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Abstract

The blowout of the Deepwater Horizon in the Gulf of Mexico in 2010 occurred at a depth of 1500 m, corresponding to
a hydrostatic pressure of 15 MPa. Up to now, knowledge about the impact of high pressure on oil-degrading bacteria
has been scarce. To investigate how the biodegradation of crude oil and its components is influenced by high
pressures, like those in deep-sea environments, hydrocarbon degradation and growth of two model strains were
studied in high-pressure reactors. The alkane-degrading strain Rhodococcus gingshengii TUHH-12 grew well on
n-hexadecane at 15 MPa at a rate of 0.16 h™', although slightly slower than at ambient pressure (0.36 h™'). In
contrast, the growth of the aromatic hydrocarbon degrading strain Sphingobium yanoikuyae B1 was highly affected by
elevated pressures. Pressures of up to 8.8 MPa had little effect on growth of this strain. However, above this pressure
growth decreased and at 12 MPa or more no more growth was observed. Nevertheless, S. yanoikuyae continued to
convert naphthalene at pressure >12 MPa, although at a lower rate than at 0.1 MPa. This suggests that certain
metabolic functions of this bacterium were inhibited by pressure to a greater extent than the enzymes responsible
for naphthalene degradation. These results show that high pressure has a strong influence on the biodegradation
of crude oil components and that, contrary to previous assumptions, the role of pressure cannot be discounted
when estimating the biodegradation and ultimate fate of deep-sea oil releases such as the Deepwater Horizon

event.
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Introduction
From April to July 2010, 779 million litres of oil were
released into the Gulf of Mexico when the Deepwater
Horizon (DWH) drilling rig platform exploded (Atlas
and Hazen 2011). This event was the largest marine oil
spill in history. However, there are other anthropogenic
and natural sources of oil released into the oceans. The
National Research Council (2003) estimated an overall
input of about 1.3 Mt oil per year into the marine envir-
onment from all sources. Approximately 47% originates
from natural seeps and the remaining 53% comes from
activities related to the extraction, transportation and
consumption of crude oil or refined products (National
Research Council 2003).

In case of the Deepwater Horizon accident, it is esti-
mated that a substantial proportion of the hydrocarbons
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entering deep plumes was converted to biomass (about
0.8-2-10'° mol carbon) (Shiller and Joung 2012). Sub-
stantial bacterial blooms were observed in deep waters
in the months following the blowout, indicating that in-
digenous hydrocarbon-degrading bacteria were enriched
by the released crude oil and methane (Beelum et al. 2012;
Hazen et al. 2010; Kessler et al. 2011; Redmond and
Valentine 2012; Valentine et al. 2010, 2012). Oil-degrading
bacteria have evolved over millions of years and are ubi-
quitous in the marine environment. Up to now, more than
200 bacterial, algal and fungal genera, representing over
500 species, are described as capable of hydrocarbon deg-
radation (Yakimov et al. 2007). Therefore, natural bacter-
ial activity is an important mechanism for environmental
remediation of oil spills. Much research has been done
on crude oil biodegradation in the marine environment
(e.g. Colwell et al. 1977; Head et al. 2006; Leahy and
Colwell 1990; Powell et al. 2004; Yakimov et al. 2007),
especially in the context of the DWH blowout (Hazen

© 2014 Schedler et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.


mailto:ru.mueller@tu-harburg.de
http://creativecommons.org/licenses/by/4.0

Schedler et al. AMB Express 2014, 4:77
http://www.amb-express.com/content/4/1/77

et al. 2010; Kessler et al. 2011; Redmond and Valentine
2012; Valentine et al. 2012).

The DWH drilling rig well, from which oil and gas
flowed out uncontrollably for three months, was located
1,500 m below the sea surface. Such deep-sea environ-
ments are characterized by extreme conditions. These
include low temperatures of 3°C (+1°C) (Jannasch and
Taylor 1984) and high hydrostatic pressures up to 110 MPa
in the Mariana Trench, the deepest site existing in the
ocean at 10,994 m (+40 m) (Abe and Horikoshi 2001;
Gardner and Armstrong 2011). However, only a limited
number of studies regarding the capabilities of bacteria to
degrade oil and hydrocarbons have been conducted under
high pressure (Grossi et al. 2010). Despite the detection of
pressure-induced differences in growth and hydrocarbon
utilisation (Schwarz et al. 1974, 1975), most reports have
investigated oil biodegradation only at surface pressure
(0.1 MPa) (Cui et al. 2008; Tapilatu et al. 2010; Wang et al.
2008), and corresponding results may not be applicable
to the deep sea. Thus, oil biodegradation processes under
extreme deep-water conditions are not well understood.
Although the rate and extent of hydrocarbon degradation
at elevated pressures has been understudied, an under-
standing of the impact of elevated pressures on biodegrad-
ation is increasingly critical in the wake of expanding
drilling in deep waters.

This study aims to improve our understanding of
microbial degradation processes of crude oil at in situ
deep-sea conditions. In particular, we consider the effects
of high pressure on hydrocarbon biodegradation using
high-pressure lab technology. Oil is one of the most com-
plex mixtures of organic compounds known, containing
more than 17,000 distinct components (Hassanshahian
and Cappello 2013; Head et al. 2006). To simplify our
approach, we investigated the biodegradation of two
representatives of the main fractions of oil by two dif-
ferent bacterial model strains: Rhodococcus qingshengii
TUHH-12, a degrader of the alkane n-hexadecane; and
Sphingobium yanoikuyae B1, a bacterium capable of utiliz-
ing naphthalene, a polycyclic aromatic hydrocarbon (PAH)
(Gibson et al. 1973). R. gingshengii and S. yanoikuyae,
as well as other species of the genera Rhodococcus and
Sphingobium have been isolated from deep-sea sediments
(Colquhoun et al. 1998a; Cui et al. 2008; Heald et al.
2001; Peng et al. 2008; Tapilatu et al. 2010; European
Nucleotide Archive 2014; Wang and Gu 2006). Recently,
Rhodococcus sp. and Sphingobium sp. were found to be
present in sediment samples collected in May 2011, about
2 and 6 km away from the wellhead of the DWH (Liu and
Liu 2013). In our experiments, both strains R. gingshengii
TUHH-12 and S. yanoikuyae Bl were incubated at
0.1 MPa and at increasing pressures to determine the
influence of pressure on the growth and hydrocarbon-
degradation abilities of these strains.
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Materials and methods
Microorganisms
The alkane-degrading bacterium R. gingshengii TUHH-12
[DSM No.: 46766] was isolated from a seawater sample lo-
cated directly beneath an ice cap swimming on the water
during an expedition to the island of Spitzbergen, Norway,
by Prof. Hauke Trinks (Hamburg University of Technology).
The genome of this strain was recently sequenced
(Lincoln SA, Penn State University, unpublished data).
S. yanoikuyae B1, purchased from DSMZ [DSM No.:
6900], was originally isolated from a polluted stream by
Gibson et al. 1973. This bacterium was preliminary identi-
fied as Beijerinckia species, but has later been reclassified
as Sphingobium yanoikuyae B1 (Khan et al. 1996). This
strain is known to degrade different aromatic and poly-
cyclic aromatic hydrocarbons (Gibson et al. 1973; Lang
1996).

Cultivation conditions

R. gingshengii TUHH-12 was cultivated on minimal-
mineral medium with n-hexadecane as the sole carbon
source. The medium consisted of 2.6 g Na,HPOy,
1.33 g KH,PO,, 1 g (NH,),SO, and 0.20 g MgSO, -7
H,O dissolved in 1000 mL of demineralized water. The
medium was adjusted to pH 7. After sterilisation, 5 mL
of trace element solution and 1 mL of vitamin solution
were added. Both solutions were prepared as described
in DSMZ methanogenium medium 141 and autoclaved
or sterile filtered separately (DSMZ 2012). Cultures
were incubated at room temperature and mixed at
200 rpm. The strain was kept on agar plates containing the
same medium with 15 g/L agar added for solidification.

S. yanoikuyae Bl was cultured in Brunner mineral
medium or on agar plates according to the DSMZ medium
457 (DSMZ 2012b) at 30°C or at room temperature and
200 rpm. Naphthalene was used as sole carbon source.

Biodegradation experiments at high pressure

Ten high-pressure reactors consisting of stainless steel
cylinders capped with bronze lids were used to simulate
and to investigate biodegradation under elevated pressures
as they occur in deep-sea environments. Additionally,
ten aluminium reactors with the same geometry were
used, serving as controls to monitor biodegradation
under atmospheric pressure in simultaneous experi-
ments (Figure 1). Both reactor types had a volume of
160 mL. For experiments with R. gingshengii TUHH-12,
20 mL mineral medium was filled into sterilized glass vials
and supplemented with 1 mM n-hexadecane. For cultiva-
tion of S. yanoikuyae B1l, 20 mL Brunner medium and
1.77 mM naphthalene were used. The amount of carbon
in 1.77 mM naphthalene is equal to the amount of carbon
in 1 mM n-hexadecane. The media were inoculated
with a grown preculture of the respective bacterial
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Figure 1 High-pressure reactors and control reactors. High-pressure
reactors (right, made from stainless steel and bronze, max. pressure
40 MPa, pressurizing with N5 gas, 160 mL volume) and aluminum
control reactors (left, max. 0.1 MPa, 160 mL volume) were used for
cultivation of hydrocarbon degraders at high and ambient pressure.
The cultures were mixed with magnetic stirrers.

\

strain, constituting 10% of the total volume. The vials were
placed inside the reactors. The high-pressure reactors
were pressurized with nitrogen gas up to 15 MPa (equiva-
lent to 1,500 m DWH well depth). The cultures were incu-
bated at room temperature. Since the oil components used
in these experiments are nearly insoluble in water, stirring
rates affect biodegradation rates; therefore, efficient mixing
of the cultures was ensured by magnetic stirring at
200 rpm. Due to the immiscible two-phase system of oil
and water and the impracticality of subsampling at high
pressure, no representative samples could be taken from
the reactors to monitor oil concentrations. Thus, for
each point in time in a diagram the content of one reactor
was processed. Before opening a reactor containing n-
hexadecane, it was cooled for 5 h at 4°C to minimise
evaporation of n-hexadecane. Bacterial growth was
measured and the hydrocarbon concentrations were
analysed to quantify the degree of biodegradation. In
several repetitions of the experiments the effects of
pressure were the same. Only slightly different growth
and degradation rates were observed due to different
sampling times and slightly differing inoculation cell
numbers. Thus, the diagrams presented represent the
typical course of growth and hydrocarbon degradation.

Determination of growth of S. yanoikuyae B1 with
glucose at ambient and high pressure

In order to determine, whether the growth of S. yanoikuyae
B1 was inhibited when growing on a non-toxic substrate
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at high pressure, we incubated the bacteria in Brunner
medium with 1% glucose (w/v) at room temperature.
After incubation for 44.5 hours at 0.1 MPa and at
15 MPa, the reactors were opened and cell numbers
were determined.

Bacterial growth

Colony forming units (CFUs) of R. gingshengii TUHH-12
were determined by spreading 5 pL of the culture on
Luria-Bertani (LB) agar plates in triplicate. The colonies
were counted after 3 to 4 days of incubation at room
temperature.

For S. yanoikuyae B1, plate counts were performed with
R2A agar medium (DSMZ medium 830 (DSMZ 2012c)).
The colonies were counted after 2 to 3 days of incubation
at room temperature.

Quantification of the biodegradation of hydrocarbons by
gas chromatography-mass spectrometry

After growth of the cultures, the remaining n-hexadecane
or naphthalene was extracted from the complete culture
medium of each reactor with 5 mL of n-hexane. Dodecane
or n-hexadecane were added before extraction as internal
standard respectively. An aliquot of 1 pL of the apolar
phase, containing the hydrocarbon, was injected with a
split ratio of 28:1 into a Hewlett-Packard 5890 Series II
gas chromatograph (GC) coupled to a Hewlett-Packard
5971A mass selective detector. The GC was equipped
with an Agilent HP-5MS column (30 m length, 0.25 mm
internal diameter) and helium was used as carrier gas. The
injector temperature for both n-hexadecane and naphtha-
lene was increased from 80°C to 200°C at a rate of 0.5°C/s.
The oven temperature program was as follows: an initial
temperature of 80°C was increased to a final temperature
of 200°C at a rate of 15°C/min, with a final 1 min hold at
200°C. The mass spectrometer was operated in full
scan mode over 50-650 amu. The MS transfer line
temperature was held at 320°C and the ion source
temperature at 180°C.

Detection of hydroxylated intermediates in naphthalene
conversion

For detection of hydroxylated intermediates in naphtha-
lene conversion, the colourimetric method described by
Arnow (1937) was used. After 3 min centrifugation of
1 mL of a grown culture at 13,000 rpm, 200 uL of the
supernatant were supplemented by 200 pL of the following
reagents, in the order given, mixing well after each addition:
0.5 N HCI, nitrite-molybdate reagent, 1 N NaOH. If cat-
echol or 1,2-dihydroxynaphthalene were present, a yellow
colour resulted after addition of HCI and nitrite-molybdate
reagent, and a red colour appeared after addition of NaOH.
In the case of monohydroxylated compounds like salicylate
or monohydroxynaphthalene the solution remained yellow.
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Results

Degradation of n-hexadecane by R. gingshengii TUHH-12
at ambient and high pressure

R. gingshengii TUHH-12 was cultivated on n-hexadecane
as the sole source of carbon and energy. R gingshengii
TUHH-12 was found to grow well and to mineralize this
hydrocarbon at atmospheric pressure (0.1 MPa) as well as
at high pressure (15 MPa). At 15 MPa the degradation
and growth behaviour was slightly different from that at
atmospheric pressure (Figure 2). In both cases, a lag phase
of 16 to 17 h was followed by an exponential growth phase
and a stationary phase starting after 43 to 44 h of in-
cubation. However, the growth rate of R. gingshengii
TUHH-12 in the exponential phase was 0.36 h™' at
ambient pressure, from 17 h to 43 h, compared to
0.16 h™' at high pressure, from 16 h to 44 h. In the
stationary phase a higher cell density was reached at
0.1 MPa than at 15 MPa. The rate of degradation of n-
hexadecane was 0.035 mM/h at ambient pressure from
17 to 43 h, and 0.019 mM/h at high pressure, from 16
to 44 h. In control experiments without bacteria at
15 MPa the n-hexadecane also slowly decreased although
with a much slower rate of 0.007 mM/h.

Degradation of naphthalene by S. yanoikuyae B1 at
ambient and high pressure

S. yanoikuyae Bl was incubated on naphthalene at high
pressure (13.9 MPa) and at atmospheric pressure. The
growth of S. yanoikuyae B1 on this PAH was strongly
inhibited by high pressure. Bacteria grew at 0.1 MPa
with a lag phase of 15 h, an exponential phase with a
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Figure 2 Degradation of n-hexadecane at 0.1 MPa vs. 15 MPa
by R. gingshengii TUHH-12. The CFUs were determined by plate
counting and n-hexadecane concentrations were measured by gas
chromatography-mass spectrometry. CFUs were determined in
triplicate and standard deviations are shown. A CFU at 0.1 MPa,

A CFU at 15 MPa, o n-hexadecane concentration at 0.1 MPa,

m n-hexadecane concentration at 15 MPa.
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growth rate of 0.33 h™! (from 15 to 28 h) and reached sta-
tionary phase at 28 h of incubation (Figure 3). At 13.9 MPa,
however, CFUs of S. yanoikuyae Bl decreased after 15 h
cultivation time until no CFUs could be counted after 66 h.

In 0.1 MPa experiments, the analysis of remaining
naphthalene in the medium showed that the substrate
was degraded completely after 19 h. The degradation rate
of naphthalene, from 7 h to 19 h, was 0.064 mM/h. Be-
cause the bacteria did not grow at 13.9 MPa, we expected
that at this pressure no naphthalene would be degraded at
all. However, we also observed a decrease in substrate
concentration at this pressure. With a conversion rate of
0.054 mM/h (from 7 h to 25 h), 96.6% of the naphthalene
was converted after 75 h of incubation. After 66 h of
incubation at elevated pressure, the initially colourless
culture medium turned brown, while at ambient pres-
sure the culture showed no change of colour.

In control experiments without bacteria about 20.8%
of the initial naphthalene was found to be lost after
19 days of incubation at 14.2 MPa by evaporation of the
highly volatile naphthalene. With a loss of about 25.3%
at 0.1 MPa there was no significant difference to the in-
cubation at high pressure.

Since S. yanoikuyae B1 did not grow at 13.9 MPa, we
conducted additional experiments to determine the max-
imum pressure at which growth was possible. S. yanoikisyae
B1 was incubated for 70 h on naphthalene at different pres-
sures in the range between 0.1 MPa and 13 MPa (Figure 4).
In the range of 0.1 to 8.8 MPa, the CFU counts remained
relatively constant, but decreased when 8.8 MPa was
exceeded. In incubations at and above 12 MPa no growth
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Figure 3 Growth of S. yanoikuyae B1 on naphthalene at
0.1 MPa vs. 13.9 MPa. S. yanoikuyae B1 was cultivated at room
temperature. CFUs were determined in triplicate and standard
deviations are shown. A CFU at 0.1 MPa, A CFU at 13.9 MPa, o
concentration of naphthalene at 0.1 MPa, m concentration of
naphthalene at 13.9 MPa.
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Figure 4 CFU counts (A) of S. yanoikuyae B1 growing on
naphthalene (m) at different pressures. S. yanoikuyae B1 was
cultivated at room temperature. The CFUs were counted after an
incubation time of 70 h and determined in triplicate. Standard
deviations are shown. The dashed line indicates the starting
naphthalene concentration (== == ==), the stippled line is the
starting cell number (e ® @) at 0 h.

occurred after 70 h cultivation time and viable cell counts
were lower than at the start of the incubation.

The naphthalene concentration decreased to below the
limit of detection under both ambient pressure and pres-
sures up to 12 MPa. At 12.5 MPa and 13 MPa, 25.2% and
17.9% of the original naphthalene remained, respectively, al-
though CFUs did not increase. While at 0.1 MPa no change
of colour could be observed, at 12.5 MPa, after 70 h of in-
cubation, the medium had turned brown. In the test with
the colour reagent of Arnow (1937), we found no colour,
indicating that neither mono- nor dihydroxylated com-
pounds like 1,2-dihydroxynaphthalene, catechol or salicyl-
ate were formed. We therefore assume that the formation
of the brown colour was due to the polymerization of either
quinones or aromatic ring cleavage products.

Growth of S. yanoikuyae B1 with glucose at different
pressures

While S. yanoikuyae grew well on glucose at 0.1 MPa, at
15 MPa no growth at all was observed. After 44.5 hours
the cell number had decreased from 5.98-10° to 1.7 - 10°
cells per mL at 15 MPa. These results indicate that at high
pressure it is not the conversion of naphthalene or its
metabolites but rather another central function in S.
yanoikuyae B1, which is inhibited.

Discussion

Degradation of n-hexadecane by R. gingshengii TUHH-12
at ambient and high pressure

R gingshengii TUHH-12 degraded the alkanes n-hexade-
cane, decane and tetracosane. R. gingshengii has been
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found to assimilate and mineralize different hydrocarbons
including benzene, toluene, xylenes, naphthalene, n-
dodecane (Benedek et al. 2013). However, until now,
nothing was known about degradation capabilities of
R. gingshengii at other than atmospheric pressure. Our
experiments showed that the growth rate of R. gingshengii
TUHH-12 at ambient pressure (0.36 h™') was slightly
higher than at 15 MPa (0.16 h™1). This leads to the conclu-
sion that a pressure of 15 MPa has a slightly negative ef-
fect on the growth of this bacterium, suggesting it can be
classified as a piezotolerant organism. These findings are
confirmed by the work of Colquhoun et al. (1998b) and
Heald et al. (2001), who showed that certain Rhodococcus
strains were able to grow at even higher pressures of
40 MPa and 60 MPa on glucose yeast extract medium.

Effects of elevated pressure on the naphthalene
degradation by S. yanoikuyae B1

The model strain S. yanoikuyae B1, used for PAH degrad-
ation in our high-pressure experiments, is capable of utilis-
ing a variety of aromatic compounds including biphenyl,
anthracene, phenanthrene and naphthalene (Gibson et al.
1973), as well as toluene, cyclohexane and 1,3,5-trimethyl-
benzene (Lang 1996) as carbon sources for growth. We
found significant differences in growth of S. yanoikuyae
B1 with naphthalene at different pressures. These effects
occurred at pressures lower than those typically assumed
to be the threshold for pressure effects. First significant
effects of high pressure on cellular components and
processes of bacteria were found to start at 20 MPa,
affecting the RNA transcription (Yayanos and Pollard
1969). Modifications of membrane fluidity were shown
to occur at pressures above 100 MPa (Hauben et al. 1997)
and protein denaturation was observed at more than
400 MPa (Aertsen et al. 2009).

In our experiments at 0.1 MPaS. yanoikuyae B1 was
able to grow with naphthalene, whereas at 13.5 MPa
bacteria did not grow at all and after 66 h of incubation,
cells were no longer viable. A similar behaviour was found
with glucose as carbon source. Thus, we conclude that S.
yanoikuyae B1 is a piezosensitive strain that grew best and
utilized naphthalene at an optimal rate at ambient pres-
sure. Nevertheless, S. yanoikuyae Bl still metabolized
naphthalene at 13.9 MPa, although slower than at
0.1 MPa, so that after 75 h of incubation 96.6% of the
substrate was converted. We need to emphasize that the
naphthalene-degradation capability of S. yanoikuyae B1
is much less sensitive to high pressure than growth is.
This indicates a new type of piezosensitivity, which, to
our knowledge, was not described in literature before.

We can only speculate about the reasons for the ob-
served changes in growth and degradation ability of S.
yanoikuyae B1 at high pressure. Even a combination of sev-
eral pressure-induced effects is possible. The investigation
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of the specific reasons for the strong inhibition of growth
and rather slight inhibition of naphthalene conversion of
S. yanoikuyae B1 by high pressure emerges from our study
as a new research topic.

So far in predicting the behavior and degradation of
oil spills in deep-sea environments all models use data
obtained at ambient pressure for calculating degradation
rates. The results presented here show, that the effect of
pressure cannot be neglected. When our data obtained
under high pressure were included in a model describing
the fate of the oil in the case of the Deepwater Horizon, the
model predicted the observed changes in oil concentrations
much better (Lindo-Atichati et al. 2014).

Our experiments show that pressure affects both
bacterial growth and hydrocarbon-degrading activity at
pressures much lower than previously reported in the
literature as they occur at modern deep-sea drilling
sites. Consequently, pressure effects need to be considered
as a crucial factor in predictions of oil biodegradation in
deep waters.
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