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Evaluation of the inhibitory effects of chloroform
on ortho-chlorophenol- and chloroethene-
dechlorinating Desulfitobacterium strains
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Abstract

Organohalide-respiring Desulfitobacterium strains are believed to play an important role in the bioremediation and
natural attenuation of chlorinated aliphatic and aromatic hydrocarbons. However, several studies have reported that
chloroform significantly inhibits microbial reductive dechlorination of chloroethene. In this study, we examined the
effect of chloroform on several Desulfitobacterium strains, including ortho-chlorophenol-dechlorinating
Desulfitobacterium dehalogenans JW/IU-1 and Desulfitobacterium hafniense DCB-2, and also the chloroethene-dechlorinating
strain D. hafniense TCE1. In medium containing 3-chloro-4-hydroxyphenylacetate as an electron acceptor,
chloroform inhibited the growth of strains JW/IU-1 and DCB-2. Although chloroform did not directly inhibit
dechlorination of 3-chloro-4-hydroxyphenylacetate by resting cells, cells cultivated with chloroform showed
decreased dechlorination activity. Moreover, transcription of the gene encoding the reductive dehalogenase
CprA decreased significantly in cells cultivated with chloroform. These results indicate that chloroform inhibits
the growth and dechlorination activity of strains JW/IU-1 and DCB-2 via inhibition of cprA transcription. In
contrast, cultivation of strain TCE1 in the presence of chloroform gave rise to a PceA reductive dehalogenase
gene-deletion variant of strain TCE1; a similar phenomenon was observed in our previous study of
chloroethene-dechlorinating D. hafniense strain Y51. Our results suggest that chloroform extensively inhibits the
dechlorination activity of Desulfitobacterium strains, and that the inhibitory mechanism appears to differ
between ortho-chlorophenol dechlorinators and chloroethene dechlorinators.

Keywords: Desulfitobacterium, Reductive dechlorination, Organohalide respiration, Growth inhibition,
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Introduction
Organohalide respiration is an anaerobic process in which a
halogenated organic compound serves as the electron ac-
ceptor. Various organohalide-respiring bacteria (OHRB)
have been applied to the bioremediation of toxic chlorinated
hydrocarbons in anaerobic environments (Smidt and de Vos
2004; Löffler and Edwards 2006; Maphosa et al. 2010). In
this process, organohalides are reductively dehalogenated.
For example, tetrachloroethene (PCE) is successively
converted to trichloroethene (TCE), dichloroethene
(cis-dichloroethene or trans-dichloroethene), vinyl
chloride (VC), and finally nontoxic ethene.
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Species of the genus Desulfitobacterium are some of
the most frequently identified OHRB, and can utilize a
variety of electron acceptors, such as nitrate, sulfite,
fumarate, humic acids, and organohalides (Villemur
et al. 2006). Most Desulfitobacterium isolates can re-
spire with ortho-chlorophenol and/or chloroethene.
For example, Desulfitobacterium hafniense strain DCB-2
and Desulfitobacterium dehalogenans strain JW/IU-1
respire with ortho-chlorophenols such as 3-chloro-4-
hydroxyphenylacete (3-Cl-4-OHPA), whereas D. hafniense
strains TCE1 and Y51 respire with PCE and TCE (Madsen
and Licht 1992; Utkin et al. 1994; Gerritse et al. 1999;
Suyama et al. 2001).
The dehalogenation reaction is catalyzed by reductive

dehalogenase, which is the terminal reductase of the
organohalide respiratory chain. The dehalogenation
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spectrum of each OHRB is believed to be determined by
the type of this key enzyme. Both D. dehalogenans strain
JW/IU-1 and D. hafniense strain DCB-2 possess ortho-
chlorophenol reductive dehalogenase (CprA), for which
the corresponding gene cluster (consisting of cprA, cprB,
cprC, cprD, cprE, cprK, cprT, and cprZ) has been identi-
fied (Smidt et al. 2000; Christiansen et al. 1998; Kim
et al. 2012). On the other hand, D. hafniense strains
TCE1 and Y51 possess the PCE reductive dehalogenase
(PceA) gene cluster, which consists of pceA, pceB, pceC,
and pceT (Maillard et al. 2005; Suyama et al. 2002;
Furukawa et al. 2005). The pce genes are surrounded by
two copies of nearly identical insertion sequence (IS) ele-
ments that contain a gene homologous to the IS256
family transposase; therefore, the pce genes can function
as a typical composite transposon. In fact, several types
of circular DNAs resulting from homologous recombin-
ation between two homologous IS elements and
transposase-mediated excision and circularization have
been identified in strains TCE1 and Y51 (Maillard et al.
2005; Futagami et al. 2006a; Duret et al. 2012).
The OHRB play a significant role in the detoxification

of chlorinated hydrocarbons. However, chloroform (CF,
trichloromethane), which is a common environmental pollu-
tant that has both biotic and abiotic origins, reportedly in-
hibits microbial reductive dechlorination of chloroethene
(Cappelletti et al. 2012). Bagley et al. (2000) showed that CF
at a concentration of 4 μM completely inhibits degradation
of PCE by a microcosm, while Duhamel et al. (2002) showed
that a chloroethene-dechlorinating microcosm containing
Dehalococcoides species is inhibited by 2.5 μM CF, resulting
in accumulation of VC. Inhibitory effects of CF on the
chloroethene dechlorination activity of the OHRB isolate
Dehalococcoides mccartyi strain 195, and on the activity of
purified PceA reductive dehalogenase from Sulfurospirillum
multivorans have also been reported (Maymó-Gatell et al.
2001; Neumann et al. 1996; Löffler et al. 2013). In the case
of D. hafniense strain Y51, we found that two different
PCE-nondechlorinating variants become dominant in the
presence of CF. One of these variants (designated the LD
variant) lost all pce genes due to homologous recombination
between the two IS elements. The other nondechlorinating
variant lost one IS element located upstream of the pce gene
cluster, in which a portion of the promoter region is located.
This type of variant, designated as SD variant, cannot ex-
press pce genes. Both of these variants, but especially the LD
variant, become dominant in the presence of CF, which in-
hibits the growth of wild type strain Y51 at concentrations
as low as 1 μM, while both the LD and SD variants can
grow normally at CF concentrations as high as 1 mM
(Futagami et al. 2006b).
Although the effects of CF on the reductive dechlorina-

tion of chloroethene have been studied, how CF affects or-
tho-chlorophenol dechlorination remains to be elucidated.
We therefore investigated the effect of CF on the growth,
dechlorination activity, the genetic stability and transcrip-
tion of the cprA gene in the ortho-chlorophenol-
dechlorinating bacteria D. dehalogenans strain JW/IU-
1 and D. hafniense strain DCB-2. In addition, we
investigated the effect of CF on the chloroethene-
dechlorinating bacterium D. hafniense strain TCE1,
and compared the results to those from our previous
study on D. hafniense strain Y51. We report here that
CF strongly inhibits the dechlorination activity of
Desulfitobacterium strains, and discuss the sigificance
of the inhibitory effect of CF on ortho-chlorophenol-
dechlorinating and chloroethene-dechlorinating Desul-
fitobacterium strains.

Materials and methods
Strains and cultivation
Desulfitobacterium dehalogenans strain JW/IU-1 (DSM
9161) and D. hafniense strains DCB-2 (DSM 10664) and
TCE1 (DSM 12704) were obtained from the DSMZ mi-
crobe collection. Desulfitobacterium hafniense strain
Y51 was previously isolated in our laboratory (Suyama
et al. 2001). Strains JW/IU-1, DCB-2, TCE1, and Y51
were grown anaerobically at 30°C in MMYP medium
(45.9 mM K2HPO4, 8.8 mM KH2PO4, 1.7 mM sodium
citrate, 0.4 mM MgSO4 · 7H2O, yeast extract [2.0 g/L],
68.2 mM sodium pyruvate, and 4.0 μM resazurin sodium
salt, pH 7.2) with 10 mM 3-Cl-4-OHPA or 5 mM so-
dium fumarate as an electron acceptor. CF was diluted
in N,N-dimethylformamide and added to the culture
medium to a final concentration of 1, 10, or 100 μM.
Growth of all strains was assessed by optical density
(OD) at 660 nm. Growth was assessed at least two times
independently.

Dechlorination of 3-Cl-4-OHPA by resting cells
Resting cells were prepared from cultures of strains JW/
IU-1 and DCB2 grown in MMYP medium with 10 mM
3-Cl-4-OHPA and with or without 100 μM CF. The
strains JW/IU-1 and DCB-2 were grown to late-log
phase (OD660 = 0.2 and 0.4, respectively) and the cells
were harvested by centrifugation at 4,000 × g for 10 min
at 4°C. The cell pellet was washed with buffer (45.9
mM K2HPO4 and 8.8 mM KH2PO4, pH 7.5) and
recentrifuged twice under the same conditions. The cells
were then resuspended in phosphate buffer to an OD660

of 0.3. Dechlorination of 3-Cl-4-OHPA was measured in
a 25-ml glass vial containing 5.0 ml of resting cell solu-
tion (OD660 = 0.25) containing 20 mM sodium pyruvate
and 1.0 mM 3-Cl-4-OHPA. Each vial was sealed with a
butyl rubber stopper and crimped. CF was added to a
final concentration of 100 μM by syringe. All manipula-
tions were performed under anaerobic conditions using
centrifuge tubes with sealing caps (Nalgene, Rochester,
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NY) and an anaerobic grove box with an atmosphere of
85% N2, 5.0% CO2, and 10% H2. The reaction mixtures
were incubated at 30°C with shaking at 120 rpm. The re-
action solutions were collected with a syringe and
filtered through a 0.2-μm PTFE filter (Millex-LG,
Millipore, Bedford, MA). The 3-Cl-4-OHPA remaining
in solution was quantified by high-performance liquid
chromatography (HPLC) on a system equipped with a
Waters 2487 UV detector operated at 280 nm (Waters,
Milford, MA) and a YMC Pack Pro C18 RS col-
umn (YMC, Kyoto, Japan). The mobile phase was
acetonitrile-water-acetic acid (30:70:1), and the column
was eluted isocratically at a flow rate of 1 ml/min. De-
chlorination activity was measured in triplicate samples
and the results shown are the mean and standard
deviation.
Stability of the reductive dehalogenase genes
Strains JW/IU-1 and DCB-2 were cultivated in MMYP
with 10 mM 3-Cl-4-OHPA and with or without 100 μM
CF, and the cells were harvested at stationary phase.
Genomic DNA was isolated according to established
procedures (Wilson 1987), digested with EcoRI, sub-
jected to agarose gel electrophoresis, and transferred
onto a Biodyne B membrane (Pall Corporation, Pensa-
cola, FL). Hybridization with digoxigenin (DIG)-labeled
(Roche, Penzberg, Germany) DNA probes and detection
by nitroblue tetrazolium/bromochloroindolylphosphate
(NBT/BCIP) (Roche, Penzberg, Germany) were per-
formed according to the manufacturer’s instructions.
The cprBA gene probe for strain JW/IU-1 and cprA gene
probe for strain DCB-2 were amplified using the
DdehalogF1-DdehalogR1 and DCB2F1-DCB2-R1 primer
sets, respectively (Table 1).
Strains TCE1 and Y51 were cultivated in MMYP

medium with 5 mM fumarate and with or without
100 μM CF and then harvested at stationary phase. Iso-
lation of genomic DNA and Southern blot analysis were
performed as described above. The DIG-labeled DNA
probe used to detect the pceA gene was amplified as de-
scribed previously (Futagami et al. 2006b).
Table 1 Sequences of primers used in this study

Primer name Sequence (5′-3′) Reference

DdehalogF1 GCACTAATACTTGTGTATGTATTCC This study

DdehalogR1 GACCACTGCAATGAGTG This study

DdehalogF2 ATGAACCGCAGAAGCTTTCTG This study

DdehalogR2 GGAACCAGGAATCTTCCTTG This study

DCB2F1 CATGAACCGCAGAAGCTTTC This study

DCB2R1 CAATGGTCTCCGTACCATAGC This study

The sequences of GenBank accession numbers AF115542 and AY013365 were
used for primer design.
Northern blot analysis of cprA transcripts
Strains JW/IU-1 and DCB-2 were cultivated in MMYP
medium with 10 mM 3-Cl-4-OHPA and with or without
100 μM CF and then harvested at the logarithmic phase.
Total RNA was isolated from cells using RNAiso reagent
(Takara, Shiga, Japan) according to the manufacturer’s
protocol. The concentration of RNA was determined by
measuring the absorbance at 260 nm with a spectropho-
tometer (UV-2550, Shimadzu, Kyoto, Japan). Total RNA
(30 μg) was electrophoresed on a 1.0% agarose gel with
18% (vol/vol) formaldehyde and then transferred onto a
Hybond N membrane (Amersham Biosciences, Bucking-
hamshire, UK). Hybridization with DIG-labeled cprA
DNA probes and subsequent detection with NBT/BCIP
were carried out according to the manufacturer’s in-
structions. The cprA gene probe for strain JW/IU-1 and
the cprA gene probe for strain DCB-2 were amplified
using the primer sets DdehalogF2-DdehalogR2 and
DCB2F1-DCB2-R1, respectively (Table 1).

Results
Effect of CF on the growth of D. dehalogenans strain JW/
IU-1 and D. hafniense strain DCB-2
To evaluate the inhibitory effect of CF on the growth of
strains JW/IU-1 and DCB-2, we examined growth curves
for cells cultured with and without CF at a concentration
of 1, 10, and 100 μM in medium containing fumarate or
3-Cl-4-OHPA as the electron acceptor (Figure 1). In cul-
ture medium containing fumarate, the growth of strain
JW/IU-1 was not inhibited by CF, even at a concentra-
tion of 100 μM, but in medium containing 3-Cl-4-
OHPA, growth rate of strain JW/IU-1 was inhibited by
100 μM CF (Figure 1A). In contrast, CF caused extended
lag phase and reduced cell yield of strain DCB-2 in a
dose-dependent manner in the presence of fumarate or
3-Cl-4-OHPA (Figure 1B).

Effect of CF on dechlorination of 3-Cl-4-OHPA by D.
dehalogenans strain JW/IU-1 and D. hafniense
strain DCB-2
In medium containing 3-Cl-4-OHPA as the elec-
tron acceptor, strains JW/IU-1 and DCB-2 grew by
organohalide respiration using 3-Cl-4-OHPA. Because
100 μM CF significantly inhibited the growth rate of
strain JW/IU-1 and caused the extended lag phase and
the reduced cell yield of strain DCB-2 in medium
containing 3-Cl-4-OHPA (Figure 1), we investigated
the effect of CF on dechlorination of 3-Cl-4-OHPA
by resting cells prepared from strains JW/IU-1 and
DCB-2 cultivated with or without 100 μM CF
(Figure 2). The results of dechlorination assays showed
that dechlorination of 3-Cl-4-OHPA by resting cells of
strains JW/IU-1 and DCB-2 initially grown in the ab-
sence of CF was similar in both the presence and
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absence of 100 μM CF, indicating that 3-Cl-4-OHPA
dehalogenase is not affected by CF. However, the
dechlorination activity of resting cells of strains JW/
IU-1 and DCB-2 initially grown in the presence of
100 μM CF was lower than that of resting cells
cultivated without CF.
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Effect of CF on the stability and transcription of cprA in D.
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stability and transcription of the cprA gene (Figure 3).
Strains JW/IU-1 and DCB-2 cultivated in medium
containing 3-Cl-4-OHPA with or without 100 μM CF
were examined by Southern blot analysis. The cprBA
and cprA genes were used as probes for strains JW/IU-1
and DCB-2, respectively. A fragment of DNA of ca.
7.0 kb from strain JW/IU-1 and fragments of ca. 5.5 and
1.9 kb from strain DCB-2 were detected, and the signal
intensities measured for these fragments were the same
for cells cultivated with or without CF (Figure 3). This
result suggested that CF does not affect the structure of
the cpr genes of strains JW/IU-1 and DCB-2.
In contrast, CF did affect the transcription of the cprA

gene in strains JW/IU-1 and DCB-2 (Figure 3). The
RNAs extracted from strains JW/IU-1 and DCB-2 culti-
vated in medium containing 3-Cl-4-OHPA and with or
without 100 μM CF were subjected to northern blot
analysis using cprA as a probe. The signal intensity of
the cprA transcript from cells of strains JW/IU-1 and
DCB-2 grown in the presence of CF was significantly
lower than that of cells grown in the absence of CF. This
result agreed with the reduction in 3-Cl-4-OHPA de-
chlorination activity of strains JW/IU-1 and DCB-2
when cells were grown in the presence of 100 μM CF
(Figure 2).

Effect of CF on the growth and pceA-stability of D.
hafniense TCE1
We also investigated the effect of CF on D. hafniense
TCE1. This strain dechlorinates PCE and TCE and has a
pce gene cluster similar to that of D. hafniense strain
Y51 (Maillard et al. 2005; Futagami et al. 2006a). In the
case of strain Y51, CF significantly inhibited the growth
of wild type cells, but did not inhibit the growth of the
PCE-nondechlorinating LD and SD variants missing the
pce gene cluster or pceA promoter sequence, respectively
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the pce gene cluster in D. hafniense TCE1, and com-
pared the results to those obtained previously with D.
hafniense Y51 (Figure 4B). Genomic DNA was extracted
from cells cultivated with or without 100 μM CF and
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significantly reduced when strain TCE1 was cultivated in
the presence of CF, indicating that the pce-deletion mu-
tant became dominant after the cells were cultivated in
the presence of CF. Thus, the pce gene cluster is very
unstable, and is deleted in the presence of CF in both
strains Y51 and TCE1.
Discussion
In this study, we investigated the effects of CF on the or-
tho-chlorophenol-dechlorinating bacteria D. dehalogenans
strain JW/IU-1 and D. hafniense strain DCB-2. The
growth of both strains was inhibited by CF at a concentra-
tion of 100 μM in medium containing 3-Cl-4-OHPA as
the electron acceptor (Figure 1). It is noteworthy that
100 μM CF did not directly inhibit the dechlorination of
3-Cl-4-OHPA by resting cells (Figure 2). However, the de-
chlorination activity of cells cultivated in the presence of
100 μM CF was lower than that of cells cultivated in the
absence of CF. This reduction in dechlorination activity
was due to decreased transcription of cprA in the presence
of CF (Figure 3). These results suggest that inhibition of
growth mediated by CF in medium containing 3-Cl-4-
OHPA is due to inhibition of CprA expression, as this
protein is essential for organohalide respiration utilizing
3-Cl-4-OHPA.
In strains JW/IU-1 and DCB-2, transcription of the

cpr genes is strictly regulated by CprK, which is a mem-
ber of the cAMP-binding protein-fumarate nitrate
reduction regulatory protein (CPR-FNR) family of tran-
scriptional factors (Pop et al. 2004; Gabor et al. 2006).
The interaction of a chlorinated aromatic substrate such
as 3-Cl-4-OHPA with the effector domain of CprK trig-
gers binding of CprK to a DNA sequence called the
dehalobox. Binding of CprK to the dehalobox leads to
transcriptional activation of the cpr gene cluster. Thus,
CF might act as a competitive inhibitor of 3-Cl-4-OHPA,
keeping CprK in an inactivated state.
The above-described mechanism through which CF

inhibits the growth of Desulfitobacterium is supported
by the observed differences in the degree that CF
inhibited the growth of strain JW/IU-1 under different
cultivation conditions. In the presence of 100 μM CF,
growth rate of JW/IU-1 was inhibited in medium
containing 3-Cl-4-OHPA, but not in medium containing
fumarate as the electron acceptor, which may be
explained by that the expression of CprA is not required
for fumarate respiration. In fact, it was demonstrated
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that the transcriptional level of cprA in the medium
containing fumarate as an electron acceptor was signifi-
cantly lower than that in a medium containing 3-Cl-4-
OHPA as an electron acceptor (Smidt et al. 2000). On
the other hand, CF inhibited the growth of strain DCB-2
to a greater degree than strain JW/IU-1. Even at a con-
centration as low as 1 μM, CF inhibited the growth of
strain DCB-2 in medium containing either 3-Cl-4-
OHPA or fumarate. Moreover, CF inhibited the growth
rate of strain JW/IU-1, whereas CF caused both the ex-
tended lag phase and the reduced cell yield of strain
DCB-2. This result indicates that a direct toxic effect of
CF on the overall fitness of the cells of strain DCB-2 also
present. Similar inhibitory effects of organic solvents
have been observed for anaerobic bacteria (Duldhardt
et al. 2007; Duldhardt et al. 2010).
CF inhibited the growth of the PCE- and TCE-

dechlorinator D. hafniense strain TCE1. This result was
similar to that observed in our previous study involving
D. hafniense strain Y51 (Futagami et al. 2006b). South-
ern blot analysis using pceA as a probe showed that the
signal intensity associated with pceA decreased signifi-
cantly when cells of strain TCE1 were cultivated in the
presence of CF, indicating that the pceA-deletion variant
became dominant. Although the pce genes of strains
TCE1 and Y51 are very similar (>99%, including the
intergenic regions) (Maillard et al. 2005; Futagami et al.
2006a) and CF had a similar inhibitory effect on the
growth of both strains, one difference was the occur-
rence of the circular Tn-Dha1 DNA element containing
the entire pce gene cluster (Figure 4B and C). The band
derived from the Tn-Dha1 element formed by homolo-
gous recombination between the two identical IS ele-
ments was detected by Southern blot analysis, as
described previously (Maillard et al. 2005). Strain Y51
also has the same type of circular element, designated
TnDesp1 (Futagami et al. 2006a), with a predicted band
size on Southern blotting of ca. 6.5 kb. However, no 6.5-
kb DNA band was detected under the cultivation condi-
tions used in this study, indicating that the efficiency of
excision by homologous recombination between the IS
elements and/or the stability of the circular elements of
strains TCE1 and Y51 might be different.
In conclusion, CF had a negative effect on all the

Desulfitobacterium strains tested, including D. dehalogenans
strain JW/IU-1, D. hafniense strain DCB-2, and D. hafniense
strain TCE1. Because the Desulfitobacterium play a signifi-
cant role in microbial reductive dechlorination, the presence
of CF in the environment could be detrimental to
bioremediation efforts aimed at other halogenated hydrocar-
bons. The degradation of CF through organohalide respir-
ation and fermentation by Dehalobacter spp. was recently
reported (Grostern et al. 2010; Lee et al. 2012). The results
of these studies could be important for developing effective
strategies for the bioremediation of halogenated compounds
in anaerobic environments.
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