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Abstract

Nowadays antimicrobial lipopeptides are being widely exploited for developing potential therapeutic agents for
treating bacterial infections. In the present study, we have purified and characterized an antimicrobial lipopeptide
produced by Streptomyces amritsarensis sp. nov. (= MTCC 11845 = JCM 19660"). The lipopeptide was purified using
silica gel chromatography, size exclusion chromatography and reverse phase- HPLC. The MS/MS analysis of the
lipopeptide revealed that it has amino acid sequence as Ala-Thr-Gly-Ser-His-GIn and a long chain fatty acid tail with
six times repeated the molecular mass of 161 Da which is corresponding to -C;,H;q. Based on the molecular mass
(878.5 Da) and amino acid composition, the lipopeptide was identified as a novel lipopeptide. The MIC values of
purified lipopeptide against Bacillus subtilis (MTCC 619), Staphylococcus epidermidis (MTCC 435), Mycobacterium
smegmatis (MTCC 6) and clinical strain, Methicillin Resistant Staphylococcus aureus (MRSA) were found to be 10, 15,
25 and 45 pg/ml, respectively. It was completely stable at 70°C for 1 h and retained 81.8% activity after autoclaving

activity it also exhibits biosurfactant activity.

(121°C for 15 min). It did not show any change in its activity profile between pH 5.0 - 9.0 and is stable to trypsin,
proteinase K and lipase enzymes. It was found to be non-mutagenic against Salmonella typhimurium (TA98) and
did not show cytotoxicity when checked against Chinese hamster ovary (CHO) cell line. In addition to antibacterial
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Introduction

In the last two decades, exploring the possibility of de-
veloping new classes of antimicrobial compounds has
emerged prominently due to pathogens acquired resistance
to emerging antibiotics. Presently available antimicrobial
compounds are getting old and less efficient, only few truly
original replacements are available. This is due to a num-
ber of different reasons including daunting R&D costs for
putting a new molecule on a highly competitive market
and the inherent difficulty of identifying innovative anti-
biotic targets (Nathan and Goldberg 2005; Payne et al.
2007). Therefore, screening and characterization of the
novel antimicrobial compounds especially, peptides from
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microorganisms, have drawn attention (Pirri et al. 2009;
Laverty et al. 2011). Among antimicrobial peptides, lipo-
peptides are small molecules and have been considered as
potential source of future antibiotics because of their differ-
ent mechanisms of action as compared to conventional
antibiotics (Baindara et al. 2013).

Antimicrobial lipopeptides represent an old class of
antibiotics that were discovered over 50 years ago and
consist of a hydrophilic cyclic peptide portion attached
to a fatty acid chain. They are biosynthesized by large
multi-enzymes called non-ribosomal peptide synthetases
via non-ribosomal pathways (Pirri et al. 2009). All anti-
biotics belonging to this novel class contain multiple
nonproteinogenic amino acids as well as different lipid
tails; this yields remarkable structural diversity (Strieker
and Marahiel 2009). Lipopeptides easily bind to the bac-
terial surface bilayer and alter the local lipid organizational
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linking on negatively charged fatty acids resulting in
restructuring of the lipid bilayer and prevent cellular
processes (Horn et al. 2012; Mandal et al. 2013).

Actinobacteria especially, species of the genus Strepto-
myces are reported to produce diverse antimicrobial
lipopeptides with their applications in pharmaceutical
industries. Amphomycin was the first lipopeptide to be
discovered from Actinoplanes friuliensis, followed by a
number of related antibiotics, including crystallomycin,
aspartocin, glumamycin, laspartomycin, tsushimycin, and
the best studied so far, daptomycin (Schneider et al. 2009).
As apparently 99% of the microbial species are still unex-
plored (Davies 1999; Watve et al. 2001) therefore, possibil-
ity of discovering actinobacteria producing potent and
novel lipopeptides still remains. In the light of this, present
study was aimed at purification and characterization of a
novel antimicrobial lipopeptide produced by Streptomyces
amritsarensis.

Materials and methods

Microorganism and maintenance

Streptomyces amritsarensis (= MTCC 118457 = JCM
19660") was isolated from soil and identified using poly-
phasic taxonomic approach (Sharma et al. 2014). The cul-
ture was maintained on starch casein nitrate agar slopes at
4°C and as mycelial fragments and spores in 20% v/v
glycerol at -80°C. All the test organisms except clinical
isolates were procured from Microbial Type Culture
Collection and Gene Bank (MTCC), Institute of Microbial
Technology (IMTECH), Chandigarh, India. Clinical iso-
lates viz. multi-drug resistant E. coli, MRSA and VRE were
procured from local hospitals. They were maintained on
nutrient agar slopes at 4°C.

Growth and lipopeptide production profile

S. amritsarensis was grown in Starch Casein Nitrate
(SCN) broth at 28°C with continuous shaking at 180 rpm
for 10 days. Cell free supernatants were collected at one
day intervals by centrifuging culture broths at 10,000 rpm
for 30 min at 4°C and used for detection of lipopeptide
antimicrobial activity using Kirby-Bauer disk diffusion
susceptibility test (Bauer et al. 1966). Filter paper discs
(6 mm) impregnated with 10 ul of supernatants (filtered
through 0.22 pm filter, Pall Lifesciences) were placed on
Mueller-Hinton agar plate seeded with Bacillus subtilis
(MTCC 619) and incubated at 37°C for 24 h. For the de-
termination of growth, absorbance of culture broths were
read at 600 nm and growth curve was prepared. Protein
contents of culture supernatants were determined using
Lowry method (Lowry et al. 1951).

For large scale production of lipopeptide batch fermen-
tation of Streptomyces strain was carried out in SCN broth
at 28°C on a rotary shaker at 180 rpm. The flasks were
inoculated with 2% by volume of seed culture, grown at
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28°C for two days. Fermentation was terminated on 4™
day, at which the maximum production was obtained.
The active compound from cell free supernatant was
adsorbed on resin XAD-4 (5%) at 15°C under shaking
conditions for 2 days and recovered from resin by eluting
with methanol. The methanol fraction was dried using a
rotavapour (BUCHI Rota vapor R-200) and dried residue
was re-dissolved in small volume of methanol.

Purification of lipopeptide

For the purification of the lipopeptide silica gel column
chromatography (60-120 mesh) was carried out. Column
(35 x 1.0 cm) was packed with silica gel using chloroform
as solvent. The methanol extract was loaded at the top
of the column and eluted step-wise with 100% CHClj,
95:5, 90:10, 75:25, 70:30, 50:50 (v/v) of CHCl;: CH3OH
solvent and 100% CH3;OH (200 ml each) at a flow rate
of 2 ml/min. Fractions were concentrated and redis-
solved in the same solvent ratio from which they were
recovered. Fractions showing antimicrobial activity were
pooled and further purified by subjecting to size exclu-
sion chromatography using Toyopearl resin HW-40 and
methanol as an eluent. The methanol fractions as such
were subjected to antimicrobial activity, active fractions
were combined and solvent was evaporated using a rota
vapour, the residue was re-dissolved in Milli-Q water.
Further purification was achieved through reverse phase
HPLC (1260 Infinity, Agilent Technologies, USA) using a
semi-preparative C18 column (Pursuit 10C18 250 x
21.2 mm) and acetonitrile: water (5:5) as mobile phase.
Collected fractions were concentrated by speed vacuum
and screened for antimicrobial activity. Lipopeptide was
purified to homogeneity using reverse phase- HPLC
(Agilent 1100 series) with a ZORBAX 300-SB18 column
(4.6 mm x 250 mm, particle size 5 um), at a flow rate of
1 ml/min. The solvent system used was 0.1% aqueous
TFA (A) and acetonitrile containing 0.1% TFA (B). The
gradient of solvent B used to run the column was as
follows: 0-60% for 0—45 min, 60-80% for 45-55 min and
80-100% for 55-60 min. The elution from the column
was monitored at 215 nm in a diode array detector and
all the peaks of HPLC chromatogram were collected
using a fraction collector (GILSON, France) coupled
with the system. Collected fractions were concentrated
by speed vacuum and screened for antimicrobial activity.

MALDI-TOF-MS and sequencing of lipopeptide

Lipopeptide was characterized using Matrix-assisted
laser desorption ionization (MALDI). The purified lipo-
peptide was lyophilized and re-suspended in methanol.
Solution (4 pl) was mixed with 4 pl of matrix (CHCA,
10 mg/ml), 1.0 pl of this mixture solution was spotted
onto the MALDI 100 well stainless steel sample plate
and allowed to air dry prior to the MALDI analysis
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(Mandal et al. 2009). MALDI mass spectra was obtained
using a Voyager time-of-flight mass spectrometer (Applied
Biosystem, USA), equipped with 337 nm N2 laser and
operated in accelerating voltage 20 kV. The spectra
were recorded in positive ion linear mode. To check the
reproducibility of the spectrum, sample was separately
spotted several times.

For peptide MS/MS sequencing, lipopeptide was incu-
bated with 10% NaOH in methanol at room temperature
for 16 h to cleave the lactone ring. The cleaved lipopep-
tide was lyophilized, again extracted with methanol and
allowed for mass spectrometry analysis. The spectra
were recorded in the post-source decay (PSD) ion mode
as an average of 100 laser shots with a grid voltage of
75%. The reflector voltage was reduced in 25% steps and
guide wire was reduced 0.02-0.01% with an extraction
delay time of 100 ns.

Fatty acid analysis of lipopeptide by GC-MS

Lipopeptide was subjected to acid hydrolysis by incubating
the lipopeptide (5 mg) with 0.5 ml of 6 M HCl at 90°C for
18 h in sealed tubes. The fatty acids were extracted with
ether and esterified with 0.95 ml methanol and 0.05 ml of
98% H,SO, at 65°C for 6 h. Fatty acid methyl esters were
obtained after extraction with n-hexane and analyzed
by GC-MS with a Clarus 500 GC (PerkinElmer, USA).
Helium was used as carrier gas at a flow rate of
1.0 ml/min. The column temperature was maintained
at 120°C for 3 min and thereafter gradually increased
(8°C/min) to 260°C.

Determination of antimicrobial activity

Sensitivity of test organisms to purified lipopeptide was
measured in terms of zone of inhibition using Kirby-Bauer
disk diffusion susceptibility test (Bauer et al. 1966). The
plates containing Mueller-Hinton agar, yeast malt agar
and potato dextrose agar were seeded with test bacteria,
yeasts and fungi, respectively. Filter paper discs (6 mm)
impregnated with 10 pg of lipopeptide were placed on
media plates. The diameter of the resultant zone of in-
hibition was measured in mm after 24- 48 hours of
incubation. Each experiment was performed in dupli-
cates and repeated thrice. Various test organisms used
in the study included Bacillus subtilis (MTCC 619), Myco-
bacterium smegmatis (MTCC 6), Staphylococcus epidermi-
dis (MTCC 435), Escherichia coli (MTCC 1885), Klebsiella
pneumoniae sub sp. pneumoniae (MTCC 109), Enterobacter
aerogenes (MTCC 111), Salmonella typhi (MTCC 733),
multi-drug resistant E. coli, MRSA, VRE, Candida albicans
(MTCC 3017), Rhodotorula rubra (MTCC 248), Colleto-
trichum acutatum (MTCC 1037), Cercospora beticola
(GenBank acc. no. KJ461435), Fusarium oxysporum f.
sp. dianthi (MTCC 6659), and Alternaria brassicicola
(MTCC 2102).

Page 3 of 9

Determination of minimum inhibitory concentration

The MIC of purified lipopeptide was evaluated by using
a microtiter plate dilution assay. Test bacteria were
grown to logarithmic phase under optimal conditions
(up to 0.3 OD) and the test was performed in triplicates.
To each well of the microtiter plate, 200 pl of fresh
nutrient medium and 50 pl of bacterial suspension were
added. Subsequently, different dilutions (50 pl) of freshly
prepared samples were added to each well. The first
column of the microtiter plate was left as a blank, con-
taining fresh medium only. The microtiter plates were
incubated at 37°C and OD was measured at 600 nm at
24 and 48 h using ELISA microplate reader (Bio-rad,
Model 680XR). The lowest concentration that inhibited
growth of the test strain and did not show any increase
in absorption after 48 h was considered as MIC of the
lipopeptide for that strain.

Effect of pH, temperature and enzymes on lipopeptide
activity

Sensitivity to temperature was determined by incubating
the purified lipopeptide at different temperatures viz.
50°C, 60°C, 70°C, 80°C , 90°C, 100°C and 121°C for different
durations. To determine the optimum pH for activity, puri-
fied compound was incubated over pH range of 3.0-12.0
for 30 min at 37°C. The sensitivity of the lipopeptide
(1.0 mg/ml) to enzymes was tested against proteinase K
(~30 U/mg), trypsin (~10,000 U/mg) and lipase (~9 U/mg).
All enzymes were purchased from Sigma Aldrich. Enzyme
solutions were prepared at 1.0 mg/ml in 50 mM phosphate
buffer (pH 7.0). Equal volumes of enzyme solution and
antimicrobial compound (20 ul each) were mixed and
incubated at 37°C for 12 h. The enzyme reaction was ter-
minated by heating reaction mixture at 80°C and residual
activity was determined by disc diffusion method.

Safety evaluation of lipopeptide

Mutagenicity of the lipopeptide was evaluated by Ames
test (Maron and Ames 1983). This Salmonella reverse
mutation test is based on histidine dependence and mu-
tations in Salmonella typhimurium (TA98/ MTCC 1251,
IMTECH, Chandigarh). Concentrations of the lipopep-
tide used for checking toxicity were 50 and 100 pg
0.1 ml™* plate™'. The overnight grown, 0.1 ml bacterial
culture and 0.1 ml of lipopeptide were added to 2.0 ml
of top agar. The contents were mixed and poured onto
glucose minimal agar plates immediately. The plates
were inoculated and incubated at 37°C for 48 h. The
experiment was repeated to confirm the results. To deter-
mine the spontaneous reversion which is characteristic of
the tester strain (TA 98), negative control (0.1 ml bacterial
culture + 0.1 ml DMSO plate™*) was run while 4-Nitro-o-
phenylenediamine (20 pg 0.1 ml™" plate™") was used as a
positive control mutagen. The mutagenic potential of the
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lipopeptide was determined by comparing the number of
colonies with control plates where no test compound
was added.

In vitro cytotoxicity was evaluated using sulforhoda-
mine B dye assay (Skehan et al. 1990). The Chinese
hamster ovary cell line (CHO) was used for the assay.
Camptothecin (CPT), an anticancer drug was used as
standard. The 96-well tissue culture plate, containing
different concentrations of lipopeptide (2.5- 25 pg/ml)
and CHO cells, was incubated for 48 h and the cell
growth was stopped with trichloroacetic acid (50% TCA,
50 pl). The optical density (OD) was recorded at 540 nm
on ELISA reader and percent growth inhibition was
calculated.

Biosurfactant property of lipopeptide

Biosurfactant property of lipopeptide was determined
using the qualitative drop-collapse test (Youssef et al.
2004). In this method, mineral oil (2 pl) was added to
96-well microtitre plate. The plate was equilibrated for
1 h at 37°C and 5 pl of the lipopeptide (10 pg, dissolved
in water) was added to the surface of the oil and drop
shape was observed after 1 min. The surface tension of a
lipopeptide (0.2%, w/v) was measured using Du-Nouy-
Ring method (Du Noiiy and Pierre 1925).

Results

Production and purification of lipopeptide

Lipopeptide production and growth profile of S. amritsar-
ensis is shown in Figure 1. Antimicrobial activity appeared
in culture supernatant during late logarithmic phase. A
significant increase in production (as measured by in-
hibition zone) and growth were observed with further
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incubation. The maximum growth and production were
attained after 4 days which remained constant for 7 days
and declined slightly with further incubation.

For purification of compound, production was carried
out in SCN broth for 4 days. The active compound from
supernatant was adsorbed on resin XAD-4 and recov-
ered by eluting with methanol. Antimicrobial compound
was partially purified by silica gel chromatography and
size exclusion chromatography using Toyopearl resin
HW-40. Reverse phase- HPLC of the partially purified
compound using a semi-preparative C18 column revealed
the presence of five peaks (Additional file 1: Figure S1).
After lyophilization, all collected peaks (fractions) were
tested for antimicrobial activity. Peaks 1, 2 and 3, demon-
strating antimicrobial activity, were further resolved using
ZORBAX 300-SB18 column (Figure 2).

Lipopeptide MS/MS sequencing

The primary structure of lipopeptide (peak 3) was eluci-
dated using a combination of mass spectrometry tech-
niques. The peaks obtained for different fragments at m/z
834, 736, 665, 564, 507, 420, 283 and 155 in MS/MS ana-
lysis revealed the lipopeptide sequence as Ala-Thr-Gly-Ser-
His-Gln. The C-terminal amino acid in peptide is linked to
aliphatic chain of -(CH,),-CH,-(CHz),- with a total mass
value of m/z 878.5 Da (Figure 3). Further, MALDI TOF MS
analysis clearly showed an addition of 137 Da mass unit
corresponding to -CjoH;7- shown in figure inset (Figure 4).
Interestingly, there is a long tail of fatty acid chain with six
times repeated the molecular mass of 161 Da which is cor-
responding to -Ci,H;9 (Figure 3). Based on the molecular
mass and amino acid composition, the lipopeptide was
identified as a novel lipopeptide.

Culture absorbance (600nm)

Inhibition zone (mm)

0 + 0 t t t
2 3 4

5 6 7 8 9 10

Incubation day
—+— Culture absorbance

Figure 1 Growth and lipopeptide production profile of S. amritsarensis.

T T T T T -

—a—Protein  —— Inhibition zone




Sharma et al. AMB Express 2014, 4:50
http://www.amb-express.com/content/4/1/50

Page 5 of 9

mAU
350

300

250

23

200

150

100

50

e v b b b e b v b e e b i

T T T T T T T T T
2 4 6

absorbance at 215 nm. Peak 3 corresponds to lipopeptide elution.
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Inhibition spectrum and sensitivity of the lipopeptide

The purified lipopeptide (10 pg) showed activity only
against Gram positive bacteria with inhibition zones of
21, 17, 15 and 13 mm against B. subtilis, S. epidermidis,
M. smegmatis and MRSA, respectively (Additional file 1:
Figure S2). It did not show activity against any of the
tested Gram-negative bacteria and fungi. The MIC assay
for test organisms with purified lipopeptide using micro-

titer plates in triplicates revealed lowest MIC value of
10 pg/ml against B. subtilis and highest against MRSA
i.e 45 pg/ml (Figure 5).

The results of heat stability assay demonstrated that
the lipopeptide was completely stable at 70°C for 1 h and
a loss of 13.7% was observed at 100°C after 15 minutes
incubation. After autoclaving (121°C for 15 min) anti-
microbial activity was reduced by 18.2%. It did not show
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Figure 3 MALD-TOF mass spectrometry analysis of lipopeptide.
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Figure 4 MALDI TOF PSD (MS/MS) spectrum of lipopeptide (Peak 3) and amino acid sequence of the lipopeptide obtained by de
novo sequencing.
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any change in its activity profile between pH 5.0-9.0
(Table 1). Lipopeptide was found to be resistant to trypsin
and lipase, and negligible loss in activity was observed
after treatment with proteinase K.

Safety evaluation

Mutagenicity of lipopeptide was checked by Ames test at
two concentrations viz. 50 and 100 pg/0.1 ml. The num-
ber of revertant colonies were counted after 48 hours
of incubation at 37°C and compared with the negative

control. The number of revertant colonies in the presence
of lipopeptide was found to be same as in the nega-
tive control (21 +2.0) for TA98. However, the number
of colonies in presence of positive mutagen (20 ug
plate™) was found to be considerably higher. The results
of the present study indicate that the lipiopeptide is
non-mutagenic.

The effect of lipopeptide at different concentrations,
2.5-25 pg/ml on chinese hamster ovary (CHO) cell line
is shown in Figure 6. It showed 2.9, 16.8, 19.25, 23.28

50 -
45
40-

0 T T T 1

B. subtilis

Figure 5 Determination of MIC for lipopeptide.

S. epidermidis M. smegmatis
Test organisms

MRSA
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Table 1 Factors affecting lipopeptide activity

Treatment Reaction Residual activity
duration/condition (%)
pH
2 1 h/4°C 0
3 1 h/4°C 72.7
4 1 h/4°C 84.6
5 1 h/4°C 100
6 1 h/4°C 100
7 1 h/4°C 100
8 1 h/4°C 100
9 1 h/4°C 100
10 1 h/4°C 86.3
11 1 h/4°C 68.1
12 1 h/4°C 0
Temperature (°C)
50 Th 100
60 Th 100
70 Th 100
80 Th 84.2
90 15 min 95.0
100 15 min 86.3
121 15 min (304 KPa) 81.8

and 28.9% growth inhibition at concentrations of 2.5,
6.25, 12.5, 18.75 and 25 pg/ml, respectively. The ICsq
value of lipopeptide was found to be 387 pg/ml which
is very high as compared to the ICs, value of standard
drug (0.959 pg/ml). The cytotoxicity % inhibition of
standard (camptothecin) is shown in Figure 7. This indi-
cates that it do not exhibit cytotoxicity.
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Lipopeptide as biosurfactant

The lipopeptide collapsed the oil drop and lowered sur-
face tension of water from 72 to 37 mN m™* when used
at a concentration of 0.2%. These results show that it
possesses good surfactant activity.

Discussion

Due to few antibiotics and free availability of effective anti-
biotics against diverse bacterial species the antimicrobial
era is threatened by high levels of antibiotic resistance
(Song 2008). Among infections caused by antibiotic resist-
ant Gram-positive bacteria, MRSA and VRE are of par-
ticular concern (Rice 2008) and this lead to the discovery
of potential antibiotics such as vancomycin, teicoplanin,
synercid (quinipristin and dalfopristin), tigecycline and
linezolid. Daptomycin is the recent FDA-approved lipo-
peptide, exhibiting potent activity against a broad range of
Gram-positive pathogens especially, MRSA and VRE.
However, rare incidences of clinical resistance have also
been reported against daptomycin (D’Costa et al. 2012).
Since resistance to each new antibiotic ultimately emerges,
usually within few years after it is marketed, there is al-
ways a need to find new antimicrobial agents to combat
antibiotic resistant strains of pathogenic and opportunistic
pathogenic microorganisms.

Since the late 1960s, only two novel classes of antibi-
otics, the oxazolidinones and the cyclic lipopeptides, have
entered the market (Rodriguez de Castro et al. 2009).
Thus antibiotic market is looking to increase the number
of new products with improved effectiveness. Nowadays, a
huge amount of resources is being invested in R&D to find
novel antimicrobials that can solve the problem of anti-
biotic resistance (Maria-Neto et al. 2012). The market for
antibacterial drugs is highly competitive, and many com-
panies are engaged in the development of anti-MRSA or
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Figure 6 Cytotoxic effect of lipopeptide on CHO cell line.
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Figure 7 Cytotoxic effect of camptothecin on CHO cell line.

multi-drug-resistant treatments, where lipopeptides are
the target compounds of most companies (Mandal et al.
2013). Antimicrobial lipopeptides are nonribosomally
synthesized, having macrocyclic peptide cores consisting
of eleven to thirteen amino acids, which are rigidified by
the formation of a ten-membered ring. They are produced
by NRPSs with variation of the fatty acid tail (Strieker and
Marahiel 2009). The mechanism of action of lipopeptides
is distinct from those of other antibiotics currently on the
market. They form pores in membranes of bacteria after
oligomerization and these pores may cause transmem-
brane ion influxes, including Na + and K+, which result in
membrane disruption and cell death. Two key properties
of lipopeptides are: i) a number of lipopeptides tend to
oligomerize and ii) their ability to interact with mem-
branes via their lipid tail (Straus and Hancock 2006).
These unique properties of the lipopeptides prevent path-
ogens to develop resistance against them, thus makes
them highly active against multidrug-resistant bacteria
(Mangoni and Shai 2011). Generally the bactericidal activ-
ity of the lipopeptide increases, with the addition of a lipid
tail of appropriate length (typically C10-C12) and lipo-
peptides containing 14 or 16 carbon atoms in lipid tail
length exhibit enhanced antifungal activity in addition to
antibacterial activity (Mandal et al. 2013). This can be due
to either an increase in the affinity of the lipid tail for the
hydrocarbon chains or as a result of the stronger inter-
action of the cationic peptide with the lipid headgroups
(Straus and Hancock 2006).

Antimicrobial lipopeptides have been purified from
many bacterial genera including several Streptomyces
spp. such as S. violaceus var. aspartocinius (aspartocin),
S. griseoflavus (tsushimycin), S. viridochromogens (laspar-
tomycin), S. coelicolor (calcium-dependent antibiotic), S.
roseosporus (daptomycin), S. fradiae (A54145), S. parvulus
var. parvuli (parvuline) and S. canus (amphomycin)

(Schneider et al. 2009). The present study reports the pro-
duction of another novel lipopeptide from a Streptomyces
sp. The primary structure of lipopeptide was determined
using a combination of chemical reactions and mass spec-
trometry techniques. It consists of six amino acids linked
to aliphatic chain of -(CH,),-CH,-(CH3), and a long tail of
fatty acid chain with six times repeated the molecular mass
of 161 Da which is corresponding to -C;,H;o. Based on
structure and molecular weight (878.5 Da), it is differ-
ent from already reported lipopeptides viz. daptomycin
(1620.6 Da), aspartocin (1317 Da), glumamycin (1290.4 Da),
tsushimycin (1304.7 Da) and arylomycin A6 (867.4 Da).
Lipopeptides vary in their amino acid and/or fatty acid
composition and all these variations in length and branch-
ing of the fatty acid chains and amino acid substitutions
lead to remarkable lipopeptide diversity and activities.
Generally, they are reported to be thermostable, resistant
to proteolytic enzymes and inhibit the growth of micro-
organism by altering the membrane integrity (Mandal
et al. 2013). Similarly, lipopeptide in the present study is
found to be completely stable for 1 h at 70°C, retaining
81.8% activity even after autoclaving (121°C for 15 min). It
exhibits absolute activity over a broad pH range of 5.0 —=9.0
and found to be resistant to hydrolytic enzymes: trypsin,
proteinase K and lipase. Similarly, paenibacterin, an anti-
microbial lipopeptide produced by Paneibacillus sp. strain
is reported to be resistant to trypsin and lipase enzymes
(Guo et al. 2012). The strong antibacterial activity of the
present lipopeptide can be related to the carbon chain
length (C12) of the lipid tail as bactericidal activity of the
lipopeptides depends upon the length of the lipid tail.
Safety evaluation of the lipopeptide demonstrates its non-
cytotoxic and non-mutagenic nature which is a prerequisite
for development of a drug.

In conclusion, Streptomyces amritsarensis produces a
novel antimicrobial lipopeptide that is active against a
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variety of Gram-positive bacteria especially, MRSA. Its
stability and non-toxic nature suggest that it may serve
as a new pharmacological drug and an addition to the
panoply of lipopeptide group of antibiotics. It may also
be used in the cosmetics industry for developing skin-
care products and shampoos as it possesses good surface
active property and as emulsifier and bio-preservative
in the food industry. Further antimicrobial spectrum
of the lipopeptide can be enhanced by chemical mod-
ifications in the lipid tail length, increasing number of
carbon atoms.

Additional file

Additional file 1: Figure S1. Ellution profile of the partially purified
compound using HPLC reverse phase chromatography on C18 column
monitoring by absorbance at 280 nm. Figure S2. Antibacterial activity
of lipopeptide against: (a) B. subtilis (b) S. epidermidis (c) M. smegmatis
(d) MRSA.
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