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Raman microspectroscopy for species
identification and mapping within bacterial
biofilms
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Abstract

A new method of mapping multiple species of oral bacteria in intact biofilms has been developed, using the optical
technique of confocal Raman microscopy. A species classification algorithm, developed on dried biofilms, was used to
analyze spectra of hydrated biofilms containing two microbial species central to dental health: Streptococcus sanguinis
and Streptococcusmutans. The algorithm transferred successfully to the hydrated environment, correctly identifying
the species of origin of single-species biofilms. We then used the algorithm successfully both to detect the presence
of two species in mixed biofilms and to create spatial maps within these biofilms.
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Introduction
The identification of microbial species within sample
specimens is relevant to both the microbiological research
laboratory and the clinical setting. A number of stan-
dard methods of species identification are currently used.
Selective plating may be used to identify the constituent
species and to obtain an order-of-magnitude estimate of
the initial concentrations of bacteria present in a sam-
ple. Since this method involves serial dilutions, it can
take up to several days and is insensitive to cells that are
dead or incapable of reproduction by the time the sam-
ple is procured. Quantitative polymerase chain reaction
(qPCR) is highly sensitive to the initial concentrations of
known species, but it requires prior knowledge of their
genomes in order to provide specificity. Both qPCR and
selective plating disrupt the initial sample’s architecture,
and are thus ill-suited for spatial mapping studies of spec-
imens such as biofilms. Fluorescence in situ hybridization
(FISH) can provide spatial resolution, but requires sam-
ple fixation (eliminating the potential to study a sample
over time), extensive preparation steps, and a genetically-
targeted exogenous marker. A new measurement method
that could map the spatial distribution of multiple species
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in intact, unfixed specimens in a label-free, non-contact
manner would therefore be valuable. Such a technique
could alsomake longitudinal study of samples like biofilms
a possibility.
Optical spectroscopy offers the ability to acquire

chemically-specific information at micron-scale resolu-
tion without sample contact. One such method is Raman
spectroscopy, which has been used extensively for biolog-
ical applications. Raman spectroscopy detects the pres-
ence of molecular bonds via the inelastic scattering of
laser light; each molecule imparts a different “fingerprint
pattern” on the spectrum of the scattered light. This pro-
vides specificity to subtle biochemical differences between
samples, useful in discrimination of cell types or monitor-
ing the progression of disease. Raman spectroscopy has
been used to study biomedical specimens including tis-
sues, biofluids, and bacterial cells (Maquelin et al. 2002;
Rösch et al. 2005; Willemse-Erix et al. 2009); extensive
reviews are provided by Hanlon et al. (2000) and by Ellis
and Goodacre (2006).
In the work described here, Raman spectroscopy imple-

mented through a confocal microscope has been used to
distinguish between two species of streptococci, Strepto-
coccus sanguinis and S. mutans, grown in biofilm form.
These bacteria are of particular interest due to their rela-
tionship with oral health, being the two most populous

© 2012 Beier et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Beier et al. AMB Express 2012, 2:35 Page 2 of 6
http://www.amb-express.com/content/2/1/35

species present within dental plaque (Socransky and
Manganiello 1971). Streptococcus mutans has been iden-
tified as the most cariogenic species in plaque, with
elevated levels being linked to increased risk of tooth
decay (Loesche 1986; Marsh 1999). Streptococcus sangui-
nis is associated with being the primary component of
healthy plaque (Socransky and Manganiello 1971). Exam-
ining the relative balance between these two species can
provide an indication of a patient’s risk of tooth decay.
Previous work by our group led to the successful identi-

fication of the species of bacteria present in single-species
biofilms that had been dehydrated before analysis (Beier
et al. 2010). In that study, biofilm samples had been
transferred from their original substrates, much like a
plaque scraping might be harvested from a tooth surface.
Dehydrated samples were used for training the species
identification model because sample volumes would con-
tain denser cellular content leading to higher signal lev-
els. Since only single-species biofilms were used in the
construction of the training set, we chose this enhance-
ment in signal levels over the preservation of structural
information. Here, we apply this model to map species
distributions within simple hydrated biofilms. Confirma-
tion of the model’s successful transfer is performed using
intact single-species biofilms. With the ability to identify
the species within hydrated biofilms in situ, the model is
used to perform species identifications of volumes within
a two-species mixed biofilm.

Materials andmethods
Biofilm preparations
Streptococcus mutans ATCC strain UA159 and S. sangui-
nis ATCC strain 10904 were examined in these studies.
Although the two species have different preferred growth
media, identical preparations were used when preparing
pure biofilms of each species. The same nutrients were
also used when creating two-species biofilms. This was
done to ensure that the chemical differences detected by
Raman spectroscopy were in fact indicators of differences
in the species’ biofilms and not an artifact from differences
in the chemical content of the nutrients used.

Single-species biofilms
Cells were taken from stocks stored at -80°C and streaked
onto agar plates containing brain heart infusion medium
(BD Difco, Franklin Lakes, New Jersey). After 24 hr, a
few colonies were selected and used to inoculate a liq-
uid culture containing 10 mL of Todd Hewitt (TH) broth
(VWR International, West Chester, Pennsylvania) with
0.5% (w/v) sucrose. The presence of sucrose allows the
bacteria in suspension to begin secretion of extracellular
polysaccharides (EPS) that are vital for the formation of a
biofilm structure. After another 24 hr, 1 mL of the resus-
pended liquid culture was added to 49 mL of TH broth

with 0.5% sucrose. At this point, a microscope slide was
introduced into the culture to serve as a substrate for the
biofilm. The biofilm slide was moved to fresh media every
24 hr until a total of 4 days of growth on the substrate
had been reached. In the calibration set used previously to
develop our species prediction model, the sugar had been
changed for the last three days to 0.5% glucose to pro-
ducemore cell-rich biofilmswith suppressed levels of EPS.
For the sample set consisting of intact biofilms presented
here, however, the sugar source was maintained as 0.5%
sucrose throughout to encourage the biofilms to be more
robust and space-filling, as we could no longer rely upon
dehydration-induced sample compaction to increase the
sample density and thus the Raman signal strength. The
difference in EPS levels between the two data sets was thus
a potential problem for successful calibration transfer.
For the biofilms in the calibration set, ordinary glass

microscope slides were used since each biofilm was ulti-
mately transferred from the substrate before Raman anal-
ysis, much like a plaque scraping might be transferred. For
the hydrated biofilms of interest in these studies (exam-
ined in situ), quartz microscope slides were chosen in
order to avoid the high levels of fluorescence associated
with using NIR illumination on a glass substrate.

Two-species biofilms
Previous work by our group included the creation of arti-
ficially mixed, two-species biofilms where pure biofilms
of each species were manually combined in a controlled
way immediately before study, in order to investigate the
spatial capabilities of our system. In that study, correct
identifications of species were reliably made for locations
as close as 2μm to a boundary between species (Beier
et al. 2010). It is of course more biologically relevant to
considermultispecies biofilms grown from a common cul-
ture. In the studies described here, two-species biofilms
of S. sanguinis and S. mutans were grown by first initiat-
ing a biofilm of S. sanguinis for 3 days before introducing
liquid culture of S. mutans. This time delay was necessary
because for the batch growth conditions used through-
out these studies, S. mutans would quickly dominate over
S. sanguinis due to S. mutans ’s proclivity for thriving in
acidic environments. It was found that the delayed intro-
duction of S. mutans followed by 12 hr of coexistence
led to a biofilm that contained sufficient amounts of both
species. Similar sample preparations consisting of 4 days
of S. sanguinis and 3 hr coexistence with S. mutans or
2 days of S. sanguinis and 3 days of coexistence with
S. mutans led to biofilms that were indistinguishable from
pure biofilms of S. sanguinis and S. mutans, respectively.

System design
Raman spectroscopy was performed using a homebuilt
confocal Raman microspectroscopy system described
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previously (Beier and Berger 2009) and shown schemat-
ically in Figure 1. An 830 nm diode laser (Innovative
Photonic Solutions, Monmouth Junction, New Jersey)
was used as the excitation source for Raman scat-
tering. A near-IR wavelength was chosen in order to
prevent thermal effects on samples studied in situ.
This wavelength also offered the advantage of avoid-
ing fluorescence that is commonly observed in bio-
logical materials. The laser was directed through a
spectral bandpass filter (Chroma Technology Corp.,
Bellows Falls, Vermont) and a spatial filter (10x objec-
tive, Newport Corp., Irvine, California; 10μm pin-
hole). The beam was reflected from a notch filter
(Semrock, Inc., Rochester, New York) at near-normal
incidence before being directed into the upright micro-
scope (Eclipse E400, Nikon Instruments Inc., Melville,
New York). The beam was then focused by a 60x,
1.0 numerical aperture (NA) water immersion objec-
tive (Nikon Corp., Tokyo, Japan). The focal spot at
the sample plane was ∼1.5μm in diameter, deliver-
ing ∼40 mW of laser power to the sample. Epidirected
Raman scattered light (Stokes-shifted in wavelength) was
then collected by the same objective and directed to
pass through the notch filter before being focused onto
the 100μm core of a multimode optical fiber, which
served as a confocal pinhole. The fiber guided the
light to a spectrometer (HoloSpec f/1.8, Kaiser Optical

Systems Inc., Ann Arbor, Michigan) connected to a ther-
moelectrically cooled, front-illuminated, open electrode
charge-coupled device (CCD) array (DU420-OE, Andor
Technology PLC, Belfast, Northern Ireland) that was used
to record the spectra. The CCD and stage were con-
trolled using code written in-house within MATLAB �
(Version 7.8.0, The MathWorks TM, Inc., Natick,
Massachusetts).
The system has a spectral resolution of ∼7 cm−1, as

measured from neon gas emission lines. The axial section-
ing depth is ∼7μm, as determined from the derivative of
the response curve when scanning into plastic, following
the method described by Caspers et al. (2000). Combin-
ing the axial sectioning depth with the focal spot diameter
of ∼ 1.5 μm gives a confocal volume, or voxel size, of
∼8μm3 to be probed in each location. Scanning of the
samples was achieved through the use of an electronically-
controlled stage (x-y: Applied Scientific Instrumentation,
Eugene, Oregon; z: Nikon).
Microscope slides fully coated by biofilm material were

loaded with enough water to maintain water-immersion
at the microscope objective for many hours. Sufficient
air space was provided underneath the slide to drain
away water seepage and prevent motion artifacts. In situ
study of these samples meant that the structure of the
biofilms, including species distributions in two-species
biofilms, was intact and available for study. Scanning was

Figure 1 Confocal Ramanmicroscope. Schematic overview of confocal Raman microscope; see text for details. Abbreviations: BPF, bandpass
filter; SF, spatial filter; NF, notch filter.
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performed to create maps of slices perpendicular to the
substrate (XZ scans) since the structures in this orienta-
tion would bemore biologically interesting, in terms of the
arrangement of bacteria in relation to the substrate.

Data acquisition and processing
Spectra were acquired for six frames of 30 s per voxel
(i.e. confocal volume). The spectra were then subjected
to preprocessing including cosmic-ray and system back-
ground removal, as well as spectral throughput correction.
Fluorescent background was removed using a modified
polynomial-fitting method described previously (Beier
and Berger 2009), making use of the photobleaching line-
shape between successive frames as a background fitting
parameter. After the frames were preprocessed individu-
ally, they were averaged to give one spectrum per voxel.
Due to a slight shift in the laser’s excitation wavelength
from that used for the training set, all spectra were
then recalibrated to align the 1003 cm−1 phenylalanine
peak (Wagner et al. 2009) and resampled to a common
wavenumber axis. For further analysis, only data from the
wavenumber region of 706 to 1810 cm−1 was retained for
each spectrum.
Some voxels were found to have insufficient signal lev-

els for reliable species prediction, likely due to low cellular
content in a given voxel or insufficient light penetration
into deeper regions. An initial screening step was per-
formed to reject such voxels from further consideration.
After the spectral data was preprocessed, it was submit-

ted to the species identification model described previ-
ously (Beier et al. 2010). Briefly, principal component (PC)
analysis was used for data compression and noise reduc-
tion before submitting the PC scores to logistic regression
for species prediction.

Results
As mentioned above, the species prediction model was
originally constructed from dehydrated biofilm samples
and was here applied to the study of hydrated biofilms,
in situ. For the transfer of this model to a new sam-
ple preparation, a test set of single-species biofilms was
first examined. The mean spectra of the newly-measured
S. sanguinis and S. mutans biofilms, shown in Figure 2,
appear nearly identical. In such cases, ad hoc classifi-
cation models based upon a few visibly different peaks
(e.g. near 920 and 1100 cm−1, marked with ‘*’) perform
poorly at the single-spectrum level, where noise is higher.
Figure 2 emphasizes the importance of using a multi-
variate model (the PC-based technique referenced in the
previous section) to utilize information throughout the
full spectrum in constructing the classification formula.
Table 1 shows the species identification results obtained

for the new test set of 352 spectra from regions within
10 different single-species biofilms. The diagonal entries
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Figure 2Mean Raman spectra.Mean Raman spectra for S. sanguinis
and S. mutans from the validation set of hydrated single-species
biofilms. While certain spectral regions are visibly different (marked
with ‘*’), multivariate methods using the full spectra were used for
species classification.

in this confusion matrix represent Raman-based species
assignments that agree with the (known) species from
which the biofilm was prepared, while off-diagonals rep-
resent errors. 92% of all voxels of S. sanguinis and 94% of
S. mutans were properly identified based on their Raman
spectra. Considering all voxels from either species, 93%
were properly identified. This study therefore established
the baseline error rate in classification to be around 7%.
After confirming the successful transfer of the original

model to working with hydrated samples, further stud-
ies examined biofilms from mixed culture. A total of five
mixed biofilms were studied, each at a number of posi-
tions both laterally and in depth. Figure 3 plots the per-
centage of voxels that were classified as S. mutans in each
biofilm. As the figure shows, four of the fivemixed-species
biofilms had Raman-assigned minority-species levels that
significantly exceeded the 7% baseline error rate (Student’s
t-test, 95% confidence). The spatial organization of species
assignments was also examined. Figure 4 plots the Raman-
based species assignments in a depth-slice through one
of the mixed-species biofilms. As can be seen, the species
assignments tended to be clustered into contiguous spa-
tial regions as opposed to being evenly distributed. Such
assignments are plausible, given the nature of cell prolif-
eration, although there is no reference method currently
available to provide confirmation.

Table 1 Species identification performance

Known species

S. sanguinis S. mutans

Predicted

S. sanguinis 236 6

S. mutans 20 90

Confusion matrix summarizing the performance of the species identification
model on hydrated, intact biofilms. The columns indicate the known/true
species, while the rows indicate the prevalence of experimentally predicted
species in reference to the known species.



Beier et al. AMB Express 2012, 2:35 Page 5 of 6
http://www.amb-express.com/content/2/1/35

0

0.1

0.2

0.3

0.4

0.5

%
 c

la
ss

ifi
ed

 a
s 

S
. m

ut
an

s

Biofilms

* *
* *

Figure 3 Species predictions. Species prediction results for 5 two-species mixed biofilms. A normal approximation to the binomial distribution has
been used to determine the standard error in the mean. Biofilms with proportions of S. mutans statistically significantly different from results seen in
pure S. sanguinis biofilms are marked by ‘*’.

Discussion
Examination of the test set of hydrated biofilm samples
showed that overall, 93% of voxels were properly identified
using the transferred model. Our previous work saw 96%
correct identification of species (Beier et al. 2010). The
move to the new sample type involved several changes rel-
ative to the original training set, including a replacement
of the laser with a corresponding 2 nm wavelength differ-
ence in excitation, the use of a water-immersion objective
rather than air-immersion, the addition of depth scanning,
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Figure 4 Scan through a mixed biofilm. XZ scan through a mixed
biofilm. Gray: S. sanguinis; black: S. mutans; ‘x’: insufficient signal.
Although S. mutans was introduced later, locations classified as
S. mutans were closer to the substrate.

and a decrease in signal level associated with decreased
concentrations within hydrated biofilms. The high perfor-
mance on this single species confirmation set given these
system changes indicates the robustness of the prediction
model.
With the ability to properly identify the species within

hydrated samples thus confirmed, biofilms from a mixed
culture were analyzed. As mentioned above, the spatial
arrangement of clusters of like-classification was a reason-
able result, though it was not directly verifiable. What can
be asserted with confidence, however, is that in mixed-
species biofilms the “minority” species was typically
assigned frequently enough to exceed the baseline error
rate of 7% seen in single-species studies. The fact that four
of the five mixed-species biofilms had Raman-assigned
minority-species levels that significantly exceeded 7%
(Figure 3) indicates that the presence of both species has
been detected and quantified in the mixed biofilm sam-
ples. The fifth biofilm, which did not see a statistically
significant level of the minority species, may simply have
been scanned in a region occupied by a single species.
There is another interesting element to the depth scan

in Figure 4. Although S. mutans was introduced days after
S. sanguinis, the locations classified as S. mutans tended
to be closer to the substrate, as if the S. mutans had
migrated beneath the layer of S. sanguinis. This observa-
tion was consistent across all four of the biofilms in which
significant levels of both species were observed. For the
particular species in this study, this could potentially have
significance as it relates to the cariogenic properties of
dental plaque. Further experiments are needed to explore
this initial observation.
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In summary, Raman spectroscopy has been imple-
mented through a confocal microscope and used to suc-
cessfully classify oral bacteria in hydrated biofilms of one
or two species. A model constructed with spectra from
dehydrated single-species biofilms has been transferred
for the species prediction of hydrated samples. In a test set
of single-species hydrated biofilms, voxel-by-voxel species
assignments were 93% accurate.
When two-species biofilms from mixed culture were

examined, the presences of both S. sanguinis and
S. mutanswere detected in four out of five biofilm regions.
We cannot rule out the possibility that the remaining
biofilm was simply scanned over a single-species region.
The spatial arrangement of species observed in these
mixed biofilms has potential implications for the study
of dental plaque cariogenicity, though this aspect of our
study would require further investigation. To the best of
our knowledge, this is the first time two bacterial species
of the same genus and sub-genus group have beenmapped
in a biofilm using Raman spectroscopy.
While the specific experiments described above have

shown the discrimination between S. sanguinis and
S. mutans, the method presented here could be applied
to the study of other microbes. Although the formation
of Raman-based species maps is not fast, the technique
offers the ability to use intrinsic chemical differences
between cells to create multidimensional maps of micro-
bial structures without extensive knowledge of the cells’
genomes and without requiring any invasive sample
preparation that could potentially alter the sample under
study.
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