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Bacterial and archeal community 
composition in hot springs from Indo‑Burma 
region, North‑east India
Amrita Kumari Panda1*, Satpal Singh Bisht1, Surajit De Mandal2 and Nachimuthu Senthil Kumar2

Abstract 

Bacterial and archaeal diversity of two alkaline Indian hot springs, Jakrem (Meghalaya) and Yumthang (Sikkim), were 
studied. Thirteen major bacterial phyla were identified of which Firmicutes, Chloroflexi and Thermi were dominant in 
Jakrem and Proteobacteria in Yumthang. The dominant genera were Clostridium, Chloroflexus and Meiothermus at 
Jakrem (water temperature 46 °C, pH 9) and Thiobacillus, Sulfuritalea at Yumthang (water temperature 39 °C, pH 8) hot 
springs. The four Euryarchaeota taxa that were observed in both the hot springs were Methanoculleus, Methanosaeta, 
Methanosarcina and Methanocorposculum. Elstera litoralis, Thiovirga sp., Turneriella sp. were observed for the first time 
in association with hot springs along with Tepidibacter sp., Ignavibacterium sp., Teribacillus sp. and Dechloromonas 
sp. Individual bacterial phyla were found to be specifically correlated with certain physico-chemical factors such as 
temperature, dissolved SiO2, elemental S, total sulphide, calcium concentrations in hot spring water. Bacterial reads 
involved in sulfur cycle were identified in both16S rRNA gene library and sulfur metabolism may play key physiologi-
cal functions in this hot spring. Members within Desulfobacterales and Thermodesulfovibrionaceae were identified and 
hypothesized their role in regulating sulfur cycle. The presence of many taxonomically unsolved sequences in the 
16S rRNA gene tag datasets from these hot springs could be a sign of novel microbe richness in these less known hot 
water bodies of Northeastern India.
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Introduction
The Himalayas represent a unique area of geothermal 
system associated with continent- continent colliding 
zone and the Himalayan geothermal belt (HGB) extends 
from the north-western part to the north-eastern part 
of India over a length of 1500  sq km (Chauhan 2015). 
Geological survey of India has identified 340 hot-water 
springs in India and classified them on the basis of their 
geo-tectonic setup (Craig et al. 2013; Ghelani et al. 2015). 
Thermal springs located in Sikkim and Meghalaya are an 
integral part of HGB which is located within the Indo-
Burma range and hot springs in HGB have alkaline pH 
and unique geochemistry i.e. elevated Na, Ca and SiO2 

(Siangbood and Ramanujam 2011; Rakshak et  al. 2013). 
Compared to many studies on hot springs at lower ele-
vations such as Yellowstone National Park (Kan et  al. 
2011), Kamchatka in Russia (Reigstad et al. 2010), Iceland 
(Mirete et  al. 2011) Indonesia (Aditiawati et  al. 2009), 
Tunisia (Sayeh et  al. 2010) and north-eastern Australia 
(Weidler et al. 2007), very little is known about the micro-
bial diversity of high elevation Himalayan hot springs. Hot 
springs present in high elevation HGB are less explored in 
terms of biotic components (Ghosh et  al. 2003). North-
east Himalayan geothermal sub-province harbors large 
number of thermal springs and is an important geother-
mal energy source in India (Razdan et  al. 2008). Only a 
few studies have been performed on the microbial ecol-
ogy of hot springs from North-eastern India (Rakshak 
et al. 2013; Sherpa et al. 2013) and still it is assumed that 
comprehensive understanding on the microbial commu-
nity structure in these hot springs are less known.
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Thermophilic microbial diversity is reported from 
many alkaline hot water springs previously (Pagaling 
et al. 2012; Coman et al. 2013) and it is assumed that it 
influenced the evolution of life on earth (Doolittle 1999). 
Metagenomics studies from extreme environments led to 
the discovery of biocatalysts, secondary metabolites and 
bioactive compounds (Wong 2010; Barone et  al. 2014). 
For example sulphur-cycling genes from sulphidic deep 
sea hydrothermal vent communities (Cao et al. 2014), H2 
oxidation genes from H2-rich serpentinite hydrothermal 
vent communities (Brazelton et al. 2011), lipid oxidation 
genes in DSHV communities (He et al. 2013) and genes 
for ammonia- oxidation (amoA) in the Guaymas Basin 
(Baker et al. 2012) were identified by community metage-
nome analysis.

Hot springs harbor rich bacterial diversity that could 
be the source of commercially important products spe-
cially enzymes, sugars, compatible solutes and antibiot-
ics (Satyanarayana et al. 2005). Bacterial diversity analysis 
of such extreme environments by culture independent 
approaches has grown in significance because of their 
diverse, unusual chemistry and the opportunity they pro-
vide to identify rare compounds and genes (Kuddus and 
Ramtekke 2012). Hot springs of Indian subcontinent offer 
striking and demanding platform for researchers from 
the globe due to the existence of unknown and untapped 
microbial communities. Most of the hot springs present 
in Northeast of India are present in unexplored envi-
ronments and their diversity studies could be of great 
interest to facilitate various industrial, agricultural and 
medicinal applications and offer potential solutions to 
environmental concerns including the demand for bio-
fuels (Urbieta et al. 2015).

The objective of this research was to study the micro-
bial community composition and diversity in hot springs 

of the HGB (Yumthang and Jakrem) located in Northeast 
India and to understand the influence of the hot spring 
physico-chemical properties on the microbial diversity. 
These analyses were based on the hypothesis that the 
alkaline hot springs of HGB will host important micro-
bial species for bio-prospecting and that specific eco-
logical parameters might favor the species diversity and 
richness.

Materials and methods
Sampling
Microbial mat along with water and sediment was col-
lected from Jakrem, Meghalaya (temp. 46 °C; elevation of 
1450 m from MSL) and Yumthang, Sikkim (temp. 39 °C; 
elevation of 3564 m from MSL) hot springs of Northeast 
India. The geographical location of the sampling sites is 
shown in Fig. 1. The sample was collected from random 
sites using a hand trowel and pooled into sterile tubes, 
frozen in dry ice and transported to the laboratory for 
further analysis. The sediment/mat color, water tempera-
ture, pH and dissolved oxygen were recorded. XRD was 
performed to identify the mineralogy of collected solids 
(Huang et al. 2011). 500–1000 ml of the sample was fil-
tered (0.22 µm) and split into several aliquots for analy-
sis of various anion, cation and trace elements (sodium, 
calcium, potassium, magnesium, iron, arsenic, phospho-
rous, chloride, sulfur, nitrate, aluminium, silicon, dis-
solved silica and total sulphide) by Inductively Coupled 
Plasma Optical Emission Spectroscopy3r (ICP OES-
7300, Perkin Elmer, USA).

Community DNA extraction
Total DNA was extracted from 2 to 5 g of collected sam-
ple using Fast DNA™ Spin kit for soil (MP Biomedicals, 
USA). The DNA concentration was quantified using a 

Fig. 1  Geographical location of the sampling sites
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microplate reader (SpectraMax 2E, Molecular Devices, 
USA). Agarose gel electrophoresis of the community 
DNA was carried out to check the quality of the DNA, 
stained with ethidium bromide and visualized under gel 
documentation system (G-Box, SynGene, USA).

Illumina sequencing
The V4 region of the 16S rRNA gene was amplified using 
515F/806R (5′ GTGCCAGCMGCCGCGGTAA 3′; 5′ 
GGACTACHVGGGTWTCTAAT 3′) primers (Caporaso 
et  al. 2012; Moonsamy et  al. 2013). Cycling conditions 
for the PCR reaction were 98 °C for 30 s, followed by 30 
cycles of 98 °C for 10 s and 72 °C for 30 s, with a 5 s elon-
gation step at 72  °C followed by 4  °C hold. The paired-
end sequencing (2 ×  251 base pairs) was performed on 
an Illumina Mi-Seq platform at Scigenome India Pvt Ltd, 
Cochin, India.

Phylogenetic and statistical analysis
QIIME data analysis package was used for 16S rRNA 
data analysis. Quality check on raw sequences was per-
formed, Chimeras were removed using UCHIME, pre-
processed consensus V4 sequences were grouped into 
operational taxonomic units (OTUs) using the cluster-
ing program UCLUST at a similarity threshold of 0.97 
(Edgar 2010). The representative sequence was finally 
aligned against Greengenes core set of sequences using 
PyNAST program and representative sequence for each 
OTU was classified using RDP classifier and Greengenes 
database. Sequences which are not classified were clas-
sified as unknown. The Shannon diversity indices were 
calculated and it represents OTU abundance, richness 
and evenness. The original sequencing output files of 
Jakrem and Yumthang hot spring have been deposited in 
the Sequence Read Archive (SRA) service of the National 
Centre for Biotechnology Information (NCBI) database 
under the accession numbers SRS932137 and SRS932073, 
respectively.

Canonical correlation analysis was performed to deter-
mine the correlation between microbial diversity and 
geochemical factors using PAST: Paleontological statis-
tics software (Hammer et  al. 2001). Pearson correlation 
between hot spring physico-chemical parameters and 
bacterial phyla were calculated using PASW statistics 18 
(SPSS Inc, Chicago, USA).

Analysis of metabolic potential
The bioinformatics pipeline PICRUSt (Phylogenetic 
Investigation of Communities by Reconstruction of 
Unobserved States) (Langille et  al. 2013) was used to 
address the functional potential of the microbes pre-
sent in the hot springs. The closed-reference OTU pick-
ing protocol using QIIME 1.9.1 (Caporaso et  al. 2012) 

was used and sequences were searched against the 
Greengenes database, version 13_05, taxonomically 
assigned using uclust with default parameters (Edgar 
2010). The OTU table was created and analyzed by PIC-
RUSt pipeline. The PICRUSt pipeline scans KEGG func-
tional database and uses the OTU table of assigned taxa 
and their relative distribution to generate the relative 
abundance of functional categories. Data produced by 
the PICRUSt pipeline was statistically evaluated with the 
STAMP bioinformatics package (Parks and Beiko 2010).

Results
Geochemical analysis
Microbial mats in Jakrem were green in color whereas 
white microbial mats and grey macroscopic filaments 
observed at Yumthang. The temperature, pH, dissolved 
elemental composition and mineralogical data of the hot 
springs are described in Tables 1 and 2. The aqueous con-
centrations of cations such as sodium, calcium and potas-
sium were highest in Jakrem hot spring, where as total 
sulphide concentration was high in Yumthang hot spring. 
XRD analysis shows that quartz is predominant in both 
hot spring sediments, whereas other minerals included 
are tridymite, wollastonite and kyanite (Table 2).

Analysis of bacterial diversity
Alpha diversity indices including Shannon, Chao1 and 
observed species metrices showed that sample YM1 is 
more diverse. The Shannon index was 2.10 and 1.96 for 
the Yumthang and Jakrem hot spring, respectively. Simi-
larly the number of OTU and Chao index was higher in 
Yumthang as compared to Jakrem hot spring (Table  3). 
The metric calculation was performed using QIIME soft-
ware. Rarefaction curve for Shannon metric indicated 
that the sample has reached near saturation for higher 
taxonomic levels (Fig. 2).

Bacterial, archaeal diversity and community composition
The bacterial and archaeal diversity was assessed by illu-
mina sequencing of V4 hyper-variable region of bacterial 
and archaeal small sub-unit rRNA genes with reference 
to these two unexplored hot springs of North- East-
ern India. Jakrem 16S rRNA gene library comprised of 
682,049 reads with 342.38 Mb data and average sequence 
length of 251 bp (Table 4). The G + C content was 57.87% 
and more than 90% sequence had a Phred score >=Q30. 
A total of 509,150 raw sequences (255. 59 Mb data) were 
obtained from Yumthang mat high throughput 16S rRNA 
library. These sequence reads clustered into Operational 
Taxonomic Units (OTUs) based on their sequence simi-
larity using Uclust program (similarity cutoff = 0.97). A 
total of 881, 622 preprocessed reads were clustered into 
1188 OTUs. Sample libraries ranged from 540,082 (JM1) 
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to 341,540 (YM1) sequence reads (Table  4). Approxi-
mately, 561 OTUs were obtained from Jakrem, whereas 
891 OTUs found in Yumthang library. Forty OTUs from 
Jakrem and 80 OTUs from Yumthang high throughput 
16S metagenome library didn’t cluster with any of the 
previously known microbial classifications.

The archaeal community consisted of sequences closely 
related to Euryarchaeota and Crenarchaeota in both 
springs. Two identified order under the phyla Euryar-
chaeota were Methanomicrobiales and Methanosarcina-
les. Members under Crenarchaeota belonged to Marine 

Benthic Group (MBGA). Archaeal diversity did not show 
much variation between the two study sites.

The phylum level bacterial diversity identified in the 
high throughput 16S rRNA libraries from JM1 (Jakrem) 
and YM1 (Yumthang) hot springs is presented in Figs. 3 
and 4. A total of 19 distinct phyla in the Yumthang 16S 
rRNA library dominated by Proteobacteria (83.68%), 
Bacteroidetes (10.93%) and Thermi (1.78%) whereas 
Jakrem 16S rRNA library accounted for 36.08% of Firmi-
cutes, 34.18% of Chloroflexi and 25.44% of Thermi (Fig. 4).

Thermophilic OTUs belonging to the alpha-, beta-, 
delta- and gammaproteobacteria were detected in both the 
samples but with variable abundance. The four classes of 
Proteobacteria are represented by the families Rhodobacte-
raceae, Caulobacteraceae, Oxalobacteraceae, Comamona-
daceae, Thiotrichaceae, Moraxellaceae, Halomonadaceae, 
Halothiobacillaceae, Desulfomicrobiaceae and Desulfobac-
teraceae. The most abundant taxonomic groups among 
Proteobacteria are Betaproteobacteria (82%) represented by 
dominated OTU 617 classified further under the order Rho-
docyclales with other Proteobacterial sequences affiliated 
with Alphaproteobacteria (0.79%), Gammaproteobacteria 
(0.36%) and Deltaproteobacteria (0.33%) in the hot spring 
microbial mat of Yumthang. The other dominant OTUs 
within Betaproteobacteria were OTU 128, 1320 and 940 
were classified under the order Burkholderiales, Thiobacte-
rales and Hydrogenophilales respectively (Additional file 1: 
Table S1). Previous studies show the predominance Proteo-
bacteria, particularly of Betaproteobacteria in a circumneu-
tral hot spring from the Uzon Caldera, Kamchatka, Russia 
(Wemheuer et al. 2013; Chan et al. 2015) and other acidic 
thermal springs (Wilson et  al. 2008). The information on 
distribution of genera is listed in Additional file 1: Table S2.

PICRUSt analysis
PICRUSt uses the OTU table of assigned taxa and their 
relative distribution to generate the relative abundance 

Table 2  Rock mineral analysis by Xpert High score software

Research site High score minerals in descending order of their abundance

Jakrem Quartz > Tridymite > Raspite > Wollastonite > Rankinite > Kyanite > Forsterite > Clinoenstatite > Tungstite
SiO2 > SiO2 > PbWO4 > CaSiO3 > Ca3Si2O7 > Al2O3.Si O2 > Mg2SiO4 > Mg SiO3 > WO3

Yumthang Quartz > Wollastonite > Cuprite > Molybdite > Tenorite > Kyanite
SiO2 > CaSiO3 > Cu2O > MoO3 > CuO > Al2O3.Si O2

Table 3  Diversity indices for  of hot spring microbial com-
munities

Sample name Shannon–Weaver index 
(H)

Chao 1 Number of OTU

JM1 1.963 1561 561

YM1 2.10 1891 891

Fig. 2  Rarefaction analysis of alpha diversity among JM1 and YM1. 
Shannon diversity matrix was used

Table 4  Pre-processing read statistics of illumina paired-end reads

Sample 
name

Total reads Passed 
conserved 
region filter

Passed 
spacer

Passed read 
quality filter

Passed 
mismatch 
filter

Consensus 
reads

After single-
ton removal

Chimeric 
sequences

Pre-pro-
cessed reads

JM1 682,049 627,554 625,976 625,830 577,872 577,872 540,719 637 540,082

YM1 509,150 461,665 461,019 460,943 402,969 402,969 342,830 1290 341,540
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of functional categories based on sequenced genomes. 
On the basis of different KEGG functional gene ontol-
ogy, the functions are arranged into five functional 
modules: metabolism, genetic information processing, 
environmental information processing, cellular pro-
cesses, organismal systems. The fact that no differences 
were observed among both the samples via. PICRUSt 

analysis (Additional file  1: Figure S1) could be attrib-
uted to a low quantity and quality of annotated genomes 
that are related to the species observed in the hot spring 
samples. The increase of prevalence of genes encoding 
carbon fixation through photosynthesis in Jakrem can 
be explained by the high diversity of phototrophs (Addi-
tional file 1: Figure S1). Methane and Sulfur metabolism 
gene modules were also identified by PICRUSt pipeline 
accounting for the role of methane and sulfur in the regu-
lation of geochemical cycle. The most abundant gene cat-
egories were purine, pyrimidine, arginine, proline, amino 
sugar and nucleotide sugar metabolites which reflects the 
basic requirements of microbial life.

Linking microbial community structure and hot spring 
geochemistry
Principal component analysis was used to analyze the 
major geochemical factors responsible for shaping the 
microbial community structure in the microbial mat 
of both the hot springs. Simultaneously, the microbial 
community and geochemical parameters from Mani-
karan hot spring, India (north western Himalayas) (Bha-
tia et al. 2015; Chandrasekharam et al. 2005) and Sungai 
Klah (SK) alkaline hot spring, Malaysia (Chan et al. 2015) 
were taken into account to overcome the problem of 
small sample size in the present study for two compo-
nent analysis. PCA method showed that the commu-
nity composition was significantly (p  <  0.05) linked to 
temperature, dissolved SiO2, elemental S, total sulphide, 
calcium etc. (Fig. 5). Thermi and Chloroflexi were nega-
tively correlated with phosphorous (p < 0.01). The corre-
lation analysis showed that few dominant bacterial phyla 
were positively correlated with particular geochemical 
factor such as the Firmicutes with temperature, Ca, Cl, 
dissolved SiO2; Thermi and Chloroflexi with pH, Si and 
elemental S; Proteobacteria specifically correlates with 
total sulphide (Additional file 1: Table S3; Fig. 5).

Discussion
The taxonomic and metabolic compositions of microbial 
communities are both shaped and constrained by the char-
acteristics of their local environment (Alsop et  al. 2014). 
There are recent published studies focusing on few envi-
ronmental parameters i.e. temperature and pH to deter-
mine the evolution of thermophilic microbial communities 
(Cowan et  al. 2015). The present study is an attempt to 
investigate the factors determining the composition of 
thermophilic microbial communities by including multiple 
geochemical parameters. The present investigation char-
acterized the archaeal and bacterial communities of two 
alkaline springs with similar temperature and pH, but dif-
ferent geochemical parameters. The archaeal and bacterial 
diversity varied across both the hot springs.

Fig. 3  Taxonomic classification of OTUs at phylum level (JM1—
Jakrem samples, YM1—Yumthang samples)

Fig. 4  Taxonomic classification of reads at phylum level (JM1—
Jakrem samples, YM1—Yumthang samples)
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Tepidimonas taiwanensis and Tepidimonas fonti-
caldi are both thermophilic bacteria isolated from a 
hot spring of southern Thailand (Chen et al. 2006) and 
Antun hot spring from Taiwan (Chen et al. 2013). This 
study also identified few Tepidimonas OTUs in Jakrem 
16S rRNA library. It is the third description worldwide 
in association with hot springs. Members of the genus 
Tepidimonas were shown to produce strong alkaline 
protease activity (Chen et al. 2006). One hundred thirty 
four V4 16S rDNA reads from the Yumthang library 
share more than 90% identity with members of Dechlo-
romonas group those are poorly described from other 
thermal environments. There are only three type species 
reported from genus Dechloromonas i.e. Dechloromonas 
agitata (Achenbach et  al. 2001); Dechloromonas deni-
trificans (Horn et  al. 2005); Dechloromonas hortensis 
(Wolterink et  al. 2005) till date. The microbes isolated 
from Gedongsongo hot spring (pH 6.0–7.0) Indonesia 
were closely related to Dechloromonas genera (Aminin 
et  al. 2008). Dechloromonas represents a unique genus 
with a broad range of novel metabolic capabilities and 
bioremediative applicability. There are reports that 
Dechloromonas strains RCB and JJ can completely 
mineralize various mono-aromatic compounds includ-
ing benzene to CO2 in the absence of O2 with nitrate 
as the electron acceptor (Coates et  al. 2001). PICRUSt 
predicted the presence of certain xenobiotic metaboliz-
ing genes during the present investigations (Additional 
file 1: Figure S1).

Partial 16SrDNA sequences from Yumthang and 
Jakrem hot springs share more than 96% identity with 
the members of Thiobacillus sajanensis strain 4G. This 
is a new obligate autotrophic sulfur-oxidizing bacterium 
isolated from Khoito-Gol hydrogen-sulfide springs in 
Buryatia (Dul’tseva et al. 2006). The bacteria belonging to 
Thiobacillus group are mesophilic to moderately thermo-
philic and were found in thermal environments of Africa 
(Khavarpour et  al. 2011), Italy (Pentecost et  al. 2004), 
New Zealand (Jones and Renaut 2007) and Romania 
(Coman et al. 2013). V4 16S rDNA reads from Yumthang 
share identity with Sulfuritalea hydrogenivorans, a novel 
sulfur-oxidizing betaproteobacterium. Delta proteobac-
terial 16S rDNA sequences observed from Yumthang 
library are closely related to Desulfomicrobium bacula-
tum, a gram-negative, motile, sulfate-reducing bacterium 
isolated from water-saturated manganese carbonate ore 
(Copeland et al. 2009).

The most dominant OTU within Chloroflexi was OTU 
1166 classified under the genus Chloroflexus present in 
Jakrem were closely related to Chloroflexus aurantiacus 
strain J-10-fl which is also reported from microbial mats 
of various neutral to alkaline hot springs of the world 
viz. Romania (Coman et al. 2013); China (Lau and Point-
ing 2009; Lau et  al. 2009); Thailand (Kanokratana et  al. 
2004; Portillo et  al. 2009); Japan (Sekiguchi et  al. 2003); 
USA (Costa et  al. 2009); France (Gregoire et  al. 2011a, 
b) or Russia (Bryanskaya et  al. 2006). The Chloroflexus 
is a filamentous anoxygenic phototrophic bacterium. At 

Fig. 5  Correlative relationship between dominant microbial phyla and geochemical factors (Temperature, pH, Na, Ca, Cl, dissolved SiO2, K, elemen-
tal S, total sulphide and Si)
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taxonomic level, four Chloroflexi OTUs from Yumthang 
showed 87% similarity with Thermomarinilinea lacuno-
fontalis strain SW7 isolated from the main hydrothermal 
vent of the Taketomi submarine hot spring field located 
on the southern part of Yaeyama Archipelago, Japan. 
These OTUs were encountered in similar hot springs 
from China (Lau and Pointing 2009; Lau et  al. 2009), 
Thailand (Kanokratana et  al. 2004; Portillo et  al. 2009), 
Japan (Sekiguchi et  al. 2003), USA (Costa et  al. 2009), 
France (Gregoire et al. 2011a, b), Russia (Bryanskaya et al. 
2006) and Romania (Coman et al. 2013).

Photosynthetic Cyanobacterial reads detected in 
Jakrem hot spring are closely related to filamentous 
Cyanobacterial Arthronema and Leptolyngbya genera. 
Some Oscillatoriales Cyanobacteria (especially Lep-
tolyngbya sp.) were observed to dominate hot springs 
with temperature of about 55  °C (Roeselers et  al. 2007; 
McGregor and Rasmussen 2008; Sompong et  al. 2008). 
Their filamentous structures and polysaccharide matri-
ces probably represent the backbone of the microbial mat 
(Van Gemerden 1993). The metabolic abilities of filamen-
tous members of the Oscillatoria order can shed light on 
the role played by closely related clones encountered in 
the Jakrem spring mats. Oscillatoria species are known 
to dwell in anaerobic, sulfide-containing habitats (Cas-
tenholz 1989). At night they can grow by fermenting gly-
cogen and other compounds produced during day time 
photosynthesis. Some species are also capable of growth 
in the dark via sulfur respiration (Richardson and Cas-
tenholz 1987; Teske and Stahl 2002). Elemental sulfur is 
produced as an intermediate of anoxygenic photosyn-
thesis and is abundant in the Jakrem spring. Therefore, 
the anoxic conditions (3.0  mg/l dissolved oxygen along 
with high elemental sulfur concentrations) in the Jakrem 
spring represent an ideal habitat for members of the 
order Oscillatoriales.

The occurrence “Candidatus Xiphinematobacter,” in 
Jakrem 16S rRNA library is of interest as only few spe-
cies reported till date. ‘Candidatus Xiphinematobacter’ 
gen. nov., along with three new candidate species, ‘Can-
didatus Xiphinematobacter americani’ sp. nov., ‘Candi-
datus Xiphinematobacter rivesi’ sp. nov. and ‘Candidatus 
Xiphinematobacter brevicolli’ sp. nov., were reported 
(Vandekerckhove et  al. 2000). The non-Proteobacterial 
obligately methanotrophic bacterium Kam1 belonging 
to the Verrucomicrobia was recovered from an acidic hot 
spring in Kamchatka, Russia and is more thermoacido-
philic than any other known methanotroph with opti-
mal growth at 55  °C and pH 3.5 (Islam et al. 2008). The 
majority of the Firmicutes sequences in Jakrem 16S rRNA 
library were affiliated with the genus Clostridium. The 
most dominant OTU among the Firmicutes phyla is OTU 
1235 (read =  154,229), having close sequence similarity 

with the Clostridium sp. TB10. Approximately, 25% of 
the total bacterial clone sequences in Jakrem library were 
closely related to Deinococcus—Meiothermus. The Bacte-
roidetes sequences observed in the Yumthang library and 
Flavobacterium represented the predominant genus of 
this phylum.

Other bacterial reads such as Elstera litoralis, Thiovirga 
sp., Turneriella sp. were observed for the first time in 
association with the hot spring. The presence of sequence 
reads from bacterial taxa Tepidibacter sp., Ignavibacte-
rium sp., Teribacillus sp., Dechloromonas sp., could be the 
representatives of novel species within these genera. The 
genus Tepidibacter (Firmicutes) was proposed (Slobodkin 
et  al. 2003) with three reported type species i.e. Tepidi-
bacter thalassicus, Tepidibacter formicigenes and Tepidi-
bacter mesophilus (Tan et  al. 2012). Thus, the OTUs 
from Jakrem hot spring representing Tepidibacter (Fir-
micutes) possibly are the novel species with in this genus. 
The bacterium Ignavibacterium album was reported to 
be the only members of the bacterial phylum Chlorobi 
(Iino et al. 2010; Liu et al. 2012). Ignavibacterium was the 
only member of the phylum Chlorobi detected in these 
two hot springs. The presence of number of taxonomi-
cally unsolved sequence reads in both the hot spring high 
throughput 16S rRNA library is a sign of many novel 
microbes indigenous to these selected hot water springs. 
The findings of the molecular survey of these two so far 
not investigated sites showed that these hot springs are 
repository of unique bacterial and archaeal species in the 
biodiversity rich regions of the world.

Low diversity of archaea was found with genus-level 
OTUs corresponding to Methanocorposculum, Metha-
nosaeta and Methanosarcina in both the springs and with 
an addition of Methanoculleus in Yumthang hot spring 
alone. Methanogenic microbes can use H2, acetate, for-
mate, methanol, carbon monoxide and various methyl-
amines as energy sources (Balch 1979). Methane could be 
playing a major role in geochemical cycling at Yumthang 
hot spring which is indicated by the presence of metha-
nogenic archaeal sequence reads and methane metabo-
lism genes in in silico analysis by PICRUSt (Additional 
file 1: Figure S1) in this environment. Newell et al. (2008) 
measured gas concentrations at various springs along the 
southern margin of the Tibetan plateau and observed 
variable CH4 concentrations from 110 to 500  ppm. The 
presence of methanogenic reads in Yumthang spring 
indicates methane may be derived from deeply buried 
carbon-bearing rocks or it could be produced in the near 
surface by organic matter fermentation (Whiticar 1986).

Thermophilic strains of Methanosarcina sp. have been 
reported with growth temperature of 55  °C (Zinder 
and Mah 1979) and Methanosaeta thermophila (Noz-
hevnikova and Yagodina 1983) from a hot spring (55 °C) 
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of Kamchatka, Russia. However, the occurrence of 
Methanosarcina and Methanosaeta sequence reads in 
Yumthang hot spring 16S rRNA illumina library (water 
temperature 39  °C) suggests that there are members of 
both of these genera that grow at lower temperatures 
(similar to and below that found in Yumthang). There 
are reports on occurrence of methanogens including 
Methanomicrobiales and Methanosarcinales and relatives 
of Methanomassiliicoccus luminyensis from hot springs 
of Armenia (Hedlund et  al. 2013). Our study revealed 
the dominance of Euryarchaeota over Crenarchaeota in 
these hot springs.

Thermi and Chloroflexi were negatively correlated with 
phosphorous (p < 0.01). The correlation analysis showed 
that few dominant bacterial phyla were positively corre-
lated with particular geochemical factor such as the Fir-
micutes with temperature, Ca, Cl, dissolved SiO2; Thermi 
and Chloroflexi with pH, Si and elemental S; Proteobacte-
ria specifically correlates with total sulphide (Additional 
file  1: Table S3; Fig.  5). Desulfomicrobiaceae and Desul-
fobacteraceae. Thermi and Chloroflexi were negatively 
correlated with phosphorous (p < 0.01). The correlation 
analysis showed that few dominant bacterial phyla were 
positively correlated with particular geochemical fac-
tor such as the Firmicutes with temperature, Ca, Cl, 
dissolved SiO2; Thermi and Chloroflexi with pH, Si and 
elemental S; Proteobacteria specifically correlates with 
total sulphide (Additional file 1: Table S3; Fig. 5). In the 
complete dataset, only few significant correlations were 
observed between hot spring geochemical factors and 
dominant phyla which may be attributed to small sample 
size in the present study.

As the two hot springs from Jakrem and Yumthang 
showed small differences in temperature and pH, the dif-
ference in bacterial community may be due to differences 
in aqueous geochemistry. Sulfur metabolism involves sul-
fur oxidation and sulfur reduction both. Because reads 
detected in 16S rRNA gene library were closest to the 
sulfate reducing microbes, we conclude that both hot 
spring communities preferably generate the reductive 
form of sulfur compounds (Fig.  6). The Yumthang hot 
spring had low dissolved oxygen (4 mg/l) and alkaline pH 
and these conditions appear to favour sulfate-reducing 
microorganisms. For example, the reads of Deltaproteo-
bacterial order Desulfobacterales (Widdel 1987), Ther-
modesulfovibrionaceae family from Nitrospirae (Haouari 
et al. 2008) capable of reducing sulfates to sulfides were 
identified. The presence of large amount of total sulphide 
(0.16 mg/l) (Table 1) in Yumthang may be possible due to 
the presence of sulfate-reducing micro organisms.

Sulfate-reducing microorganisms are important in 
degrading organic matter under anoxic environments. In 
the Jakrem community, the organisms related to sulfate 

reduction identified from library those having closest hits 
to Desulfomicrobium apsheronum (Rozanova et al. 1988), 
Desulfomicrobium thermophilum (Thevenieau et al. 2007) 
and Desulfomicrobium sp. B1 (Chen et  al. 2008). These 
sulfate-reducing microorganisms play an important role 
in energy production as well as the maintenance of the 
microbial community (Elshahed et al. 2003; Douglas and 
Douglas 2001). They depend on sulfate and elemental 
sulfur as the terminal electron acceptor during anaerobic 
metabolism. Reduction of sulfate to sulfite was activated 
by the formation of adenosine-5′-phosphosulfate (APS) 
and 3′-phosphoadenosine-5′-phosphosulfate (PAPS) 
which was further reduced to sulfite and hydrogen sulfide 
using the enzyme of phosphoadenosine phosphosul-
fate reductase and sulfite reductase. The abundance of 
δ-Proteobacteria and purple sulfur γ-Proteobacteria (80–
83%) in the microbial mat bacterial diversity of the stud-
ied North east Indian hot spring samples was consistent 
with previous observations in mesophilic sulfide-rich 
springs (Elshahed et al. 2003).

Conclusions
This culture-independent study has provided an impor-
tant insight into the potentially novel microbial diversity 
and community composition of two alkaline hot springs 
of Himalayan Geothermal Belt. Jakrem hot spring (39 °C) 
was abundant with the bacterial genera Clostridium, 
Chloroflexus and Meiothermus whereas Thiobacillus, Sul-
furitalea was abundant in Yumthang (45 °C) hot springs. 
Bacterial phyla were found to be specifically correlated 
with physico-chemical factors of the hot spring water 
such as the Firmicutes with temperature, Ca, Cl, dis-
solved SiO2; Thermi and Chloroflexi with pH, Si and ele-
mental S; Proteobacteria specifically correlates with total 
sulphide. Several bacterial genera with known industrial 
importance were identified from the hot spring metage-
nomes. The presence of high sulphide concentration as 

Fig. 6  KEGG based analysis of sulfur metabolism
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well as sulfate-reducing micro organisms in Yumthang 
indicates an active sulphur cycle in this hot spring. 
Many sequence reads not closely similar to any of the 
known species identified in the present study indicates 
the possibility of novel microbes in these habitats. Fur-
ther studies with cultivation followed by physiological 
analysis of these important microbes would be required 
to determine their precise functional roles within these 
communities.
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