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Abstract

This study focused on investigating the feasibility of purifying polyhydroxybutyrate (PHB) from mixed culture biomass
by alkaline-based chemical treatment. The PHB-containing biomass was enriched on acetate under non-sterile
conditions. Alkaline treatment (0.2 M NaOH) together with surfactant SDS (0.2 w/v% SDS) could reach 99% purity,
with more than 90% recovery. The lost PHB could be mostly attributed to PHB hydrolysis during the alkaline treatment.
PHB hydrolysis could be moderated by increasing the crystallinity of the PHB granules, for example, by biomass
pretreatment (e.g. freezing or lyophilization) or by effective cell lysis (e.g. adjusting alkali concentration). The suitability
of the purified PHB by alkaline treatment for polymer applications was evaluated by molecular weight and thermal
stability. A solvent based purification method was also performed for comparison purposes. As result, PHB produced by
mixed enriched cultures was found suitable for thermoplastic applications when purified by the solvent method. While
the alkaline method resulted in purity, recovery yield and molecular weight comparable to values reported in literature
for PHB produced by pure cultures, it was found unsuitable for thermoplastic applications. Given the potential low cost
and favorable environmental impact of this method, it is expected that PHB purified by alkaline method may be

suitable for other non-thermal polymer applications, and as a platform chemical.
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Introduction

Polyhydroxyalkanoates (PHAs) have received much atten-
tion as bio-based plastics that may contribute to future re-
placement of petroleum based plastics. Their performance
ranges from stiff and brittle to soft and tough (Sudesh
et al. 2000 and Laycock et al. 2013). The most common
PHA is polyhydroxybutyrate (PHB), which has similar
thermal and some mechanical properties (e.g. tensile
strength) compared to isotactic polypropylene (Sudesh
et al. 2000). In contrast to petroleum based plastics, PHA’s
biodegradability in various natural environments makes
them suitable as disposables for packaging, agricultural or
medical applications (Williams and Martin 2002, Bucci
et al. 2005, Markets and Markets, 2013). The fact that
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more and more varieties of PHAs have been discovered
and/or synthesized suggests that PHAs are not limited to
thermoplastic applications. Moreover, PHA derivatives
such as hydroxy fatty acid monomers may serve as chiral
building blocks for the production of biochemicals and
the methyl esters of their monomers could be used as a
biofuel (Chen, 2009).

Chen (2009) summarized the current status of commer-
cial PHA production. Many types of commercial PHAs are
available on the market. For example, Polyhydroxybutyrate-
co-hydroxyvalerate (PHBV) can be synthesized by pure
culture of either Ralstonia eutropha or recombinant E.
coli from glucose and propionic acid. Middle chain length
PHAs, such as polyhydroxyhydroxyhexanoate (PHHXx),
can be produced by pure culture of Pseudomonas putida.
Despite of the above mentioned advantages of PHAs com-
pared to conventional petroleum based plastics their large
scale application is still constrained by their high price in
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the market. Economic evaluations of the PHA production
process identified the following cost drivers (Choi and
Lee, 1997; van Wegen et al. 1998): (a) raw materials
(fermentation feedstock), (b) downstream processes for
product recovery and purification, and (c) costs associated
to maintaining a pure culture during the fermentation (e.g.
fermentor costs and energy required for sterilization). Sev-
eral studies have integrated the PHA production process
with wastewater treatment with a dynamic feast-famine
enrichment system, aiming at intracellular PHB content
up to 90% (Johnson et al. 2009), in order to reduce the
cost from raw material and energy consumption aspects
(reviewed by Dias et al. 2006). Recent results showed that
such process is capable of producing PHAs as good as the
current pure-culture process in terms of intracellular
PHAs content and biomass specific PHAs production
rates (Jiang et al. 2012). However, the challenge in terms of
cost reduction in downstream process still remains.

PHAs are present in microorganisms as hydrophobic
and water insoluble inclusion bodies which need to be
separated from cell material. Plenty of techniques for
PHA recovery and purification from pure cultures have
been evaluated in literature and reviewed by Jacquel
et al. (2008) and by Kunasundari and Sudesh (2011).
The conventional organic solvent based purification
method is still the best in terms of final product purity
and recovery yield, although organic solvents may gener-
ate environmental issues (Ramsay et al. 1994; de Koning
and Witholt, 1997). Several less toxic organic solvents
have been reported for PHAs extraction (summarized in
Jacquel et al. 2008; Kunasundari and Sudesh 2011; Riedel
et al. 2013). Most of those solvents are specific for middle
chain length PHAs purification, instead of short chain
length PHAs (e.g. PHB, PHV) (Jiang et al. 2006; Elbahloul
and Steinbtichel, 2009; Terada and Marchessault 1999).
Nevertheless, short chain length PHAs are usually the
main products when wastewater is used as feedstock
(Dionisi et al. 2005; Bengtsson et al. 2008; Albuquerque
et al. 2010; Jiang et al. 2012). Moreover, solvents such
as 1, 2-proplene bicarbonate, require high temperature
(>140°C) during the purification process, which typic-
ally leads to high energy consumption (Fiorese et al.
2009; Riedel et al. 2013).

Removal of cell materials by alkaline treatment was con-
sidered more economically feasible by Choi and Lee
(1997, 1999) as compared to an organic solvent based
PHA purification process. The alkaline treatment method
has been widely reported in literature for pure cultures,
resulting in purity and recovery yield as high as 98% and
97%, respectively (Choi and Lee 1999, Mohammadi et al.
2012a, b). An open culture process is based on the enrich-
ment of a mixture of different microorganisms; it is
unclear whether alkaline treatment can equally remove
cell materials from microorganisms from enriched mixed
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cultures. Furthermore, the chemicals used in the treat-
ment could degrade the PHA granules, as well as nega-
tively influence the thermal stability of PHAs during
processing as thermoplastics (Kim et al. 2006).

The fate of PHAs during alkaline treatment and the
thermal stability of the chemically treated PHA have
hardly been reported. Moreover, only few studies have
been published on recovery and purification of PHAs
from mixed cultures (Serafim et al. 2008). In this study,
the feasibility of the alkaline method for recovery and
purification of PHB obtained from mixed cultures was
evaluated. This study focused on the PHA degradation
during the chemical treatment and on product proper-
ties such as molecular weight and thermal stability. PHB
recovery and purification by extraction with dichloro-
methane was used for comparison purposes.

Material and methods
Biomass preparation and PHB recovery
The biomass used in this study was obtained from a 2 L
sequencing batch reactor (SBR) fed with acetate under
feast-famine condition. The composition of the working
medium was: 125 mM NaAc-3H,0, 3.93 mM NH,CI,
1.87 mM KH,PO,4, 0.42 mM MgSO,-7H,0, 0.54 mM
KCl, 1.13 ml/L trace elements solution according to
Vishniac and Santer (1957) and 3.71 mg/L allythiourea
(to prevent nitrification). The operational conditions of
the bioreactor were 30°C, pH 7, 1 day sludge retention
time (SRT) and hydraulic retention time (HRT) and
18 h cycle length. The length of the feast phase was
about 2.5 h during the steady state. The PHB was the
sole storage polymer produced due to the fact that acetate
was the sole carbon source. The biomass was collected at
the end of the feast phase, when the cellular PHB content
was between 62 wt% and 72 wt%. The dominant bacterial
species in the SBR operated under such condition was P.
acidivorans, a gram-negative bacterium (Jiang et al. 2011).
Fresh biomass from bioreactor was collected by centri-
fugation (Heraeus, Germany) at 10000 g for 10 min at
room temperature. The supernatant was removed and the
pellet was resuspended with Milli-Q water to reach a final
biomass concentration of approximately 20 g/L. 10 mL of
this biomass suspension was used for PHB recovery. Two
types of chemicals were applied either solely or together
to remove the cell materials: (1) alkalis (NaOH at concen-
trations varying between 0.02 M and 1 M, or 02 M
NH,OH), and (2) surfactant (SDS at concentrations vary-
ing between 0.025% and 0.2%). The biomass suspension
with the added chemicals was incubated in 50 mL tubes at
200 rpm and 30°C for 1 hour unless otherwise stated. The
suspension was subsequently centrifuged at 10000 g for
10 min at 4°C. The supernatant was separated from the
pellet and collected for soluble polymer or monomer
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measurements. The pellet was washed twice with Milli-Q
water and dried at 60°C overnight.

Besides fresh biomass, pre-treated biomass was also
evaluated in this study. The fresh biomass pellet collected
after centrifugation was subjected to either freezing
at -20°C or lyophilization. The same chemical treat-
ment procedures as for the fresh biomass were applied
to the pre-treated biomass in order to study the influence
of pre-treatment on the PHB recovery. Lyophilized bio-
mass was additionally used for solvent extraction for
comparison purposes. The PHB was firstly purified by
dichloromethane, following the procedure described in
Ramsay et al. (1994). Further purification was achieved
by dissolving 1 wt% of PHB in chloroform at 60°C for
50 min. The chloroform sample was subsequently
slowly poured into cold ethanol (10 times volume to
chloroform) while stirring rigorously. The precipitate
was filtered of the solution, washed with ethanol and
vacuum dried at 50°C.

The setup of all the experiments in this study is sum-
marized in the Table 1. All experiments were performed
in at least duplicate.

Table 1 Summary of all experiments conducted in this study
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Analytical methods

In order to evaluate the PHB mass balance of all experi-
ments, the PHB quantity in fresh biomass, in final prod-
ucts and in the supernatant were determined. The PHB
content in the biomass and in the final products was de-
termined by gas chromatography (GC) according to the
method described in Johnson et al. (2009). Commercial
PHB (SigmaAldrich, the Netherlands) was used as stand-
ard. Based on the PHB mass present in the biomass
(PHAisi) and the dried pellet (PHA,,,), the recovery
yield was calculated by equation 1:

R PHAend
ecovery = —————
PHA

initial

100%  [g/g] (1)

The PHB losses in the supernatant after chemical
treatment (PHB,pernatans) Was analyzed by gas chroma-
tography (GC) with a modified procedure: 0.5 ml of the
supernatant from chemical treatment was used for PHB
concentration analysis. Commercial PHB mixed with
0.5 ml of chemical solution for PHB purification was
used as standard. The remaining procedures were the

Chemical Concentration Biomass state Time Initial PHB content Purity Recovery Mass balance HB/PHB®
-] [M;w/v9%] -] (h] [wt%] [%] [%] [%] [%]

NaOH 0.02 Fresh 1 71.8+57 77340 922+42 -10£3.7 979+53
NaOH 0.05 Fresh 1 727+7.1 840+ 14 94.7+32 -39+29 96.7 £4.2
NaOH 0.10 Fresh 1 653+3.1 838+44  980+14 -1.0+£14 92.1+85
NaOH 0.20 Fresh 1 694+ 1.1 86.6£3.0 96.7£19 -07+26 975+16.7
NaOH 0.20 Fresh 0.3 68.6+0.7 873%22 964 +26 -29+24 859+ 148
NaOH 0.20 Fresh 05 686+0.7 888+08  985+18 -07+£18 909+ 189
NaOH 0.20 Fresh 3 68.6+0.7 92.1+£08 935+24 -15+06 920£32
NaOH 040 Fresh 1 653+3.1 879+54  952+37 0.7£3.1 899+48
NaOH 0.70 Fresh 1 653+3.1 89.7+58  909+50 04+44 894+7.1
NaOH 1.00 Fresh 1 653 +3.1 90.6 £4.7 856+23 -03+21 89.1 £4.0
NH,OH 0.20 Fresh 1 686+0.7 626+28  633+164  -39+09 363+ 109
SDS 0.20 Fresh 1 68.0+0.0 79014 635+0.7 36+£06 140+14
NaOH + SDS 0.20+0.025 Fresh 1 66.1+22 949+26 926£69 -27+38 942 £64
NaOH + SDS 0.20+0.050 Fresh 1 66.1+22 969+13 935+48 —24+24 924 +3.1
NaOH+SDS ~ 020+0.100 Fresh 1 66.1+£22 983+05 915459 -39+48 96.3+438
NaOH + SDS 0.20+0.200 Fresh 1 66.1£2.2 99.1£0.5 91.0£49 -31+19 925+50
NaOH 0.20 Freezing 1 659+24 94.1+£35 956+25 29421 943+54
NaOH 0.20 Freeze dried 1 699+22 959+37  955+06 -32+08 9883+09
NH,OH 0.20 Freeze dried 1 699+22 874 +2.1 950+1.8 -39+09 87.1£129
SDS 0.20 Freeze dried 1 69.9+2.2 93541 93.7+22 -31+16 913+87
CH,Cl, 30° Freeze dried o/n® 722+04 97.6 559 ND ND

230 times of TSS.

POvernight.

Fraction of hydrolyzed monomer in total polymer in the supernatant.
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same as described in Johnson et al. (2009). The potential
by-products of chemical treatment (e.g. hydrobutyric
acid, HB and crotonic acid, CA) (Yu et al. 2005) were
analyzed by high-performance liquid chromatography
(HPLC) with a BioRad Animex HPX-87H column and a
UV detector (Waters 484, 210 nm). The mobile phase,
1.5 mM H3PO, in Milli-Q water, had a flow rate of
0.6 mL/min and a temperature of 59°C.
The overall mass balance was calculated by equation 2:

(PHAend + PHBsupemamnt + CAsupemamnt ’PHAinitial)
PHAinitial

[g/8]

MassBalance =

x 100%
(2)

where, PHBj,,pernatans means the total PHB loss within the
supernatant measured by GC and CAy,pernaran: indicates
the identified crotonic acid in the supernatant by HPLC.
As a consequence, a closer value to 0% indicates a better
mass balance. In this study, most of the experiments had
mass balance errors smaller than 5% (see Table 1).

A degree of PHA degradation was defined as the frac-
tion of HB or CA concentration over total initial PHB
mass in the biomass (equation 3 or 4).

HBSu ernatan
HB/PHBjiq1 = 7PHzmn;z £.100% [g/g] (3)
or,
CASupeVnatant
CA/PHB;,jtjq = ———— 100 4
JPHB i = A o0 grg) @)

Chemical PHB degradation may occur either ran-
domly in the middle of the polymer chain or from the
end of the polymer chain. The GC method measured
the overall lost PHB in the supernatant in terms of both
soluble PHB oligomers and HB monomer, while HPLC
method only quantified the HB monomers. A ratio be-
tween soluble HB monomer and overall PHB in the
supernatant was used to assess the chemical PHB deg-
radation mechanism (equation 5). A higher value (close
to 1) indicates that HB is sole product of PHB degrad-
ation, suggesting PHB is degraded from the end of the
polymer chain. Otherwise, PHB is more likely hydro-
lyzed by chemicals randomly from the middle of the
chain, generating oligomers as products.

H Bsupernamnt

HB/PHB =DPHA
/ supernatant PH. Asupem atant

100%  [g/g]

(5)
Fourier transform infrared spectroscopy (FTIR)

The composition and the crystallinity of dry pellets were
examined using a spectrum 100 FT-IR spectrometer
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(PerkinElmer). The solid powders were pressed on a ger-
manium crystal window of a microhorizontal ATR for
measurement of single reflection and absorption of infra-
red by the specimens.

Thermal stability
Around 100 mg of an untreated biomass, PHB isolated
from biomass by a chemical or an organic solvent treat-
ment and/or a commercial PHB (Tianan, China) were iso-
thermally treated in a compression molding machine (Dr
Collins) at 170°C for a certain period of time (1, 3, 5, 10
and 15 min). The molecular weight of PHB before and
after the thermal treatment was determined by a size ex-
clusion chromatography (SEC). For SEC analysis, around
3 mg of a sample was dissolved in 1 ml hexafluoroisopro-
panol (HFIP) at room temperature overnight. The sample
was subsequently filtered using 0.2 pum filter. Molar mass
distribution was determined using a Waters model 510
pump and a Waters 712 WISP chromatograph with PL-
gel mix D columns (300 x 7.5 mm, Polymer Laboratories).
HFIP was used as an eluent with a flow rate of 1 ml/min.
The system was calibrated with PMMA standards.

The thermal degradation rate can be expressed by the
equation 6 (Grassie et al. 1984a, b):

1 1

<Pn,t - Pn,O) = kpt [1/s] (6)
where, P,,t and P, are number average degrees of
polymerization at time t and time O s, respectively. The
rate constant (kp) was determined from the slope of the
equation 6 function. Pt and P, were calculated using
number average of molecular weight (M,) in time t and
time O s according to equations 7a and 7b.

Pr= ot [(g/mol)/(g/mob) (72)
Pro= S ((g/mol)/(g/moD) (7b)

M,, is the molecular weight of a PHB monomer unit,
i.e. 86.09 g/mol.

Results

PHB recovery and purification

Alkalis and surfactant were two chemicals used in this
study in order to purify and recover PHB from fresh bio-
mass. Initially sole NaOH treatments with different con-
centration and treatment time were conducted (see
Table 1). The final product purity increased by increasing
NaOH concentration or by the prolonged treatment time,
but the recovery yield was negatively influenced by those
two parameters. On the basis of the final product purity
and recovery yield, the treatment with 0.2 M NaOH for
1 h was chosen as the standard condition (see Table 1).
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Under this standard condition, the final product purity
and the recovery yield can reach 87% and 97%, respect-
ively. In order to improve the purity from the standard
condition, and to favor the sustainability of the process,
different chemicals combinations were tested. With the
purpose of improving the purity, surfactant was added to
the standard condition to remove the cell materials fur-
ther. With additional dosage of SDS to our standard con-
dition, the purity can be improved up to 99% with a slight
decrease in recovery yield (91%). NH,OH was aimed at re-
placing NaOH, because it is potentially easier to be
recycled than NaOH (van Hee et al. 2005). However, sig-
nificant decrease was observed in both purity (to 63%)
and recovery yield (63%) when treating fresh biomass with
0.2 M NH,OH.

Besides recovering PHB from fresh biomass, the effect
of pre-treatment such as lyophilization or freezing, was
also studied. These pre-treatments led to a higher purity
in all cases and an improved recovery yield in sole SDS
and NH,OH treatment (see Table 1). For comparison
purposes, recovery and purification by solvent extraction
was also conducted in this study. Extraction with dichlo-
romethane reached 98% purity from lyophilized biomass.
However, the recovery yield was very low (55%) in this
study.

Thermal stability of purified PHB

In order to utilize PHAs as thermoplastics, thermal sta-
bility is a crucial parameter. Thermoplastic polymers are
usually processed at temperatures at least 10°C above
their melting point and typical residential time in an ex-
truder does not exceed one minute. The processing
temperature of PHB is usually between 170 and 180°C.
Therefore, the thermal stability of the samples was stud-
ied in terms of PHB degradation during the first minute
at 170°C.

Number average of molecular weight (M,,) of PHB as a
function of time during the thermal treatment is shown in
Table 2. PHB isolated from biomass by a solvent method
and the commercial PHB showed the highest thermal sta-
bility with less than 7% AM,, drop within the first minute of
the treatment (4AM,,;). The resulting molecular weight
after the processing was still acceptable for a plastic appli-
cation (M,,> 169 kg/mol). The sample purified by 0.2 M
NaOH or by 0.2 M NaOH and 0.2% SDS showed much
more pronounced molecular weight decrease (AM,,; >
70%). The consequent molecular weights were below
45 kg/mol. As compared to the chemically purified PHB,
the degradation of the polymer in the untreated biomass
was less detrimental (AM,, ; = 62%). The rate of the poly-
mer chain scission, i.e. the degradation rate constant (kp),
was calculated from the slope of the kinetic function
shown in Figure 1. Thermal stability results at 170°C are
summarized in Table 3, in terms of a ratio between kp, of a
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specific sample and kp of the commercial PHB reference
(kp,ref). It can be observed that both, the untreated bio-
mass and the chemically purified PHB showed significant
deterioration in terms of a faster degradation rate. On the
other side, the solvent isolated PHB performed even better
than the commercial sample.

PHB degradation by alkalis

The thermal instability of PHB purified by alkalis based
method could be due to PHB hydrolysis. As it has been re-
ported in Yu et al. (2005), abiotic hydrolysis of PHB by al-
kalis was observed in this study as well. Both HB
monomer and CA were found as PHB hydrolysis prod-
ucts. Our data showed that the PHB degradation by
NaOH in the fresh biomass was dependent on the treat-
ment time and NaOH concentration. The hydrolysis prod-
ucts concentration showed linear relation with NaOH
treatment time (Figure 2), while the relation between the
NaOH concentration and the hydrolyzed products con-
centration is non-linear (Figure 3). In the tested NaOH
concentration range, the HB monomer decreased with the
increasing NaOH concentration before 0.1 M NaOH and
then increased with NaOH concentration. For an initial
PHB content of 68%, at the standard condition in this
study (i.e. 0.2 M NaOH treatment for 1 h with fresh
biomass), about 1.3% of initial PHB was hydrolyzed into
HB monomer and about 0.6% of initial PHB was con-
verted to CA.

The pre-treatment step also showed some influence on
the PHB hydrolysis. Much less HB or CA was produced
after lyophilization or freezing pre-treatment (Figure 4).

The spectrum of hydrolysis products in the super-
natant can be used as an indication of the chemical PHB
degradation mechanism (equation 5). When the biomass
with or without pre-treatment was treated by NaOH,
HB/PHBg,pernatan: ratio was always close to 100% (see
Table 1). The closed mass balance in this study sug-
gested that no other forms of soluble PHB oligomers
were formed during NaOH treatment.

FTIR spectra

The effect of NaOH concentration and pre-treatment on
PHB hydrolysis was investigated further by evaluating the
crystallinity state of several samples through FTIR analysis
(Xu et al. 2002; Yu and Chen 2006). An intensity ratio of
the absorbance at 1230 cm™ to that at 1453 cm™ was
used to calculate the polymer crystallinity index (CI, Xu
et al. 2002). Larger CI value corresponds to higher crystal-
linity whilst smaller values reflect lower crystalline por-
tion. As can be seen from Table 4, both chemical
treatment and pre-treatment process show influence on
PHB CI value. NH,OH treated sample showed the lowest

crystallinity compared to the rest of the samples.
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Table 2 Molecular weight (number average M,, and weight average M,,) and molecular weight change ((M>x 100)

Mhno

of various PHB samples as a function of thermal treatment at 170°C.

Sample Chemical treatment PHB purity  Time of thermal treatment M, [kg/mol]l  M,, [kg/mol] (%)x 100 [%]
[wt.%] at 170°C [min]
Commercial PHB - 99 0 182 647 0
1 169 583 7
3 175 541 4
5 119 391 35
10 150 435 18
15 135 373 26
PHB from biomass - 67 0 135 224 0
1 51 11 62
3 33 62 76
5 30 42 78
10 25 34 81
15 19 25 86
Solvent 99 0 915 1755 0
1 883 1731 3
3 824 1573 10
5 771 1562 15
10 516 1144 44
15 560 1255 39
0.2 M NaOH 85 0 119 315 0
1 19 39 84
3 8 13 93
5 6 8 95
10 2 3 98
15 1.8 22 98
0.2 M NaOH +0.2% SDS 95 0 163 484 0
1 45 73 72
3 14 23 91
5 1 20 93
10 4 8 98
15 3 4 98

Water content in the samples was in between 0.01 and 0.02 wt.%.

FTIR can also be used to qualitatively detect both PHB
and proteins in the final products (Yu and Chen 2006).
Therefore, all purified products were analyzed by FTIR,
together with commercial PHB as control of PHB ab-
sorbance, and lyophilized biomass as a control of both
PHB and protein absorbance. Figure 5a shows the
spectrum of PHB from fresh biomass purified by differ-
ent chemicals in comparison with commercial PHB and
lyophilized biomass. The absorption at 1720 cm™* and
1278 cm™' respectively indicates C = O stretch and C-O
stretch of the ester bonds. They both represent the pres-
ence of PHB. The absorption peaks at 1650 cm™' and

1540 cm™" represent amide I and amide II band in pro-
teins. As can be seen in Figure 5, the commercial PHB
and the PHB purified by NaOH-SDS mixture show
highly similar spectra. In contrast, proteins were de-
tected in all other samples.

Discussion

PHB recovery and purification

In this study, a high PHB purity was obtained from
fresh biomass by treatment with alkali and surfactant.
In principle, both alkali and surfactant can react with
lipid and proteins, solubilizing the cell wall material
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Figure 1 The effect of chemical treatment on thermal stability of commercial PHB (Tianan) and PHB isolated from biomass represented
here by polymer chain scission (1/P,,; — 1/P,, o) as a function of time at 170°C. Water content in the samples was in between 0.01 and 0.02 wt%.
The numbers in brackets represent PHB purity. PHB purified by 0.2 M NaOH (empty circle, 85% pure); PHB purified by 0.2 M NaOH and 0.2% SDS (cross,
95% pure); Unpurified PHB within biomass (solid square, 67% pure); PHB purified by solvent (empty triangle, 99% pure); Commercial PHB (solid

and releasing the intracellular contents. Our results sug-
gest that sole NaOH treatment can lyse cells but it is in-
sufficient to remove all cell materials. Under our standard
condition (0.2 M NaOH, for 1 hour at 30°C), still about
13.4% of cell material impurities remained in the final pel-
lets. Those remaining impurities are likely water insoluble
proteins and lipids. We observed that those hydrophobic
impurities can be effectively removed by combined NaOH
and SDS treatment. Higher SDS concentrations resulted
in a higher final purity, likely due to micelle formation by
SDS. Once the SDS concentration approached its critical
micelle concentration (CMC), which is between 0.17-
0.23 w/v%, more proteins and lipids were removed. How-
ever, SDS micelles might also solubilize PHB granules.
Indeed, our data showed that PHB recovery yield de-
creased at high SDS concentration (Table 1).

The hydroxide ion concentration was also observed to
have influence on cell materials removal and PHB recov-
ery. In the case of NH,OH and low NaOH concentration,
for example, both purity and recovery were observed to be
lower than at the standard condition. Since NH,OH is a
weak base, at the same solution concentration the amount
of dissociated hydroxide ion from NH,OH is much lower
than for NaOH (about 100 times less). In fact, samples
treated by 0.2 M NH,OH and 0.02 M NaOH displayed
the lowest purity in this study (respectively 63% and
77%, see Table 1). Next to a decreased removal of cell
materials, treatment at 0.2 M NH,OH showed more se-
vere PHB degradation, which resulted in a lower recov-
ery yield. This may be related to the PHB granules
crystallinity status, which is discussed in the next
section.

Table 3 Thermal degradation rate constants (kp) of various PHB samples at 170°C and thermal degradation rate
constants relative to the commercial PHB reference (kp,,s) as a function of chemical treatment, purification method

and purity
Sample Chemical treatment PHB purity [wt.%] ko 1076 [1/s] kp/kp,res 1076 [1/5]
Commercial PHB - 99 0.18 +0.02% 1.0
0.2 M NaOH 99 140+0.10 8.0
0.2% SDS 99 0.80+0.10 40
PHB from biomass - 67 540+0.80 300
Solvent 99 0.08£0.01 04
0.2 M NaOH 85 54.00 + 5.00 300.0
0.2 M NaOH + 0.2% SDS 95 29.00 £ 2.00 161.0

*kp of dried commercial PHB was used as a reference (kpref).
Water content in all samples was in between 0.01 - 0.02 wt%.
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Figure 2 The relation between monomers production from PHB and NaOH treatment time. The fraction of two monomer products,

hydroxybutyric acid (HB) and crotonic acid (CA) over total initial PHB (equations 3 and 4) are indicated by solid circle and empty diamond, respectively.
The experiment was performed with fresh biomass at 0.2 M NaOH and 30°C in duplicate. Initial PHB content was 68%.
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PHA recovery by chemical treatment has been widely
reported in literature, but to our knowledge, on pure
cultures only. The results are very diverse (Table 5).
Considering the variability across studies in terms of
microorganism, cell pre-treatment, temperature, initial
PHB content and chemical concentration, among others,
and their lack of PHB mass balance data, it is difficult to
compare these results directly to our observations. Here
we focus on the studies performed on fresh biomass, be-
cause at production scale it might be preferred to avoid
any pre-treatment step.

Choi and Lee (1999) reported that direct treatment of
fresh recombinant E.coli by 0.2 M NaOH can result in
97% purity and 91% recovery. This is the best result de-
scribed for sole NaOH treatment method. The major

difference between their research and our study is that
pure culture of recombinant bacteria were used in their
research in contrast to mixed culture in our study. It is
possible that some microorganism species in the mixed
culture biomass are not efficiently treated by NaOH.
Anis et al. (2013), for example, treated wet biomass of
recombinant C. necator by 0.1 M NaOH, resulting in
final purity (84%) and recovery yield (91%) more similar
to our observations.

Regarding studies with sole surfactant treatment, Kim
et al. (2003) applied SDS to Ralstonia eutropha cells, but
additional heating at 121°C and washing steps were re-
quired to remove proteins and achieve a final purity of
97%. Interestingly, their PHB recovery (>92%) was re-
markably higher than our results (63%, see Table 1). This
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Figure 3 Fraction of degradation products, HB (solid round) and CA (empty diamond), over total initial PHB (equations 3 and 4).
The experiment was performed with fresh biomass at 30°C for 1 hour in duplicate. Initial PHB content was 68%.




Jiang et al. AMB Express (2015) 5:5

Page 9 of 13

1,6%

1,2% -

0,8% -|

0,4% -|

Percentage of degradation products [%)

0,0% -
Commercial PHB

30°C in duplicate. Initial PHB content was 68%.

Freeze dried
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initial PHB (equations 3 and 4). White color indicates HB and gray color represents CA. Samples were treated with 0.2 M NaOH for 1 hour at

HH

Fresh biomass

suggests that temperature plays a significant role in the
interaction between SDS and PHB - for example, due to
altered critical micelle concentration (Bayrak 2003) -
resulting in less PHB loss with the supernatant.

The synergistic effect of alkalis and surfactants on
PHB recovery and purification has not been well studied
yet. Peng et al. (2013) combined SDS and NaOH for
PHB purification of dried cells, resulting in lower purity
(87%) but comparable recovery yield (96%) as in our
study (99% and 95%, respectively).

PHB degradation by alkalis

We observed that a weak alkaline condition, 0.2 M
NH,OH and NaOH at concentration lower than 0.1 M,
resulted in a larger degree of PHB hydrolysis. On the
other hand, cell pre-treatment by lyophilization im-
proved the recovery yield (Table 1) and resulted in less

Table 4 Crystallinity index (Cl = Aq330/A1453)

Biomass status Chemicals Cl
Commercial PHB - 4.7
Lyophilized CH,Cl, 57
Lyophilized SDS 4.7
Lyophilized NaOH 4.5
Fresh biomass NaOH + SDS 44
Lyophilized NH,OH 4.2
Fresh biomass NaOH 38
Lyophilized - 29
Fresh biomass NH,OH 2.1

Larger value means that PHB is at a more crystallinity status and smaller value
means that PHB is at a more amorphous status.

HB and CA monomers formed when compared to fresh
cells (Figure 4). This effect may be related to the crystal-
line state of PHB granules during treatment. In the mi-
crobial cell, PHB granules are present as hydrophobic
amorphous inclusions containing 5-10% of water (Yu
and Chen 2006). PHB granules at amorphous status are
fragile to chemical hydrolysis. In fact, Yu and Chen
(2006) and Valappil et al. (2007) suggested that PHB
crystallization can increase PHB resistance to chemical
treatment. PHB crystallization can be induced either by
complete removal of water or by damaging the cell mem-
brane (de Koning and Lemstra 1992), the crystallization
extent being dependent on the damage level of the
membrane (Kawaguchi and Doi 1990; Harrison et al.
1992). Our results confirm their observations. At weak
alkaline condition and without pre-treatment, PHB in
the biomass seems to maintain its amorphous status
(Table 4).

PHB hydrolysis decreases the molecular weight of
final products, the rate and extent of decrease being
dependent on the degradation mechanism. In this
study, most of the lost PHB in the supernatant could be
traced back in terms of HB monomer. Furthermore, a
linear relation between HB concentration and treat-
ment time also suggested that PHB degradation occurs
at the end of the polymer chain (Figure 2). This is in
agreement with the observations from Yu et al. (2005)
on PHB from pure cultures.

Thermal stability

Several studies have reported molecular weight and ther-
mal properties as an indication of PHA quality for poly-
mer applications, for PHAs obtained from pure cultures
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Figure 5 IR spectra of PHB-containing biomass treated with different chemicals. (a) Chemical treatment with fresh biomass. Freeze dried
biomass, brown dash dot line; 0.2 M NH,OH treatment, black dash double dots line; 0.2 M NaOH treatment, green dot line; 0.2 M NaOH and
0.25 wW/Vv% SDS treatment, blue dash line; Commercial PHB, red line. (b) Chemical treatment with freeze dried biomass. Freeze dried biomass,
brown dash dot line; 0.2 M NH,OH treatment, black dot line; 0.2 M NaOH treatment, green dash line; Commercial PHB, red line. All of the
treatments were conducted at 30°C for 1 hour. The absorbance intensity was normalized by the intensity of absorbance at 1720 cm™".

(e.g. Kim et al. 2003, Fiorese et al. 2009, Anis et al.
2012) and from mixed cultures (summarized by Laycock
et al. 2013), and for several PHA recovery and purifica-
tion methods. For thermoplastic applications, thermal
stability is an important parameter. An instable poly-
mer degrades during melt processing resulting in lower
molecular weight material. At a certain critical molecu-
lar weight, mechanical properties substantially deterior-
ate. Kanesawa and Doi (1990) studied the effect of
molecular weight on mechanical properties of PHBV
copolymer. They reported that the tensile strength

started to deteriorate at M,, of 50 kg/mol and at around
20 kg/mol the sample had no strength anymore. Hablot
et al. (2008) studied the effect of fermentation residues,
surfactants and processing conditions on both the ther-
mal properties and thermal degradation of PHB ob-
tained from pure cultures by a solvent method. To our
knowledge, our study provides the first data on thermal
stability of PHB obtained from mixed cultures.

The sample purified by solvent showed very similar
thermal stability as compared to the commercial PHB,
suggesting that the quality of PHB produced by the
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Bacteria species  Biomass status  Chemical Concentration  Initial PHA content Purity Recovery Reference

E. coli(rec) Frozen NaOH 0.1 77% 91% 90% Choi and Lee (1999)

E. coli Frozen SDS 0.5% 77% 98% 87% Choi and Lee (1999)

E. coli Frozen NH,OH 0.1 77% 85% 95% Choi and Lee (1999)

E. coli Frozen H,SO, 0.1 77% 79% 87% Choi and Lee (1999)
C.necator Lyophilized NaOH 0.1 38% 97% 97% (Mohammadi et al. 2012a, b)
C.necator Lyophilized NaOH 0.1 60% 80% 90% Anis et al. (2012)
C.necator Lyophilized NH,OH 0.1 60% 60% 62% Anis et al. (2012)
Comamonas Lyophilized NaOH 0.05 34% 89% 97% (Mohammadi et al. 2012a, b)
R.eutropha Lyophilized NaOH N.D. 70% 78% 45% Yang et al. (2011)
R.eutropha Lyophilized SDS 5% 70% 90% 81% Yang et al. 2011)
Reutropha Lyophilized SDS 1% 50% 87% N.D. Ramsay et al. (1990)
P.putida Lyophilized NaOH 0.1 20% 40% 95% Jiang et al. (2006)

E. coli Oven dried NaOH +SDS 0.1+ 10% 60% 87% 96% Peng et al. (2013)
R.eutropha Fresh SDS 0.59%-20% 75% 97% 92% Kim et al. (2003)
R.eutropha Fresh H,50, 1 60% 76% 94% Yu and Chen (2006)
A.vinelandii Fresh NH3 1 84% 94% N.D. Page and Cornish (1993)
C.nector Fresh NaOH 0.1 68% 84% 91% Anis et al. (2013)

E. coli Fresh NaOH 0.2 79% 97% 91% Choi and Lee (1999)
P.acidivorans* Fresh NaOH 0.2 68% 89% 97% This study

P.acidivorans* Fresh NH,OH 0.2 68% 65% 78% This study
P.acidivorans* Lyophilized NH,OH 0.2 68% 87% 96% This study

P.acidivorans* Fresh NaOH+SDS  02+02% 68% 99% 95% This study

*Dominant bacterial species in the mixed culture at the cultivation conditions of this study.

mixed microbial culture is comparable to PHB from
pure cultures. On the other hand, PHB purified by
chemical treatment showed severe thermal stability de-
terioration. By comparing the thermal degradation rate
constants of several samples relative to the commercial
PHB (Table 3), this effect could be attributed to 1) resi-
dues from the chemical treatment and 2) remaining
biomass impurities. The inorganics used in the treatment
could either attach to the polymer chain or stay as free
molecules in the polymer. In both cases, they could
catalyze a polymer chain scission either via p-elimination
(Kim et al. 2006) or hydrolysis mechanism (Yu and
Marchessault 2000, Yu et al. 2005). These results clearly
show that the choice of recovery and purification method
has a large impact on material properties.

In summary, this work studied the feasibility of puri-
fying PHB from mixed culture biomass by alkaline-
based chemical treatment. The purity and recovery
obtained were comparable to those reported for pure
cultures. PHB losses could be attributed to hydrolysis
during the chemical treatment with HB monomer as
main product, also in line with what has been observed
for material from pure cultures. The extent of hydrolysis

can be moderated by increasing the crystallinity of the
PHB granules; in this study, by either adjusting the alkali
concentration, or by cell pretreatment.

The recovery and purification method had a large in-
fluence on the quality of the product for thermoplastic
applications. PHB purified by solvent displayed thermal
stability comparable to commercial PHB. However,
PHB obtained by alkaline treatment resulted in signifi-
cant thermal stability deterioration, despite of the high
purity and recovery yield obtained. The quality of the
product for thermoplastic applications might be im-
proved by further optimizing the alkaline treatment
process, targeting residual inorganics and biomass com-
ponents. Given the potential advantages of the alkaline
treatment in terms of process economics and environ-
mental impact, it is expected that this method can be
of interest for other PHB applications.
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