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Growth promotion of Spirulina 
by steelmaking slag: application of solubility 
diagram to understand its mechanism
Reijiro Nogami1, Haruo Nishida1, Dang Diem Hong2 and Minato Wakisaka1*

Abstract 

A solubility diagram was employed to understand growth promotion of Arthrospira (Spirulina) platensis by steelmak‑
ing slag (SMS). The growth promotion effect of 112 % of freshwater microalga A. platensis was obtained using 5 g/L 
SMS. However, metabolites, such as pigments, and protein content of A. platensis were not significantly affected. 
Several metals dissolved in Spirulina–Ogawa–Terui medium were detected by inductively coupled plasma atomic 
emission spectrometry just after the addition of SMS. The solubility diagram provides information on the chemical 
speciation of metal elements based on pH and concentration. It is a useful tool to understand the effect of metals 
on microalgal growth. The metal elements used to control microalgal growth are essential minerals but also act as a 
source of oxidative stress. Regarding the affecting mechanism of SMS, iron may be the primary element regulating 
microalgal growth via pathway involving reactive oxygen species, as revealed by superoxide dismutase assay.
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Introduction
Microalgae are potential sources of cosmetic, food and 
pharmaceutical products, and biofuels (Xi et  al. 2016; 
Tasić et  al. 2016; Santos et  al. 2016). However, the pro-
ductivity of microalgal cultures must be improved for 
scale-up application.

To improve the productivity of microalgal culture, vari-
ous efforts, such as screening of better strain selection 
(Chen et  al. 2009; Pereira et  al. 2011; Chen et  al. 2012; 
Bajhaiya et  al. 2016) and optimization of culture condi-
tions, have been made (Kim et  al. 2012; Kanaga et  al. 
2016). The enhancement of microalgal growth and accu-
mulation of high value products can be achieved by sim-
ply adding various chemical substances (Fábregas et  al. 
1987; Sasaki et  al. 1995; Valenzuela-Enrique et  al. 2002; 
Moed et  al. 2015; Nayak et  al. 2016). Steelmaking slag 
(SMS), a by-product of iron-making process, is an effec-
tive fertilizer for seaweed bed restoration (Takahashi 

and Yabuta 2002; Yabuta et  al. 2006; Miyata et  al. 2009; 
Hayashi et al. 2011; Yamamoto et al. 2012). SMS contains 
minerals, such like Fe, P, Mg, Ca, Mn, that are essential 
for algal growth (Yokoyama et al. 2010; Zhang et al. 2012; 
Mombelli et  al. 2014). The growth promotion effect of 
SMS has been reported in not only macroalgae but also 
in certain seawater microalgae (Nakamura et  al. 1998; 
Haraguchi et al. 2003; Sugie and Taniguchi 2011). How-
ever, investigations on freshwater microalgae required 
for the commercial production of valuable products are 
fewer than those on marine microalgae. In our previous 
study, we demonstrated growth promotion effect of SMS 
to Spirulina, a freshwater microalgae (Nogami 2016). 
However, the growth promotion mechanism of SMS is 
still unclear. Although there are current prevailing opin-
ions, such as the fertilization effect of eluted iron neces-
sary for photosynthesis (Yamamoto et  al. 2016) or the 
contribution of dissolved CO2 via increase in the pH of 
the medium (Takahashi et al. 2012), there are no unified 
views to explain growth promotion effect of SMS.

On the other hand, the dissolution behavior of vari-
ous elements from SMS in seawater and freshwater were 
demonstrated using solubility diagram (Futatsuka et  al. 
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2004; Miki et  al. 2004; Yokoyama et  al. 2012). However, 
there are no reports on the application of a solubility dia-
gram of SMS for understanding microalgal growth pro-
file. The solubility diagram provides information on the 
stable chemical speciation under different concentra-
tion and pH and is useful for understanding the elution 
or precipitation behavior of solutions. SMS is a mixture 
of various metal elements. The elution behavior of each 
element from SMS to culture medium and microalgal 
growth profile should be correlated to understand the 
mechanism underlying the growth promotion effect. 
Elements eluted from SMS to culture medium can be 
detected using atomic absorption spectrometry to under-
stand the effect on microalgal culture.

This study aimed to understand the correlation 
between microalgal growth and speciation of metals 
eluted from SMS using a solubility diagram obtained for 
Spirulina culture with SMS.

Materials and methods
Materials
The cyanobacterium Arthrospira platensis (Nordst-
edt) Gomont NIES-39 strain was purchased from the 
National Institute for Environmental Studies, Tsukuba, 
Japan. A. platensis was cultured in 300  mL flasks con-
taining 200  mL of Spirulina–Ogawa–Terui (SOT) 
medium with the following composition (mg L−1): 
NaHCO3, 16,800; K2HPO4, 500; NaNO3, 500; K2SO4, 
1000; NaCl, 1000; MgSO4·7H2O, 200; CaCl2·2H2O, 40; 
FeSO4·7H2O, 10; Na2EDTA·2H2O, 80; H3BO3, 2.86; 
MnSO4·5H2O, 2.5; ZnSO4·7H2O, 0.22; CuSO4·5H2O, 
0.08; and Na2MoO4·2H2O, 0.02. SMS, 2 mm in diameter, 
was added to SOT medium at 0, 0.05, 0.5, and 5 g L−1 in 
microalgal cultures and blanks. A. platensis was culti-
vated under the following conditions: a light intensity of 
12,000 Lux from a white fluorescent lamp, with 12 h/12 h 
light/dark cycles and a temperature of 25  °C. All flasks 
were cultured under static conditions and were shaken by 
hand twice a day.

Cell growth and metabolite analysis
Cell growth was determined by measuring the dry weight 
of the biomass. Cells were filtered using filter paper 
(GC-50, ADVANTEC), oven dried at 105 °C for 2 h, and 
were placed in a desiccator for 1 h before measuring the 
weight. Biomass weight was calculated by subtracting the 
dry weight of the blank. Chlorophyll a and phycocyanin 
were repeatedly extracted using 80 % acetone and 0.01 M 
potassium phosphate buffer of pH 7.8, respectively. Pig-
ment contents was calculated by measuring their absorb-
ance at 750 nm using spectrophotometer (UV–vis 1200, 
Shimadzu). Protein was extracted by salting out, and its 
concentration was determined by Lowry et al. (1951).

Solubility diagram
The culture medium was sampled every 7 days to moni-
tor pH and metal elution from SMS. After filtering the 
culture medium, the pH of the filtrate was measured 
using a pH meter (LAQUA twin, Horiba), and metal elu-
tion was detected using Simultaneous ICP Atomic Emis-
sion Spectrometer (ICPE-9800, Shimadzu). The solubility 
diagram of eluted elements was obtained based on the 
calculation of solubility product and chemical potential 
(Futatsuka et al. 2004).

SOD activity assay
Superoxide dismutase (SOD) activity was measured to 
determine the microalgal response to metals eluted from 
SMS. Microalgal cells were harvested by centrifugation 
and homogenized with potassium phosphate buffer. The 
homogenates were then centrifuged at 12,000  rpm for 
10  min at 4  °C. Xanthine oxidase was used to generate 
O2

−, and SOD assay was followed.

Statistical analysis
All experiments were performed in triplicates, and the 
data has been presented as mean ±  standard deviation. 
Data were statistically analyzed using Kruskal–Wallis 
test, with the level of significance at p < 0.05.

Results
Growth promotion of A. platensis by SMS
The growth promotion effect of SMS on the freshwater 
microalga A. platensis was comparable to that of other 
marine microalgae, which was previously reported. Fig-
ure 1a shows the growth profile of A. platensis. Its growth 
significantly increased by the addition of 5  g/L SMS 
during the latter half of culture. The maximum growth 
promotion of 1.12-fold higher than that of control was 
obtained at 21 days. Figure 1b shows the pH change dur-
ing culture period. pH increased corresponding to the 
increase in culture time until 20  days, when maximum 
growth was observed that stabilized at pH 11.5 in con-
trol and with 0.05 g/L SMS and slightly decreased below 
pH 11.5 with 0.5 and 5  g/L SMS. The trend in increase 
in growth differed based on the amount of SMS, i.e., it 
proportionally increased with 0.5 and 5  g/L SMS, with 
rapid increase observed after 15 days in control and with 
0.05 g/L SMS.

Metabolite analysis of A. platensis
Metabolites, such as pigment, and protein content of 
A. platensis were not significantly affected by SMS. 
Figure  2 shows pigment contents [(a) chlorophyll a, 
(b) phycocyanin] of A. platensis. Pigment contents did 
not significantly differ until 14 days, but at the end of 
culture, the pigment contents were decreased in SMS 
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concentration-dependent manner compared with 
those of the control. There was no significant differ-
ence in total protein content observed as shown in 
Fig. 2c.

Metal elution from SMS to culture medium
The dissolution of metals in SOT medium was detected 
using inductively coupled plasma atomic emission spec-
trometry just after the addition of SMS. Figure 3 shows 
the concentrations of the dissolved metals in SOT 
medium compared between samples with and without 
microalgal cells. The dissolution of Ca, Mg, and Fe from 
SMS was evident at 0  day without microalgal cells, and 
the concentrations of all dissolved metals decreased with 
the increase in microalgal cells. In the case with micro-
algal cells, the concentrations of dissolved Ca, Mg, and 
Fe decreased over time, but trends in this decrease dif-
fered for each metal. The concentration of dissolved Mg 
sharply decreased to almost zero after 15  days. Change 
in Fe concentration was observed in SMS concentration-
dependent manner. The concentration of dissolved Fe 
exhibited a more severe decrease after 15 days in the con-
trol without SMS than in that with SMS. Samples without 

microalgal cells exhibited initial decreases in the Ca and 
Mg concentrations, which subsequently stabilized; How-
ever, Fe concentration exhibited a decreasing trend with 
5 g/L SMS.

Solubility diagram applied for metal elution from SMS
The solubility diagram is a useful tool for understanding 
the chemical speciation of metals and thus their bioavail-
ability during microalgal culture. Figure 4 shows the solu-
bility diagram of Ca, Mg, and Fe for A. platensis culture. 
Correlation between the concentration of dissolved metal 
and pH during culture period was plotted in each solubil-
ity diagram. Ca precipitated as CaCO3 soon after elution 
from SMS in the SOT medium during the culture period, 
whereas Mg and Fe changed to their respective hydrox-
ides. Fe was considered to be the primary element con-
trolling growth or A. platensis since highest decrease of 
concentration among three elements was observed.

Fig. 1  Effects of steelmaking slag on Arthrospira platensis culture. a 
Growth profile, b pH change during culture. (●) Control, (▲) 0.05 g/L 
SMS, (□) 0.5 g/L SMS, (○) 5 g/L SMS

Fig. 2  Effects of steelmaking slag on the metabolites of Arthrospira 
platensis. a Chlorophyll a, b phycocyanin, c protein content of (●) 
Control, (▲) 0.05 g/L SMS, (□) 0.5 g/L SMS, (○) 5 g/L SMS
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Oxidative stress by Fe and growth control of A. platensis
To understand the growth control mechanism of Fe from 
SMS, the biological response to oxidative stress by metal 
elution from SMS was investigated. Figure  5 shows the 
SOD activity of A. platensis at 21  days after exposure 
to SMS. The SOD activity of 5  g/L SMS significantly 
decreased corresponding to the considerable decrease in 
Fe concentration compared with that of the other SMS 
concentrations.

Discussion
The growth profile results (Fig.  1a) are consistent with 
the reported values (Carvalho et  al. 2004; Chen et  al. 
2006; Göksan et al. 2007; Markou et al. 2012). This could 
be due to initial pH of 9.0 achieved by adding SMS was 
optimal for A. platensis (Fig. 1b).

A. platensis pigment contents in SMS decreased com-
pared with those in the control at the end of culture 
(Fig. 2a, b). This may be explained by the pH dependency 

of pigments, with a reported maximum content at pH 8.5 
for chlorophyll a and 9.0 for phycocyanin (Ismaiel et al. 
2016). Another reason could be due to iron deficiency. 
The decrease in pigment contents was also reported with 
another type of cyanobacterium, Aphanocapsa (Sand-
mann 1985).

Fig. 3  Elemental dissolution from steelmaking slag (SMS) in Spir‑
ulina–Ogawa–Terui medium. a Behavior with Arthrospira platensis 
(a-1: Ca, a-2: Mg, a-3: Fe), b Behavior without A. platensis (b-1: Ca, b-2: 
Mg, b-3: Fe), of (●) Control, (▲) 0.05 g/L SMS, (□) 0.5 g/L SMS, (○) 
5 g/L SMS

Fig. 4  Solubility diagram of each element applied for Arthrospira 
platensis culture. Solubility diagram of a Ca, b Mg, and c Fe for (●) 
Control, (▲) 0.05 g/L SMS, (□) 0.5 g/L SMS, (○) 5 g/L SMS

Fig. 5  Superoxide dismutase activity of Arthrospira platensis exposed 
to steelmaking slag
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Changes in the concentration of each concentration in 
Fig.  3 may be explained by iron hydroxide precipitation 
followed by calcium hydroxide formation. Thus, Fe eluted 
from SMS is considered as the primary element control-
ling microalgal growth. The solubility diagram, which 
provides information on the chemical speciation of each 
elements based on to pH and concentration provides 
insight on this.

The results of SOD activity (Fig.  5) were consistent 
with the results in another report which stated that SOD 
activity is dependent on iron concentration (Ismaiel 
et  al. 2014). Enzymatic activity involving antioxida-
tion, such as that of catalase (CAT), peroxidase (POD), 
and SOD, of A. platensis is known to be dependent on 
pH level. Optimal pH of 9 was reported for CAT, 10 for 
POD, and 10.5 for SOD (Ismaiel et  al. 2016). The anti-
oxidative capacity of A. platensis supposedly diminished 
due to increase in pH during the culture period. Reactive 
oxygen species resulting from this lack of antioxidative 
capacity reacted with Fe ion eluted from SMS, which is 
thought to result in the changes in concentration and 
speciation. Thus, we established a hypothetic scheme 
to comprehensively understand the correlation between 
A. platensis growth, Fe speciation and pH, as shown in 
Fig. 6.

Firstly, enzymatic activity relating to antioxidation, 
such as that of POD, CAT, and SOD, decreased in this 
order corresponding with the increase in pH during cul-
ture. Subsequently, hydrogen peroxide, not thoroughly 
treated by antioxidative enzymes, leaked out from the 
cell into the culture medium. Fenton reaction occurred 
between hydrogen peroxide and ferrous ion eluted from 
SMS to produce hydroxide ion and hydroxyl radical, 
which damages the cells. Finally, hydroxide ion reacted 
with ferrous iron and precipitated as iron hydrox-
ide. This hypothesis explains the experimental results 
found by adding 5  g/L SMS, which exhibited maxi-
mum growth, iron depletion, and loss of SOD activity 
due to the increase in pH at 21 days. The application of 

solubility diagrams contributes to the understanding 
of microalgal growth regulation mechanism in aquatic 
condition.
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