matsumura et al. 2001). DDC has
been managed to induce CP in mice (Matsumura et al.
2001; Fickert et al. 2014).

Under long-term oxidative stress, the invasion of patho-
genic bacteria can destroy the microenvironment, dis-
turbed the structure of intestinal flora, and ultimately lead
to dysbiosis (Burcelin et al. 2011; Ley et al. 2008a, b). The
correlation between the variation of gut microbiota and
the development of bowel inflammatory, diverticulitis,
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diabetes, obesity etc. has been explicit, but it remains
elusive as for CP (Rautava and Isolauri 2002; Berry et al.
2012; Daniels et al. 2014; He et al. 2015; Lim et al. 2015).
Recently, Tan et al. reported the relationship between intes-
tinal microbiota composition and inflammation involved
in the progression of acute pancreatitis (Tan et al. 2015).
Although the mechanism involved in these changes has not
been fully elucidated, a major shift in gut microbiota com-
position was found in patients with severe and mild acute
pancreatitis, especially an increasing relative abundance of
Enterococcus and a decrease of Bifidobacterium.

Polysaccharides contribute to the proliferation of “good
bacteria” and regulate microbial composition in host gut.
Several polysaccharides like lentinan, glucans, mannans
and xylans have the prebiotic effects on the intestines
such as increasing the resistance of intestinal mucosa to
inflammation and inhibiting the development of intes-
tinal ulcers in rats (Singdevsachan et al. 2016). Shi et al.
also found that a water-soluble-D-fructan extracted from
the roots of Ophiopogon japonicas exhibited potent
anti-obesity and hypoglycemic effects via regulating the
gut microbiota of the host as prebiotics (Shi et al. 2015).
Inonotus obliquus (also called Chaga), is a white-rot
basidiomycete parasitizing on Betula (birch) trunks in
low latitudes (about 45—-50°N) of Europe, Asia and North
America. Experiments showed that 1. obliquus could be
used as drugs to prevent and cure cancer, diabetes, cer-
ebrovascular diseases, etc. (Zhou et al. 2015; Ma et al.
2013). Inonotus obliquus polysaccharide (IOP) possesses
comprehensive biological properties, especially anti-
oxidant and anti-inflammatory activities. As a superior
antioxidant, IOP has been used to attenuate CP in our
previous research (Hu et al. 2016). However, the overall
gut microbiota structure and diversity in CP mice admin-
istrated with IOP was ambiguous.

To verify the relationship between CP and gut microbi-
ota, a clinical experiment in mice was conducted to eval-
uate the variations of glutathione peroxidase (GSH-Py),
total antioxidant capacity (TAOC), tumor necrosis factor
alpha (TNF-a), transforming growth factor beta (TGF-),
lipase, trypsin and the overall changes of gut microbiota
in feces. The discovery of their correlation may be con-
tributed to CP pathogenesis and therapy in terms of the
intestinal ecosystem.

Materials and methods

Chemicals and reagents

Inonotus obliquus (CFCC83280) was provided by Har-
bin Baykaltai Bioengineering Co. LTD of China. Anion-
exchange DEAE cellulose column and Sephadex G-200
gel were obtained from Pharmacia (USA). Chloroform,
butanol and ethanol were purchased from Kermel Chem-
ical Reagent Co. (Tianjin, China). DDC was purchased
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from Sigma Chemical Co. (St Louis, USA). All solutions
were prepared by analytical reagents and double distilled
water. GSH-Py, TAOC, TNF-a, TGE-, lipase and trypsin
were detected by commercial assay kits purchased from
the Nanjing Jiancheng Bioengineering Institute (Nanjing,
China). DNA mini stool kit was purchased from Qiagen
(Valencia, CA, USA). MetaVx " library preparation kit
was purchased from GENEWIZ Institute (South Plain-
field, NJ, USA).

Preparation of IOP

IOP was prepared according to our previous procedure
(Hu et al. 2016). Briefly, the dried sclerotia of 1. obliquus
were ground to powder and extracted with distilled water
at 60 °C for 2.5 h. The supernatant was concentrated and
treated with Sevag reagent (Chloroform: butanol = 5:1)
to remove protein. Then the supernatant was mixed
with four volumes of 95% ethanol and kept at 4 °C for
12 h. Crude IOP was centrifuged, lyophilized and further
purified in an anion-exchange DEAE cellulose column
(50 cm x 2.6 cm) which was eluted with 0.05 M, 0.1 M
and 0.2 M NaCl solution and a Sephadex G-200 gel col-
umn (1.6 cm x 40 cm). The obtained IOP is a homoge-
neous polysaccharide with molecular weight of 32.5 kDa,
polysaccharide content of 98.6%, and monosaccharide
composition of Man, Rha, Glu, Gal, Xyl and Ara in a
molar ratio of 9.8:13.6:29.1:20.5:21.6:5.4 (Hu et al. 2016).

Toxicity test

Toxicity test was performed according to our previous
study (Hu et al. 2017). Briefly, specific pathogen-free male
ICR mice (18-22 g) were purchased from Drug Safety
Evaluation Center of Heilongjiang University of Chinese
Medicine. IOP was administrated to mice at a dose of
1 g/kg body weight by oral gavage three times a day. Con-
trol group received saline solution. Sterilized water and
standard chow were provided for all mice. The mortality
and side effects of mice were observed for 72 h.

Experimental design

Mice were randomly divided into six groups with ten
mice in each group: three IOP treated groups (IOP-L,
IOP-M and IOP-H), Qingyilidan granule treated group
(PC), model control group (MC), and normal control
group (NC). Except for mice in NC group, all mice were
received intraperitoneal injections with DDC (10%, 0.5 g/
kg body weight) twice a week for continuous four weeks
(Fickert et al. 2014). Mice in IOP treated groups were
orally administrated with IOP at a dosage of 0.1 (IOP-
L), 0.2 (IOP-M) and 0.4 g/kg/day (IOP-H) body weight
for continuous four weeks from the second week of the
DDC injection, respectively. PC group was daily fed with
Qingyilidan granule at a dose of 3.7 g/kg/day. Mice in MC
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and NC groups were given normal saline to osmotic pres-
sure of 0.9%. All mice were kept in a 12 h dark/light cycle
room with humidity-control at a constant temperature
of 25 °C. They all had free access to sterilized water and
standard chow. After 5-week experiment, all mice were
scarified via cervical dislocation.

Measurement of GSH-Px, TAOC, TNF-a, TGF-B, lipase

and trypsin

The pancreas tissue was homogenized with normal
saline by sonication. The activities of GSH-Px and TAOC
were determined using commercial kits, and they were
expressed as U/mg wet weight of pancreatic tissue.

Blood samples were collected from the eye vein by
removing eyeball. Then serum was separated by cen-
trifugation at 3000 rpm for 10 min at 4 °C and stored
at —80 °C until use. The contents of serum TNF-a and
TGF-B were determined by commercial assay kits
according to manufacturer’s instructions. The activities
of TNF-a and TGF-[3 were expressed as pg/mL.

Serum lipase and pancreatic trypsin were quantified
using detection kits according to manufacturer’s instruc-
tions. Lipase and trypsin contents were expressed as U/L
and pmol/mg respectively. Each sample was analyzed in
triplicate.

Preparation of genomic DNA from fecal samples

The fecal samples were collected from each group at the
end of the experiment. Total DNA was extracted accord-
ing to the method of Yu and Morrison (Yu and Morrison
2004). 0.5 g (wet weight) of fecal sample was suspended
in 2 mL of breaking buffer (0.5 M NaCl, 50 mM Tris—
HCI, 50 mM EDTA, 4% sodium dodecyl sulfate) at 70 °C
for 15 min after shaking for 30 s. The mixture was centri-
fuged at 6000 rpm for 5 min at 4 °C and the supernatant
was removed and retained. This procedure was repeated
for 3 times and the obtained supernatants were pooled.
Nucleic acids were extracted sequentially with ammo-
nium acetate and isopropanol. They were then treated
with DNase-free RNase, proteinase K, and further puri-
fied with DNA mini stool kit.

MetaVx"" library preparation and lllumina MiSeq
sequencing

Next generation sequencing library preparations and Illu-
mina MiSeq sequencing were conducted at GENEWIZ,
Inc. (Beijing, China). DNA samples were quantified using
a Qubit2.0 Fluorometer (Invitrogen, Carlsbad, CA) and
DNA quality was checked on a 0.8% agarose gel. 5-50 ng
DNA was used to generate amplicons using a MetaVx
library preparation kit. A panel of proprietary primers
was designed to anneal to the relatively conserved regions
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bordering V3, V4, and V5 hypervariable regions. The V3
and V4 regions were amplified using forward primer in
sequence of CCTACGGRRBGCASCAGKVRVGAAT
and reverse primer in sequence of GGACTACNVGGGT-
WTCTAATCC. The V4 and V5 regions were amplified
using forward primer in sequence of GTGYCAGCMGC-
CGCGGTAA and reverse primer in sequence of CTT-
GTGCGGKCCCCCGYCAATTC. All PCR products were
purified with the QIAgen DNA Mini Stool Kit. DNA
libraries were validated using an Agilent 2100 Bioanalyzer
(Agilent Technologies, Palo Alto, CA, USA), and quan-
tified by Qubit and real time PCR (Applied Biosystems,
Carlsbad, CA, USA). DNA libraries were multiplexed
and loaded on an Illumina MiSeq instrument according
to manufacturer’s instructions (Illumina, San Diego, CA,
USA) by GENEWIZ.

Bioinformatic and statistical analysis

The sequences were clustered into operational taxo-
nomic units (OTUs) using a 97% identity cut-off. OTUs
were used for diversity and richness analysis. Partial
least square discriminate analysis (PLS-DA) was used
to identify OTUs by Simca-P+ software (version 12.0,
Umetrics AB, Umea, Sweden). Variable importance in
projection (VIP) was used to select the key OTUs based
on their contribution to the biochemical characteris-
tics of our study. The OTUs with the highest contribu-
tion (VIP score >1.0) were translated to the key OTUs
and used to clarify the relationships between groups
and key OTUs. Pearson correlation analysis in SPSS
18.0 (SPSS Inc., Chicago, IL, USA) was used to evalu-
ate the correlations between biochemical characteristics
and gut microbiota at phylum level. Clustering analysis
and heatmap were performed using Mothur and R soft-
ware (http://www.mothur.org/wiki/MainPage). Canoni-
cal correspondence analysis (CCA) was determined
by Canoco 4.5 (Biometrics, Wageningen, The Nether-
lands). Sequences used in this study were deposited to
the NCBI Sequence Read Archive (accession number
SRP067729).

Biochemical characteristics data were analyzed with
SPSS 18.0. General characteristics were expressed as
median and mean or percentages. Statistical analyses
were carried out using one-way analysis of variance. Sta-
tistical significance was calculated by Student’s t test and
a probability value P < 0.05 or P < 0.01 was considered to
be significant in statistic.

Results

Toxicity test

During the experimental period, no death was observed.
The mice treated with IOP did not show any side effects.
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Biochemical characteristics analysis of GSH-Px, TAOC,
TNF-a, TGF-B, lipase and trypsin

As an important enzyme in superoxide degradation,
GSH-Px has been taken as an index to the antioxidative
status in organism (Rotruck et al. 1973), and a decrease in
GSH-Px level is generally observed in carcinoma, sclero-
sis and CP patients (Sehitogullari et al. 2014; Adamczyk-
Sowa et al. 2012; Girish et al. 2011). The level of TAOC
also can reflect the capacity of nonenzymatic antioxidant
defense system (Li et al. 2007). As shown in Fig. 1A, B,
the pancreatic GSH-Px and TAOC in MC group were
lowest indicating that DDC inducement had caused pan-
creatitis in mice. The higher levels of GSH-Px and TAOC
in all IOP groups than those in MC group (P < 0.01) illus-
trated that administration of IOP could prevent pancreas
from oxidative damage. Moreover, IOP treatment on
GSH-Px and TAOC presented a dose-dependently effect,
the GSH-Px level of IOP-L, IOP-M and IOP-H group
was 32.3 £ 0.8, 45.1 £ 0.7 and 45.9 + 0.8 U/mg respec-
tively, the TAOC level was 0.96 £ 0.04, 1.21 £ 0.06, and
1.54 & 0.02 U/mg respectively. And the level of TAOC in
IOP-H group was insignificantly different from that in
NC group (P > 0.05).

Levels of serum TNF-oa and TGF- in mice at the end of
experiment were given in Fig. 1C, D. The value of TNF-a
in MC group was 53.9 &+ 0.7 pg/mL which was about 2.5
times higher than that in NC group (21.8 £ 0.9 pg/mL)
(P < 0.01), indicating that the prolonged inflammatory
response in CP mice might result in an increase in the
systemic concentration of TNF-a (Petersen and Pedersen
2005). In IOP-L, IOP-M, IOP-H and Qingyilidan gran-
ule group, TNF-a level in mice was about 22.9, 14.3, 14.1
and 15.8 pg/mL higher than that in NC group respec-
tively, but greatly lower than that in MC group (P < 0.01).
Likewise, the level of TGF-B in MC group increased
383.04 pg/mL compared with NC group (P < 0.01), indi-
cating that DDC inducement had caused the injury of
pancreas in mice (Schneider et al. 2004). However, the
levels of TGEF-P were significantly decreased in the IOP
and PC groups when compared with MC group.

Data on serum lipase and pancreatic trypsin levels
in mice at the end of the experiment were presented in
Fig. 1E, E. The highest level of lipase was found in MC
group which was 1.2, 1.4, 1.4, 1.4 and 1.8 times higher
than that in IOP-L, IOP-M, IOP-H, PC and NC group
respectively. Benini et al. found that an increase in lipase
level was always detected in patients with CP (Benini
et al. 1987). The curative effect of IOP was not invari-
ably dose-dependent, just as the high and moderate
dose of IOP had a same effect on lipase (P > 0.05). Simi-
larly, activity of trypsin in MC group was higher than
that in NC group. However, IOP and Qingyilidan gran-
ule decreased the level of trypsin and the insignificant
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difference between PC and IOP groups (P > 0.05) sug-
gested that activity of IOP amounted to the commercial
herb medicine that is generally used for CP therapy.

OTU, cluster analysis, diversity and richness of six groups
For six groups, variable regions (V3-V5) of the bacterial
16S rRNA gene were amplified by PCR. From all the fecal
samples, a dataset consisting of 409,812 high-quality 16S
rRNA gene sequences was obtained (Table 1). A total of
47,950 OTUs were identified based on the conventional
criterion of 97% similarity (equal to species level), more
specifically, 9652 OTUs for IOP-L group, 9439 OTUs for
IOP-M group, 5918 OTUs for IOP-H group, and 6903
OTUs for PC group, 10815 OTUs for MC group, 5223
OTUs for NC group with an average sequence length of
298 bp.

Cluster analysis using unweighted pair group method
with arithmetic mean (UPGMA) was shown in Fig. 2.
Based on cluster analysis for gut microbiota structure,
an obvious difference was shown among the six groups
which were consistent with the divergence of biochemi-
cal characteristics. Genetic distance of cluster analysis
showed that the six groups could be divided into two
branches. IOP-H, IOP-M, IOP-L, PC and NC groups
clustered in one branch with IOP-H group on the first
grade. MC group was categorized as an independent
branch, indicating a low similarity with others.

Shannon diversity index and Chao 1 estimator were
used to describe the diversity and richness of microbiota.
In this study, gut microbiota diversity and richness were
significantly increased by DDC inducement as presented
in MC group (Table 1). For three IOP groups, Shannon
diversity indexes were lower than that of MC, but higher
than that of NC. Chao 1 estimator of NC group was
20227.70, but that of MC group reached 57,089.69. The
results indicated the ecological balance of gut microbiota
was disrupted in CP mice. However, IOP and Qingyilidan
granule treatments were conducive to maintaining the
microbiota structure and richness to normal level as that
in NC group. And with the increasing dose of IOP, the
community richness was correspondingly declined.

Correlation analysis

Principal coordinates analysis (PCoA) is usually used
for visualizing and analyzing the association of sam-
ple metadata, it can also reveal the divergency of bacte-
rial community structure. The PCoA plots of six groups
were shown in Fig. 3. Figure 3a displayed that all IOP, PC
and NC groups assembled in the right area of the bot-
tom, MC group scattered in another area. It indicated
that gut microbiota in three IOP treated groups and PC
group were relevant to that in NC group, but MC group
far from other groups with PC1 accounting for 33.99%
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Table 1 lllumina MiSeq sequencing data

Seq_num OoTU Shannon Chao 1
diversity index estimator
IOP-L 80,150 9652 8.71 45,078.72
IOP-M 75410 9439 8.69 39,521.43
|OP-H 53,515 5918 8.44 23,794.53
PC 66,853 6903 850 33,496.84
MC 90,192 10,815 9.00 57,089.69
NC 43,692 5223 824 20,227.70
I0P-L
I0P-M
i PC
I0P-H
NC
MC
0.1
Fig. 2 Cluster analyses of gut microbiota in different treatments.
Dendrogram indicates six groups are divided into two branches. IOP-
H, IOP-M, IOP-L and PC groups cluster in one branch with NC, but MC
group is an independent branch which has low similarity with others

relative percentage of key OTUs in the six groups. The
relative value was presented by the color intensity and
the legend was illustrated in the figure. The structure of
gut microbiota in IOP, PC and NC groups shared higher
similarity compared with that in MC group.

Based on Pearson correlation analysis, the correlations
of six biochemical parameters and gut microbiota at phy-
lum level were shown in Fig. 4b. This plot revealed that
Bacteroidetes (increased by IOP) had significant positive
correlation with GSH-Px (P < 0.05) and TAOC (P < 0.05),
while negative correlation with TNF-a (P < 0.01), TGF-f
(P < 0.01), lipase (P < 0.05) and trypsin (P < 0.05). Firmi-
cutes (decreased by IOP) was negatively associated with
GSH-Px (P < 0.05), but positively associated with TNF-a
(P <0.05), TGE-B (P < 0.05), and lipase (P < 0.05).

Canonical correspondence analysis (CCA) of six
groups was shown in Fig. 4c. 58.79% of the variations
were explained by CCA1 while 25.12% were explained
by CCA2. The biplot showed that gut microbiota was
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significantly shaped by GSH-Px, TAOC, TNF-«, TGF-f,
lipase and trypsin. The results indicated that biochemi-
cal parameters and their interactions might be essential
to the maintenance of gut microbiota structure. PC and
IOP-H group was close to each other and they were not
far from NC group. This result was in accordance with
that of PCoA analysis.

Variation of gut microbiota composition at phylum

and genus level

In order to explore the overall variation in gut microbi-
ota composition among six groups, the community dif-
ference at phylum and genus level was compared. Based
on the core OTUs of taxonomic database analyzed by
program QIIME, a total of 7 major phyla were identi-
fied in the six groups (Fig. 5a). The predominant phylum
was Bacteroidetes, which contributed 65.05% to the total
sequence reads in NC group and 47.47% in MC group.
However, the proportion of Bacteroidetes was increased
about 4.55, 9.56, 17.48 and 20.81% in IOP-L, IOP-M,
IOP-H and PC groups respectively, compared with that
in MC group. Firmicutes was the subdominant phylum,
which contributed 47.52% to the total sequence reads in
MC group. Proportions of Firmicutes in IOP and Qingyi-
lidan groups were all significantly lower than those in
MC group, but higher than that in NC group. And the
relative abundance of Firmicutes was decreased 14.46
and 15.57% in IOP-H and PC group compared with that
in MC group. Other phyla including Actinobacteria, Can-
didate division TM?7, Cyanobacteria, Proteobacteria and
Tenericutes, together contributed a lower percentage to
the total bacterial sequences. Obviously, the discrepancy
at phylum level suggested the difference in gut microbi-
ota composition among six groups (Fig. 5b).

At genus level, the entire sequences of the six groups
could be assigned to fourteen major genera. Lactoba-
cillus was the most predominant genus in six groups,
accounting for 13.00% of the total bacterial sequences.
The subdominant genus Bacteroides and the following
twelve genera were shown in Fig. 5¢c. DDC inducement
decreased the proportion of Lactobacillus, Bacteroides,
unclassified S24-7, unclassified Lachnospiraceae, unclas-
sified Prevotellaceae, Roseburia and Prevotella, but
increased the proportion of Alistipes, Incertae_Sedis,
Helicobacter, Parabacteroides and Rikenella in MC group
compared with that in NC group (Fig. 5d). The changes
of unclassified Ruminococcaceae and RC9_gut _group
were not obvious. While the results showed that both
IOP and Qingyilidan granule had remarkable effects on
gut microbiota composition. The proportions of Lactoba-
cillus, Bacteroides, unclassified S24-7, unclassified Lach-
nospiraceae, unclassified Prevotellaceae, Roseburia and
Prevotella were greatly increased in IOP or PC groups
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Fig. 3 Unweighted principal coordinate analysis plots: Unweighted UniFrac PCoA plotted against PC1 versus PC2 axes (a) and PC1 versus PC3 axes
(b). The plots show the clustering pattern among IOP-L, IOP-M, IOP-H, PC, MC and NC groups. MC group is far from the other five groups, and the
plots indicate the change of clustering after DDC injection and IOP intake
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Fig. 4 Correlation analysis. a Heatmap of key OTUs in the six groups. b Heatmap of biochemical parameters and gut microbiota at phylum level. ¢
Canonical correspondence analysis (CCA) of six groups
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Fig. 5 Relative abundance of gut microbiota at phylum and genus level. a Phylogenetic abundance at phylum level. b Dominant phyla in each
group. ¢ Phylogenetic abundance at genus level. d Dominant genera in each group

compared with those in MC group, but those of Alis-
tipes, Incertae_Sedis, Helicobacter, Parabacteroides and
Rikenella were decreased.

Discussion

A disturbed microbiota rather than a single organism is
supposed to be the pathologic agent for some chronic
diseases, represented by an increase in bacterial diver-
sity and/or an overgrowth in aggressive bacteria (Dan-
iels et al. 2014; Walker et al. 2011). The variability of gut
microbiota is possibly related to systemic inflammation.
Daniels et al. found a higher diversity in diverticulitis for
Proteobacteria, which also led to an alteration in diversity
of other phyla together (Daniels et al. 2014). Administra-
tion of DDC stimulates the production of reactive oxy-
gen species (ROS) which triggers the mitogen-activated

protein kinase (MAPK)/Nuclear factor-kappa B (NF-kB)
pathway and results in the production of proinflam-
matory cytokines, subsequently creates a hostile envi-
ronment adjacent to the mucosal surface and cause a
variation in gut microbiota (Silva et al. 2010; Siriwardena
2014). Although endogenous antioxidant system can
prevent the toxic effect of ROS, however, excessive ROS
generation caused by DDC may overwhelm the natural
antioxidant defense system. Studies in mice with coli-
tis showed that quantitative growth of Verrucomicrobia,
Proteobacteria and specifically Bacteroidetes were almost
linearly decreased as weight loss progressed (Vanhooren
et al. 2013). While research also revealed that epithelium
devoted to clear microbes away from mucosal surface
in mounting responses and improve the proliferation of
intestinal probiotics. But DDC inducement destroyed
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mucosal surface, which was detrimental to maintaining
the stability of gut microbiota, and down-regulating the
proliferation of intestinal probiotics.

In our study, IOP greatly decreased the Seq_num and
OTU due to the loss of gut microbiota, which presum-
ably provided space for normal bacteria to colonize in the
gut, and a scenario also has been observed in gut micro-
biota variation of malnourished children in Bangladesh
(Monira et al. 2011). Shannon diversity index and Chao
1 estimator showed that CP would increase the diversity
and richness of mice, but IOP would decrease it. These
were consistent with the study of Xu et al. that Lenti-
nula edodes-derived polysaccharide can reduce the rich-
ness, diversity and evenness of microbial communities in
cecum and colon (Xu et al. 2015).

In correlation analysis of the variation of gut micro-
biota and chemical parameters, significant correlations
were found in an increase of Bacteroidetes and a decrease
of Firmicutes, Protecbacteria, Actinobacteria and Cyano-
bacteria. The relative abundance of two dominant phyla,
the Bacteroidetes and the Firmicutes, appears to play a
role in the ability of the microbiome to harvest energy
from the diet (Turnbaugh et al. 2006; Ley et al. 2005). Pol-
saccharides are hard to digest by human being, but recent
researches have demonstrated that some microbes in the
human gut can produce enzymes to hydrolyze complex
polysaccharides to easily adsorbed monosaccharides
(Bolam and Sonnenburg 2011). Bacteria in Bacteroidetes
phylum may produce different kinds of polysaccharide-
degrading enzymes, while Firmicutes phylum contains
fewer microbes with the capacity of polysaccharides
degradation (Bolam and Sonnenburg 2011; Ravcheev
et al. 2013). Similar to other studies that Bacteroidetes
and Firmicutes are predominant phyla in the gut flora
(Ley et al. 2008a, b). As a dietary fungal polysaccharide,
IOP has many beneficial effects on the host’s health. Oral
administration of IOP may drive qualitative and selec-
tive changes in the composition of the gut microbiota
(Wang et al. 2014; Wu et al. 2011). When CP mice were
administrated with IOP, the proportion of Bacteroidetes
was increased with the increasing dose of IOP, but Fir-
rmicutes was decreased.

Some genera such as Bacteroides, Prevotella and Lac-
tobacillus in gut microbiota play an important part in the
hydrolyzation of polysaccharides into short chain fatty
acids (SCFA) (Bach-Knudsen et al. 2012). Li et al. found
that Bacteroides could produce high levels of SCFA by
fermentation of indigestible plant-derived substrates
in fish intestine (Li et al. 2015). Li et al. also found that
Prevotella contained highly active hemicellulolytic and
proteolytic enzymes, which could degrade polysac-
charide, xylan and starch (Li et al. 2014). In the study
of Reilly, oat polysaccharide increased the amount of
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Lactobacilli in intestinal microbiota and SCFA concen-
trations in pigs (Reilly 2010). The production of SCFA
can provide energy for microbes, modulating immune
responses and maintaining the epithelial barrier function
(Brown et al. 2011). In our study, Bacteroides, Prevotella
and Lactobacillus were richest in NC group but rarest
in MC group, among all treatment groups, these three
genera were more abundant in IOP-H group. This was
consistent with the findings of Maslowski et al. that low
concentrations of SCFA in germ-free mice would exac-
erbate inflammatory responses (Maslowski et al. 2009).
An early study suggests that dietary fiber fed to conven-
tional mice is capable to stimulate intestinal epithelial
cell proliferation (Goodlad et al. 1989). In our study, IOP
may also keep the integrity of epithelium, inhibit the
proliferation of Alistipes, Incertae_Sedis, Helicobacter,
Parabacteroides and Rikenella and alter the diversity of
the intestinal probiotics in a dose-dependent way. How-
ever, a large number of unclassified and uncultured gen-
era were also shown by sequence databases, the relations
between CP and gut microbiota composition and how
gut microbiota utilize IOP under oxidant injury need fur-
ther research.

In summary, our results showed that IOP exerted phar-
macological influence on CP related parameters in terms
of increasing GSH-Py and TAOC level and decreasing
TNF-a, TGE-B, lipase and trypsin levels. Meanwhile,
IOP reduced the gut microbiota diversity and richness,
decreased the relative abundance of Firmicutes, increased
the Bacteroidetes at phylum level, and regulated gut
microbiota toward a healthy profile at genus level. More-
over, the variations in gut microbiota were correlated
with biochemistry parameters. The favorable biochemi-
cal characteristics and gut microbiota suggest that IOP
has strong activity for ameliorating CP and a beneficial
effect on gut microbiota.
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