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nano-bioconjugates by Penicillium citrinum
(MTCC9999) and its antimicrobial effect
Achintya Mohan Goswami1,2, Tuhin Subhra Sarkar1 and Sanjay Ghosh1*
Abstract

This report provides for the first time a novel environment friendly extracellular synthesis of stable silver nano-
bioconjugates (SNBCs) at room temperature at pH 5.0 using Penicillium citrinum MTCC 9999 biomass. The UV-Visible
spectral scan of dispersed SNBCs solution showed absorption in the region 340–450 nm due to surface plasma
resonance (SPR). Typical Transmission Electron Microscopic (TEM) images showed that although two populations
were present but most of them were in 20–30 nm range. Average zeta potential of SNBCs was −21 mV suggesting
some biomolecules capped the nanoparticles imparting a net negative charge over it. FTIR analysis also showed
that biomolecules were involved in stabilization. SNBCs showed strong antibacterial activity against both Gram
positive (Bacillus subtilis) and Gram negative bacteria (Escherichia coli). SNBCs also showed strong antifungal activity
as assessed against Schizosaccharomyces pombe. In the case of E. coli the minimum inhibitory concentrations (MIC)
of SNBCs was 4 μg/ml while in B. subtilis it was 8 μg/ml. In the case of E. coli the minimum bactericidal
concentrations (MBC) of SNBCs was 8 μg/ml while in B. subtilis it was 32 μg/ml. The SNBCs exerted its antibacterial
and antifungal activity through generation of reactive oxygen species (ROS) inside the cell.

Keywords: Green synthesis, Penicillium citrinum, Transmission Electron Microscopy (TEM), Zeta potential, Fourier
Transformed Infra-Red Spectroscopy (FTIR), Minimum Inhibitory Concentrations (MIC), Minimum Bactericidal
Concentrations (MBC), Reactive Oxygen Species (ROS)
Introduction
The field of nanotechnology has got major advances in
various aspects of technology from biosensors to medi-
cine (Velev and Kaler 1999; Nie and Emory 1997; Gu
et al. 2003; Kim et al. 2008). Various optic based analyt-
ical techniques are designed based on the surface plasma
resonance (SPR) properties of silver nanomaterials (Lee
and EI-Sayed 2006). There is also growing interest in
biomedical applications of silver nanoparticles (Sun et al.
2005). But synthesis of nanoparticles requires harsh
reducing agents (e.g. sodium borohydride, hydroxyl
amine), capping agents (e.g. trioctylphosphine oxide) and
organic solvents (e.g. toluene, chloroform) as well as high
temperature and pressure (Xie et al. 2007). So the focus is
turned on to the environmental friendly synthesis of
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nanoparticles, the so called “Green Chemistry” (Klaus
et al. 1999; Raveendran et al. 2003). Complete green
synthesis of silver nanoparticles requires environmentally
acceptable solvent, eco friendly reducing and capping
agents. In all these respects biological approach is more
convenient.
A number of biological species has been shown to

produce silver nanoparticles either intracellular or cell
surface based or extracellular. A study with Pseudo-
monas stutzeri AG259, a metal accumulating bacteria
have been shown to synthesize silver nanoparticles in
the periplasmic space with a size ranging from a few
nanometers to 200 nm of different shapes and morph-
ologies (spherical, triangular, truncated triangular)
(Klaus et al. 1999). Lactobacillus strains have been
shown to synthesize silver nanoparticles and these form
clusters on the cell surface (Nair and Pradeep 2002).
Vigneshwaran N et al. showed a cell-surface based syn-
thesis of silver nanoparticles with a varying particle size
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from 4–14 nm by Aspergillus flavus (Vigneshwaran et al.
2007a). Extracellular biosynthesis of silver nanoparticles
of 5–25 nm diameter by Aspergillus fumigatus and
Penicillium fellutanum has been studied (Bhainsa and
D’Souza 2006; Kathiresan et al. 2009). Polydisperse silver
nanoparticles of 20–60 nm diameter are synthesized
extracellularly by Alternaria alternata (Monali et al.
2009). Apart from using microorganisms as a factory of
synthesizing nanomaterials, soluble starch has been used
in the ecofriendly synthesis of silver nanoparticles with
a size 23–35 nm (Vigneshwaran and Nachane 2006).
Spent mushroom substrate (SMS) has also been used as
a simple root for the synthesis of silver-protein (core-
shell) nanoparticles having average size around 30 nm
(Vigneshwaran A and Kathe 2007).
There is also increasing demand for finding antimicro-

bial agents due to ever increasing bacterial resistance to
antibiotics and consequent development of multidrug
resistance in bacteria. Recently nanoparticles have been
successfully used for the delivery of therapeutic agents
(Zhang et al. 2008a), in chronic disease diagnostics
(Hong et al. 2008), to reduce bacterial infections in skin
and burn wounds (Rai et al. 2009), to prevent bacterial
colonization on medical devices and in the food and
clothing industries as an antimicrobial agent (Chau et al.
2007; Vigneshwaran et al. 2007b). For centuries, silver is
known for its antimicrobial activity against a diverse
group of bacteria and has been used for many years as
an antimicrobial substance (Castellano et al. 2007). Silver
nanoparticles have been shown to have potent antibac-
terial, antifungal and antiviral activities. Compared with
other metals, silver nanoparticles show higher toxicity to
microorganisms while exhibiting lower toxicity to mam-
malian cells (Zhao and Stevens 1998). A large number of
researches were carried out to investigate the bacteri-
cidal activity of silver nanoparticles. Silver nanoparticles
interact with gram-negative bacteria in a size dependent
fashion (Sukdeb et al. 2007). It has been suggested that
the antibacterial activity is due to silver ions, released
from metallic bulk silver or from nanoparticle (NP) sur-
faces, which interact with the thiol groups in bacterial
proteins or interfere with DNA replication (Feng et al.
2000; Wu et al. 2009). It has also been reported that sil-
ver ions can affect the respiratory chain in bacteria (Holt
and Bard 2005). On the other hand, other authors have
suggested that silver nanoparticle toxicity may arise dir-
ectly from physical processes caused by nano-objects,
like disruption of cell membrane and penetration of NPs
into the cytoplasm (Xu et al. 2004). So, the scientific
debate is still open concerning the mechanism of the anti-
bacterial effect of silver nanoparticles (Sondi and Salopek-
Sondi 2004; Dror-Ehre et al. 2009; Zhang et al. 2008b). It
was reported that silver nanoparticles stabilized with so-
dium dodecyl sulfate (SDS) have no antibacterial activity
because the negatively charged SDS interferes with the ab-
sorption of microbes to the surface of the nanoparticles or
silver ions (Cho et al. 2005). So the application of silver
nanoparticles as antimicrobial agent requires appropriate
coating of nanoparticle surface to avoid aggregation and
to favour solubility in watery environment and attachment
of nanoparticle to bacterial cell surface.
Until now, little research has been done on the anti-

microbial activity of biologically produced nanosilver and
its specific mode of action. The aim of this study was to
examine the antimicrobial properties of biogenic silver. In
the present work, we report an environment friendly
procedure for synthesis of stable silver nano-bioconjugate
(SNBC) and its potential application as antimicrobial
agent. We prefer to use the term nano-bioconjugate be-
cause of the presence of biomolecules on the nanoparticle
surface, which are used for further studies without any
further chemical modification of nanoparticle surface.

Materials and methods
All chemical reagents were purchased from Sigma (St.
Louis, MO, USA) and were of analytical grade. All com-
ponents for growth media were purchased from Becton–
Dickinson (Rutherford, NJ, USA).

Microorganism
Penicillium citrinum (strain number MTCC 9999) was
isolated in our laboratory from soil, collected from
Dhapa situated near Kolkata, West Bengal. The strain
was sent for identification to the Institute of Microbial
Technology (IMTECH), Chandigarh, India, a centre for
microbial strain identification and maintenance. The
strain was identified as Penicillium citrinum by them
and it was deposited in the IMTECH strain bank. The
strain was subcultured on potato dextrose agar (PDA).

Biomass production
The fungus (P. citrinum MTCC 9999) was grown aerob-
ically in liquid media containing (g/l) KH2PO4: 7.0, K2H
PO4:2.0, MgSO4, 7H2O:0.1, (NH4)2SO4:1.0, yeast extract:
0.6, glucose 10.0. The conical flask containing the above
sterilized media was inoculated with fungal spores and
incubated at orbital shaker at 29°C for 84 hours at 140 rpm.
Then the biomass was harvested by sieving through a plas-
tic filter and washed several times with Milli-Q deionized
water to remove any traces of media components. Biomass
was placed in Mili Q water to collect the fungal cell surface
biomolecule or any secretory materials which could have
reducing power for the biological synthesis of nanoparticles.
Typically 20 g biomass (fresh weight) was dispersed in 200
ml of deionized Milli-Q water. It was then kept for
72 hours at 25°C at 120 rpm in an orbital shaker. After the
incubation, cell filtrate was obtained by passing it through
Whatman filter paper no1 for the synthesis of silver nano-
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bioconjugates by extracellular filtrate. Each experiment was
repeated thrice using freshly grown culture of P. citrinum
in PDA.

Synthesis of silver nano-bioconjugates by extracellular
filtrate
Silver nitrate (AgNO3) at a final concentration of 0.5mM
was added from a higher stock of 200mM to the cell fil-
trate and agitated at 100 rpm in dark at 25°C. Control set
(only cell filtrate) without AgNO3 was also run side by side.
Another negative control containing only 0.5mM AgNO3

were maintained under the same conditions. Silver nano-
bioconjugates were characterized by visual inspection.
Sample was withdrawn at various time intervals for re-
cording of UV-Visible spectra. UV-Visible spectra were re-
corded spectrophotometer (V-530) (JASCO Analytical
Instruments, 28600 Mary’s Court, Easton, MD 21601).

Characterization of silver nano-bioconjugates
Dynamic light scattering (DLS) analysis was performed in
Zetasizer (MALVERAN Nano Series, Malvern Instruments
Ltd, Enigma Business Park, Grovewood Road, Malvern,
Worcestershire, UK. WR14 1XZ), to measure the hydro-
dynamic diameter and zeta potential of SNBCs.

Transmission electron microscopic (TEM) measurement
The samples for transmission electron microscopy (TEM)
analysis were prepared by drop-casting the SNBCs solution
on a carbon-coated copper TEM grid. Before casting to the
grid the SNBCs solution was centrifuged at 10000 rpm for
5minutes and the isolated SNBCs were dispersed in 100 μl
double distilled water and sonicated in a bath sonicator for
15minutes. The TEM images were recorded on a high
resolution electron microscope (HRTEM: JEOL JEM 2010)
operating at an accelerating voltage of 200 kV. Fast Fourier
transform (FFT) images were recorded with built-in soft-
ware for the FFT algorithm for image processing in
HRTEM: JEOL JEM 2010 instrument.

Fourier transformed infra red spectroscopy (FTIR)
For FTIR spectrum analysis the SNBCs were centrifuged at
10,000 rpm for 10minutes to remove free proteins or other
compounds present in the solution. The SNBCs then
resuspended in double distilled water and again centrifuged.
The process was repeated for three times and finally the
centrifuged part containing SNBCs were redispersed in
double distilled water and subjected to FTIR spectroscopy.

Antimicrobial activity of silver nano-bioconjugates
(SNBCs)
Antimicrobial activities of SNBCs were assayed by cup-
plate method. Antimicrobial activity was assayed against
following Gram positive bacteria Bacillus subtilis ATCC
6633, and Gram negative bacteria Escherichia coli ATCC
8739 and fungus Schizosaccharomyces pombe ATCC
24843. Zone of inhibition was determined by mea-
suring the diameter of bacterial clearance after 24 hour.
Minimum inhibitory concentrations (MIC) and minimal
bactericidal concentration (MBC) of the SNBCs were
determined following the guidelines of National Commit-
tee for Clinical Laboratory Standards (NCCLS, Approved
standards M7–A4 1997). Colony-forming unit (CFU) is an
estimate of viable bacterial and fungal (yeast) growth
measurement. The Spread Plate technique was used to de-
termine the CFU. Bacterial suspensions were diluted in
sterile Muller Hington Broth (MHB) to obtain a final in-
oculum of 106 CFU/ ml. The concentrations of SNBCs
tested were 1, 2, 4, 8, 16, 32, 64 μg/ml. The samples were
then incubated at 37°C at 140 rpm for 24 hours. We have
also used a control set where P. citrinum biomass was
placed in Mili-Q water under similar experimental condi-
tion like the silver nanobioconjugate production. Mini-
mum inhibitory concentration was determined using the
control fungual ell exudates, control 0.5 mM silver nitrate
as well as the silver nanobioconjugates.
After incubation, minimum inhibitory concentrations

(MIC) were read visually; all samples were plated to nutri-
ent agar and incubated. The minimal bactericidal concen-
tration (MBC) was defined as a 99.9% reduction in CFU
from the starting inoculum after 24 h incubation interval.
The minimal fungicidal concentration (MFC) was defined
as a 99.9% reduction in CFU from the starting inoculum
after 24 h incubation interval. Fungal strains of S. pombe
were grown up in YES medium (0.5% yeast extract, 3% dex-
trose with proper supplements) at 32°C.

Fluorescence imaging of reactive oxygen species (ROS)
production
Radical production was quantified by the addition of
the non-fluorescent precursor molecule 20, 70 dichloro-
dihydrofluorescein diacetate (DCFDA). In the presence
of ROS, DCFDA is oxidized to a fluorescent molecule.
Bacterial cells were grown in MHB up to 0.24 O.D. at
590 nm. Fungal strains of S. pombe were grown up in
YES media up to 0.4 OD at 590 nm. The cells were then
centrifuged at 5000 rpm for 5 minutes and cell pellet is
collected and dispersed in 50mM potassium phosphate
buffer. And cells were washed to remove media. The cells
were then again re-dispersed in 50mM potassium phos-
phate buffer at a final cell O.D. of 0.5 at 600 nm. The cells
were then treated with SNBCs at a final concentration of
40 μg/ml for 1 hour and 2 hour. After treatment DCFDA
was added to the cells at a final concentration of 10 μM.

Results
Extracellular filtrate (pH 5.0) collected from P. citrinum
was able to reduce silver nitrate (0.5 mM) to form silver
nano-bioconjugates (SNBCs) resulting in the appearance



Figure 1 UV-visible spectral scan of SNBCs by bio-reduction of silver nitrate in aqueous solution were recorded at various time points
viz. 24 hours, 48 hours, 72 hours and 110 hours in Jasco UV-Visible spectrophotometer (V-530) operated at a resolution of 1 nm in
absorption mode.

Figure 2 Characterization of SNBCs by TEM. (a) Typical TEM image of SNBCs. (b) A magnified TEM image. (c) HRTEM image of SNBCs. (d)
SAED pattern of SNBCs which were indexed according to (111), (200), (220), and (311) reflections of fcc silver on the basis of their d-spacings of
2.47 A0, 2.13A0, 1.49 A0, and 1.27 A0.
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Figure 3 SDS-PAGE profile of extracellular filtrate. 20 μg
sample protein was loaded in the well and was separated by
10% SDS-PAGE.
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of the brown color indicating the presence of colloidal
silver particles in SNBCs (Burda et al. 2005). However,
no change in colour was observed in control sets (Add-
itional file 1 Online Resource 1).
A time course study was conducted to follow the syn-

thesis of SNBCs (Figure 1) by the extracellular filtrate of
pH 5.0. Similar study was conducted with extracellular
filtrate of pH 3.0, pH 7.0 and pH 9.0 (Data not shown).
All the conditions at different pH generated SPR signal
in the region 340–450 nm of SNBCs by UV-visible spec-
troscopy. An increase in absorbance in the region 340–
450 nm with time indicated the synthesis of SNBCs.
SNBCs were analyzed by Dynamic Light Scattering to

measure hydrodynamic diameter immediately after syn-
thesis (Additional file 2 Online Resource 2). Interestingly,
SNBCs synthesized by extracellular filtrate of pH 5.0
showed a single population whose hydrodynamic dia-
meter was centered on approximately 20–40 nm. As in
dynamic light scattering small particles could be masked
by the large particles, so the Z average was 76.42 ± 6.12
nm. SNBCs were further analyzed by TEM to understand
the architecture, size and selected area electron diffraction
(SAED) pattern. A typical TEM image of SNBCs (Figure 2a,
2b) revealed the presence of maximum number of spherical
SNBCs. The average diameter of 281 particles measured
in TEM was 9.46 ± 6.45 nm. A high resolution TEM
(HRTEM) image of SNBCs synthesized at pH 5.0
(Figure 2c) showed the well resolved interference fringe
patterns separated by 0.24 nm which corresponded well
to the spacing between (111) plane of fcc silver crys-
tal (JCPDS. No.01-087-0597). The patterns of SAED
(Figure 2d) were indexed according to (111), (200), (220),
and (311) reflections of fcc silver crystal on the basis of
their d-spacings of 2.47 A°, 2.13A°, 1.49 A°, and 1.27 A°.
The TEM, HRTEM and SAED pattern of SNBCs
synthesized at pH 3.0, pH 7.0 and pH 9.0 showed similar
pattern as obtained in SNBCs synthesized at pH 5.0 (Add-
itional file 3 Online Resource 3) However, there were dis-
tinct differences in their hydrodynamic diameter and zeta
potential values.
The zeta potential of SNBCs was measured to know their

colloidal stability and the nature of the charge carried
in their surface. The average zeta potential of SNBCs,
synthesized by extracellular filtrate of pH 5.0, was approxi-
mately −21mV (Additional file 4 Online Resource 4). In
spite of this zeta potential value the SNBCs were well
stabilized at room temperature as determined by measuring
the hydrodynamic diameter by DLS, 30 days after synthesis,
with little or no aggregation at all.
To investigate the reason for stabilization up to 30 days

after synthesis of SNBCs, it was further characterized in
SDS-PAGE (Figure 3) to find if any proteins were present
on the surface of the nanoparticles or not. SDS-PAGE pro-
file of the extracellular filtrate clearly shows the presence of
proteins in the filtrate. SNBCs were then analyzed by FT-IR
spectroscopy in solid mode to provide further evidence
(Figure 4) and it showed both amide I (1642.06 cm-1) and
amide II (1541.04 cm-1) stretching frequencies present in
SNBCs (Caruso et al. 1998).
We have tested the antibacterial activity of SNBCs

against E. coli and B. subtilis and antifungal activity against
S. pombe. Antimicrobial activity of SNBCs at a concentra-
tion of 200 μg/ml was determined by agar diffusion assay
(Additional file 5 Online Resource 5). Zone of inhibition
determined for E. coli by measuring the diameter of
bacterial clearance after 24 hour was 3.68 ± 0.1 mm and
that for B. subtilis was 2.81 ± 0.2mm. Zone of inhibition
determined for S. pombe by measuring the diameter of
fungal clearance after 24 hour was 1.87 ± 0.15mm. We
have also used 0.5mM silver nitrate and fungal cell
exudates in MilliQ water as control to assess their anti-
microbial potency. It was found that silver nitrate showed
antimicrobial activity like that of SNBCs. But no zone of
inhibition was observed in case of fungal cell exudates in
MilliQ water.
The Minimum inhibitory concentrations (MIC) was

defined as the lowest silver concentration, which showed
no increase in optical density (OD), i.e. no bacterial or fun-
gal growth during 24 hours of inoculation. MIC of SNBCs
against E. coli, B. subtilis and S. pombe were represented in



Figure 4 FT-IR spectra of SNBCs. SNBCs were centrifuged at 10,000 rpm for 10 minutes to remove free proteins or other compounds
present in the solution. The SNBCs then resuspended in double distilled water and again centrifuged. The process was repeated for three times
and finally the centrifuged part containg SNBCs were redispersed in double distilled water and subjected to FTIR spectroscopy.
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Additional file 6 Online Resource 6. In the case of Gram
negative bacteria E. coli the MIC was 4 μg/ml while for
Gram positive bacteria B. subtilis the MIC was 8 μg/ml and
for the S. pombe the value was 8 μg/ml. The minimal con-
centration of SNBCs which gave rise to plates without bac-
terial colonies was considered as the minimal bactericidal
concentration (MBC). The MBC (or MFC) of SNBCs in
growth medium was 8 μg/ml for E. coli and 32 μg/ml for B.
subtilis and 16 μg/ml for S. pombe (Additional file 6 Online
Resource 6).
To investigate the mechanism of action of SNBCs to-

wards its antimicrobial activity, we found reactive oxy-
gen species (ROS) generation inside both bacterial and
fungal cells (Figure 5). E. coli cells (0.24 O.D. at 590 nm)
when treated with SNBCs at a final concentration of
40 μg/ml showed generation of ROS as studied by fluor-
escence microscopy. The control set showed no ROS
generation. Treatment of B. subtilis (0.24 O.D. at 590 nm)
with SNBCs at a final concentration of 40 μg/ml showed
generation of ROS as studied by fluorescence microscopy.
The control set showed no ROS generation. S. pombe
(0.4 OD at 590 nm) when treated with SNBCs at a final
concentration of 40 μg/ml also showed generation of ROS
as studied by fluorescence microscopy. The control set
showed no ROS generation.
Discussion
In our study SNBCs formed a single population as
revealed by DLS analysis in the size range of 20–40 nm.
The physical nature of SNBCs as revealed by TEM images
that most of the SNBCs were quite spherical in shape with
their average diameter of 9.46 ± 6.45 nm. It is true that
quantification of Ag (0) is not accurate from the absorb-
ance value of the SPR signal of the SNBCs. Concentration
calculation from the molar extinction coefficient value
depends on the size of the molecule in a homogeneous
population. Although microbial synthesized SNBCs con-
tain a heterogeneous population of different size, still we
tried to quantitate the Ag (0) content of SNBCs with an
average diameter 9.46 nm and 15.91 nm using the extinc-
tion coefficient value of 4.16 × 109 M-1 cm-1. (Yguerabide
and Yguerabide 1998). It is observed that 15.69 × 10-2nM
Ag (0) is produced from 0.5mM AgNO3.
Average zeta potential of SNBCs measured to be −21mV

suggesting that some biomolecules capped the surface
imparting a net negative charge over it. It could be well
assumed that the biomolecules present in extracellular fil-
trate not only involved in the synthesis but providing the
surface coating of silver nanoparticles making them well
stable. SDS-PAGE profile of the extracellular filtrate clearly
showed the presence of proteins in the filtrate. It is



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Generation of reactive oxygen species (ROS) inside of bacteria in response to SNBCs action. ROS generation was monitored by
using 20,70 dichlorodihydrofluorescein diacetate (DCFDA). (a) Control B.s subtilis fluorescent image. (b) Control B. subtilis bright field image. (c)
Treated B. subtilis fluorescent image. (d) Treated B. subtilis bright field image. (e) Control E. coli fluorescent image. (f) Control E. coli bright field
image (g) Treated E.coli fluorescent image (h) Treated E.coli bright field image. (i) Control S. pombe fluorescent image. (j) Control S. pombe bright
field image. (k) Treated S. pombe fluorescent image. (l) Treated S. pombe bright field image.
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conceivable that the biomolecules present in extracellular
filtrate are not only involved in the synthesis but also pro-
viding the surface coating of silver nanoparticles making
them well stable. So it is possible that some of these
proteins and other biomolecules such as chitin, lipid etc.
may be present on SNBCs and help to stabilize the SNBCs.
It has been shown that silver nanoparticles have affinity
for free amine groups or SH-group of cysteine residues of
the proteins or through electrostatic attraction of nega-
tively charged carboxylate groups (Gole et al. 2001). FT-IR
analysis of SNBCs again confirmed the presence of bio-
molecules in the SNBCs.
The ever growing bacterial resistance to antimicrobial

agents poses a serious problem in the treatment of infec-
tious diseases as well as in epidemiological practice (Neu
1992). The surface structures of silver nanoparticles are
found to be become important in mediating its antimicro-
bial activity (Cho et al. 2005). Thus we wanted to know
the antimicrobial property of SNBCs which have outer
coating of biomolecules. In this study antibacterial activity
of SNBCs was observed against E. coli and B. subtilis and
antifungal activity against S. pombe. The zone of inhi-
bition as determined by agar diffusion method for E. coli
was larger than that for B. subtilis. This was most probably
due to variation in cell wall composition between gram
negative E. coli and gram positive B. subtilis. It was evident
from Additional file 6 Online Resource 6 that both MIC
and MBC values were higher for B. subtilis than E. coli.
This may be due to the fact that cell wall structure in B.
subtilis provided resistance against the diffusion and ac-
tion of SNBCs.
Generation of reactive oxygen species (ROS) inside both

bacterial and fungal cells provides the mechanism of ac-
tion of SNBCs towards its antimicrobial activity. It is
known that majority of nanomaterials such as zinc oxide,
carbon nanotubes, and silicon dioxide exert their toxic
effects through oxidative stress (Yang et al. 2008). It is
believed that nanoparticle toxicity is multifactorial, where
size, shape, surface functionalization and potential to re-
lease the corresponding metal ions could play pivotal
roles. ROS generation in the presence of SNBCs could be
explained by metabolic disturbances as well as other toxi-
cological outcomes. It is also possible that surface oxida-
tion of silver nanoparticle liberates Ag+ ions that could
amplify the toxicity. Reactions between H2O2 and silver
nanoparticle may be responsible for release of Ag+ ions
in vivo (Kumar 2006).
A possible chemical reaction involves

Thus silver ions may be released from SNBCs upon its
reaction with H2O2 which was produced by the action of
SNBCs on E. coli, B. subtilis and S. pombe. Proteomic
analysis of the effect of silver ions (Ag+) on expression
of various proteins in E. coli showed a reduction in ex-
pression of ribosomal subunit S2, succinyl coenzyme
(CoA) synthetase, and maltose transporter (Yamanaka
et al. 2005). It was quite obvious that the reduction in
expression of ribosomal subunit S2 impairs the synthesis
of proteins, whereas reduction in synthesis of succinyl
CoA synthetase and maltose transporter causes suppres-
sion of intracellular production of ATP. All these factors
were involved in killing mechanism of SNBCs.
In conclusion, the focus of this manuscript was on the

antibacterial mechanism of stable silver nanobioconjugate,
synthesized by an eco-friendly process. It was found that
SNBCs exerted antimicrobial activity towards both Gram
positive and Gram negative bacteria and fungus. The MIC
and MBC values were higher for Gram positive bacteria
(i.e. B. subtilis) than Gram negative bacteria (i.e. E. coli).
We found generation of ROS as mediator of antimicrobial
activity of SNBCs.
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Minimal Bactericidal Concentrations (MBC) of SNBCs were determined
against E.coli and B. subtilis and Minimal Fungicidal Concentrations (MFC)
against S. pombe.
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