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Introduction
Tuberculosis (TB), caused predominantly by Mycobac-
terium tuberculosis (MTB), remains a formidable global 
health challenge. Despite significant progress in its con-
trol and management over the years, TB continues to 
exact heavy damage to human society, with an estimated 
10 million cases and 1.6 million deaths in 2022 (Meskini 
et al. 2023; Nour Neamatollahi et al. 2023). The World 
Health Organization (WHO) has identified TB as the 
leading cause of death from a single infectious agent 
worldwide, surpassing even the human immunodefi-
ciency virus (HIV) (Kasavandi et al. 2023). MTB is the 
most prevalent infection and one of thirteen causes of 
mortality due to infections in the world (Meskini et al. 
2020, 2021; Tilwani et al. 2023). These alarming statistics 
underscore the pressing need for innovative diagnostic 
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Abstract
Mycobacterium tuberculosis, the causative agent of tuberculosis, is a pathogenic bacterium that has claimed millions 
of lives since the Middle Ages. According to the World Health Organization’s report, tuberculosis ranks among the 
ten deadliest diseases worldwide. The presence of an extensive array of genes and diverse proteins within the 
cellular structure of this bacterium has provided us with a potent tool for diagnosis. While the culture method 
remains the gold standard for tuberculosis diagnosis, it is possible that molecular diagnostic methods, emphasis 
on the identification of mutation genes (e.g., rpoB and gyrA) and single nucleotide polymorphisms, could offer a 
safe and reliable alternative. Over the past few decades, as our understanding of molecular genetics has expanded, 
methods have been developed based on gene expansion and detection. These methods typically commence with 
DNA amplification through nucleic acid targeted techniques such as polymerase chain reaction. Various molecular 
compounds and diverse approaches have been employed in molecular assays. In this review, we endeavor 
to provide an overview of molecular assays for the diagnosis of tuberculosis with their properties (utilization, 
challenges, and functions). The ultimate goal is to explore the potential of replacing traditional bacterial methods 
with these advanced molecular diagnostic techniques.
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tools and approaches to enhance TB detection, treat-
ment, and control.

One of the defining features of MTB is its remarkable 
genetic diversity, which has significant implications for 
disease presentation, transmission dynamics, and drug 
susceptibility (Rahman et al. 2022). Molecular assays 
have played a pivotal role in characterizing this diversity, 
allowing the categorization of MTB strains into various 
lineages and families. This information is invaluable for 
epidemiological studies, as it helps trace the spread of 
TB outbreaks and informs the development of region-
specific control strategies (Rezaei et al. 2023; Yin et al. 
2023). Furthermore, the emergence of drug-resistant 
MTB strains poses a formidable threat to global TB con-
trol efforts. Genotypic assays have revolutionized the 
detection of drug resistance mutations, offering rapid 
and accurate insights into the susceptibility profile of 
clinical isolates (Kavya et al. 2023). These assays such as 
line probe assay (LPA) and whole-genome sequencing 
(WGS), have transformed clinical decision-making by 
enabling tailored drug regimens and reducing the risk of 
treatment failure (Van Rie 2023).

Traditional diagnostic methods for TB, such as spu-
tum smear microscopy, light emitting diode fluorescent 
microscopy (LED-FM), and culture-based techniques, 
while reliable to some extent, are time-consuming, 
labor-intensive, and often suffer from low sensitivity, 
particularly in cases involving extrapulmonary TB or 
drug-resistant strains (Jakhar et al. 2020; Reza et al. 
2013). Despite the gold standard of MTB diagnosis being 
cultivation on the Löwenstein-Jensen (LJ) medium, tech-
nicians will have to deal with contamination risks. Detec-
tion of MTB through microscopic techniques (simple 
smear acid-fast staining and LED-FM) can be challeng-
ing due to its small size (Zaporojan et al. 2024). On the 
other hand, patients feel exhausted by spot-spot-morning 
(SSM) and spot-morning-spot (SMS) sampling methods. 
The advent of molecular biology and biotechnology in the 
latter fifty years of the 20th century heralded a new era in 
TB research. In the quest for more accurate, rapid, and 
efficient TB diagnostics, molecular assays have emerged 
as promising tools that have revolutionized our ability to 
detect and characterize MTB with unprecedented preci-
sion (Forero and Chand 2023; Nour-Neamatollahi et al. 
2018). Molecular assays, driven by nucleic acid amplifi-
cation techniques (NAATs) such as polymerase chain 
reaction (PCR), loop-mediated isothermal amplification 
(LAMP), and DNA sequencing, have facilitated unprec-
edented insights into MTB’s biology (Lee et al. 2019). 
These assays have enabled the elucidation of the bacte-
rial’s genome, revealing a trove of genetic information 
pertinent to its virulence, drug resistance, and evolution 
(Ghosh et al. 2022; Prajwal et al. 2023).

The genomic mapping of MTB is explicitly outlined 
in various databases, including tools provided by the 
National Center for Biotechnology Information (NCBI) 
and various published papers (Sayers et al. 2022). These 
resources enable us to establish a reliable framework for 
developing molecular methods (Lorente-Martínez et al. 
2022). The identification and characterization of resistant 
genes are pivotal for prescribing drugs in the patient’s 
treatment process (Alexander et al. 2022). Once various 
molecular assays are designed for detecting MTB and 
related drug resistance to facilitate effective therapy, a 
concise review becomes essential. This review provides 
experts with both general and specialized information on 
the molecular assays employed in TB diagnosis. The cur-
rent review compiles and synthesizes data extracted from 
diverse papers delineating molecular assays along with 
their properties, including utilization, challenges, and 
mechanisms of function.

As we embark on the next frontier of TB research, 
the integration of omics technologies, artificial intel-
ligence (AI), and advanced imaging promises to further 
enhance our understanding of MTB. Challenges such as 
the emergence of drug-resistant strains, the persistence 
of latent infection, and the need for point-of-care diag-
nostics remain formidable obstacles. This review will 
explore the evolving landscape of TB research and the 
prospects for innovative solutions. Besides, delves into 
the world of molecular assays targeting MTB, providing 
an in-depth exploration of their principles, applications, 
advantages, and limitations. By elucidating the evolu-
tion and current state of these assays, we aim to offer a 
comprehensive perspective on their role in TB diagnosis 
and management. Furthermore, we will highlight recent 
advancements and ongoing research efforts in this field, 
underscoring their potential to shape the future of TB 
diagnostics.

Epidemiology and limitations in low-income 
countries of the Middle East and South Asia
While molecular assays prove to be effective and straight-
forward, they pose a significant drawback due to their 
high cost (Salvador et al. 2022). This issue becomes more 
pronounced in the Middle East and South Asia where 
impoverished countries such as Afghanistan, Pakistan, 
Iraq, Syria, Yemen, and Gaza are situated in 2021 and 
2022 (Mate et al. 2017; Nour Neamatollahi et al. 2023). 
The lack of accessible molecular rapid tests for the early 
diagnosis of TB has led to an increased prevalence in 
low-income countries, particularly in conflict-ridden 
countries like Yemen (Basamed and Alamoudi 2023).

The WHO’s announcement in 2021 revealed alarming 
statistics regarding the prevalence of TB in the Middle 
East, especially in Pakistan. According to the report, 8% 
of the total TB cases in the Middle East are attributed to 
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the region, with 71% of these cases specifically linked to 
Pakistan. Furthermore, there has been an 8% increase in 
multi-drug-resistant TB (MDR-TB) in the Middle East, 
accounting for about 8% of all MDR-TB cases globally 
(WHO 2021a). The TB caused by MDR-TB strains has 
further exacerbated financial burdens due to the com-
plexities associated with treatment (Asres et al. 2018; 
Madadi-Goli et al. 2024; Meskini et al. 2023).

Genome sequence and mutations
Man has long strived to combat the scourge of TB, a bat-
tle spanning 9000 years. Presently, our goal is to eradicate 
this disease from the face of the Earth. In pursuit of this 
noble objective, the WHO has recently endorsed gene 
identification and sequencing-based diagnostic methods 
as the most potent tools for disease detection and man-
agement ((WHO), 2018). The arsenal of technologies for 
bacterial genome sequencing and identification com-
prises two key advancements: WGS, introduced in 1998, 
and next-generation sequencing (NGS), introduced in 
2009 (Barba et al. 2014; Wang et al. 2022). These ground-
breaking technologies excel in identifying both species 
and mutations within the 4.4 million bp of the Mycobac-
terium genome, which encompasses a staggering 4000 
genes (Advani et al. 2019; Hadifar et al. 2022).

Mycobacterium’s virulence genes are clustered within 
approximately 50  kb of its chromosome. Upon closer 
examination of the Mycobacterium genome, a viru-
lence cluster becomes apparent, specifically located 
in the region between Rv3871 and Rv3879c, known as 
RD-1. Remarkably, this cluster aligns perfectly with the 

open reading frame (ORF) (Ganguly et al. 2008) (Fig. 1). 
Homologous gene clusters also play a pivotal role in elu-
cidating this bacterium’s virulence, including MM1553 
(homologous to Rv3483c) and Mh3881c (identical to 
Rv3881c) (McLaughlin et al. 2007).

Mycobacteria are among the bacterial genera that 
exhibit a high degree of genetic mutations (Coscolla 
and Gagneux 2014). According to the WHO, this bacte-
rium (MTB) has accumulated a staggering 17,000 muta-
tions until 2021 (WHO 2021b). These mutations play a 
pivotal role in bolstering bacterial survival by confer-
ring resistance to antibiotics (Akrami et al. 2023). The 
identification of multilocus sequence (hsp65, rpoB, and 
16S ribosomal DNA (rDNA) gene) assumes paramount 
importance in optimizing antibiotic therapies for effec-
tive treatment (Tarashi et al. 2023). A plethora of diag-
nostic methods is designed around genome analysis and 
the investigation of antibiotic resistance (Georghiou et al. 
2023; Su et al. 2019). Mutations in genes such as rrl, rpoB, 
gyrA, and gyrB are responsible for instilling resistance 
to linezolid (LZD), rifampicin (RIF), and levofloxacin 
(Akrami et al. 2023; Chien et al. 2016). Additionally, other 
genes such as pepQ, crfA, Rrs, and rrs can induce resis-
tance against clofazimine, imipenem, amikacin (AMK), 
and streptomycin (STR) (Sreevatsan et al. 1996; Wang 
et al. 2022). These genetic changes predominantly mani-
fest as alterations in base pairs or nucleotides. Genotypic 
changes, in turn, bring about phenotypic modifications in 
microorganisms, thereby influencing the production of 
virulence proteins (Martinez and Baquero 2000). Subse-
quently, these changes in phenotype trigger the activation 

Fig. 1 Genomic locus and cluster details of MTB. Genes responsible for expression of the virulence factors alongside other genes are generally located 
in genomic clusters. Gene clusters are responsible for antibiotic resistance and virulence features of bacteria. There are many clusters in the bacterial 
chromosome, and this figure shows a scheme of two gene clusters and several genes with their homologous genes
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of resistance mechanisms (Saghi et al. 2015; Woodford 
and Ellington 2007).

RIF binds to the RNA polymerase β subunit, that is 
encoded by the rpoB gene, and inhibits protein transcrip-
tion (Rossau et al. 1997). In over 95% of RIF-resistant 
strains, mutations are observed within an 81-base pair 
region (codons 507–533) of the rpoB gene (Zaw et al. 
2018). Automated DNA sequencing has identified more 
than 50 mutations in this region, with most involving 
point mutations in codons 516, 526, or 531 (Morgan et 
al. 2005). Research indicates that over 90% of RIF-resis-
tant TB is also resistant to isoniazid (INH), making RIF 
resistance an effective strong marker for MDR-TB (Bah-
raminia et al. 2021; Mousavi Sagharchi and Mahmoudi 
Nasab 2023).

Molecular diagnosis, specified and non-specified
Molecular assays were developed after DNA structure 
was discovered. The specificity and sensitivity of molec-
ular methods have led to improved molecular assays for 
detecting disease agents. Several of them are general and 
can be applied to all species and taxa. In contrast, others 
are specific to each microorganism or organism gene (s). 
Methods based on molecular biology, such as real-time 
PCR (RT-PCR), microarrays, PURE-LAMP, NGS, and 
WGS, can detect genes in all taxa. A variety of molecu-
lar assays, tests, methods, and kits, including those for 
Amplicor MTB, Cobas TaqMan MTB, E-MTD, Fluoro-
Type MTB, LPA, Anyplex MTB, Xpert MTB, and Gene-
drive MTB, are available for accurate detection of MTB 
resistance genes. The newest detection method is TB-
CRISPR, a CRISPR-based approach.

Assays and methods
RT-PCR
Through PCR, DNA replication can be simulated in vitro, 
allowing DNA amplification. Different molecular meth-
ods can be used to detect amplified DNA after the rep-
lication process. As part of the PCR system, a florescent 
probe is attached to the free R at the 5’ terminal for the 
same-time detection of DNA (Chen et al. 2022). The RT-
PCR, or quantitative PCR, is capable of detecting ampli-
fied genes and luci in MTB, including IS6110, IS1081, 
16S rRNA, 23S rRNA, hupB, gyrA, mpt64, and other viru-
lence genes (Sánchez-Carvajal et al. 2021).

To amplify a sequence, a cycle contains three steps - 
denaturation, annealing, and extension that are based 
on temperature changes (Garibyan and Avashia 2013) 
(Fig.  2-A). Besides, we need to prepare all of the com-
ponents needed for DNA replication, such as primers, 
DNA templates, Taq DNA polymerase, dNTPs, double 
distillation water (DDW), and Mg2+ or Mn2+ ions as co-
enzymes. Amplified targeted genes are usually analyzed 
using different methods, such as gel electrophoresis 

(Chen et al. 2021). However, in the RT-PCR method, an 
on-screen monitor will display real-time expression lev-
els of genes.

Microarray
Microarray means the miniaturization of thousands 
of measurements on a single platform (Brambilla et 
al. 2021). Molecular analysis of nucleic acids is pre-
dominantly employed for determining the presence of 
microorganism-caused infections. The DNA microar-
ray is utilized to ascertain genotypic data, particularly 
single nucleotide polymorphisms (SNPs), at a high den-
sity and to investigate transcription and gene expres-
sion (Behzadi and Ranjbar 2019; Brambilla et al. 2021). 
Microarray serve as valuable tools for specific identifica-
tion and high-throughput (HT) detection of microbes, 
revealing the disease mechanisms, and medicinal targets 
(Feng et al. 2020; Pandey et al. 2021). Microarray gives us 
a chance to analyze of huge genomic data in one simple 
test (Behzadi et al. 2014).

With its high sensitivity, accuracy, and capacity, the 
DNA microarray assay possesses a distinct advantage in 
monitoring various genes at the same time compared to 
other diagnostic tools (Lee et al. 2010). Factors affecting 
the analytical signal in DNA microarray analysis include 
probe length and characteristics, hybridization tempera-
ture, incubation time, and buffer composition (Jaksik et 
al. 2015). High-quality and abundant DNA are crucial 
prerequisites for this method. SNP analysis is the most 
common application in microarray analysis (de Vries et 
al. 2022). Low DNA quantity Samples yield low-quality 
SNPs and are susceptible to genetic errors (Yagasaki et al. 
2022). Depending on the test’s purpose and framework, 
various types of samples can be employed (Chu et al. 
2023; Jin et al. 2022). In a typical DNA microarray assay, 
desired nucleic acid fragments are labeled, washed, and 
dyed with a fluorescent dye such as Cyanine3 (Cy3) and 
Cy5 for detection (Fig. 2-B) (Taguchi et al. 2021).

This pioneering assay can detect MTB and its drug-
resistant variants in sputum samples (Zhang et al. 2012). 
Microarray can detect six SNPs for lineage identification 
and gyrA, gyrB, rrs, eis, katG, inhA, rpoB, ahpC resis-
tance genes (Nguyen et al. 2019). Although microarray 
can detect many genes at the same time, for simplicity of 
procedure it can be used in identifying mutations in the 
rpoB, gyrA, and pncA genes, predicting resistance to RIF, 
fluoroquinolones, and PZA, respectively (Havlicek et al. 
2019; Wade et al. 2004). For this purpose, samples should 
be placed into a microarray platform and recorded the 
results with a microarray scanner such as LuxScan™ from 
CapitalBio Co. (Sun and Sun 2021).
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Fig. 2 Quick review of RT-PCR, Microarray, and PURE-LAMP. (A) RT-PCR: The DNA sample should be extracted by enzymic or similar techniques; primers, 
DNA templates, Taq DNA polymerase, dNTPs, DDW, and Mg 2+ or Mn2+ ions should added before PCR. Next, the DNA is amplified by PCR, and any DNA 
present in the sample will be identified by probes in fluorescent light. (B) DNA microarray: MTB proteins, genes, or SNPs are prepared separately and 
stored in a suitable sterile container. In the next step, fluorescein is used and they are labeled. To call MTB factors in laboratory conditions, proteins are 
expressed and purified. After centrifugation, the samples are washed with buffer. Subsequently, the sample is placed on the microarray platform and 
the result is recorded by the microarray scanner. All the steps of hybridization, scanning, result interpretation, washing, and drying should be done ac-
cording to the manufacturer’s instruction kits which can be different. (C) PURE-LAMP: This method is the easiest way to detect MTB in molecular assays, 
that extract the DNA directly and amplify it without using PCR. MTB is detected after amplification in the direct method by turbidimeter or fluorescence 
staining (Vincent et al. 2023)
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Procedure for ultra-rapid extraction (PURE)
The PURE-LAMP, initially introduced by Notomi in 
2000, presents a novel, uncomplicated, and contami-
nation-resistant (Notomi et al. 2000). It employs NAA 
combined with ring-LAMP to MTB detection. One of 
its notable advantages is its rapid processing and LAMP 
ability to replicate and amplify huge amounts of DNA. 
Furthermore, the PURE-LAMP stands out for its cost-
effectiveness, as it doesn’t require a thermocycler or 
expensive equipment (Jekloh et al. 2022; Notomi et al. 
2000).

The PURE exhibits a remarkable capability for the 
swift and accurate dignosis of MTB (Ou et al. 2014). In 
fact, it can detect MTB within just two hours, a signifi-
cantly shorter time frame compared to traditional cul-
ture methods. TB-LAMP is the specified LAMP for TB 
developed by Eiken Chemical Company in Japan (Ou et 
al. 2014). This test entails three key stages: sample prepa-
ration, amplification, and visual detection using ultravio-
let (UV) light emitted from the test tube (Eddabra and 
Ait Benhassou 2018b) (Fig.  2C). All procedure is done 
in a tube with an isothermal reaction at 63  °C (Noor et 
al. 2015). The sensitivity of this test for point sputum is 
approximately 70.67% and based on the combination of 
three sputum, its specificity is 98.32% (Eddabra and Ait 
Benhassou 2018b; Ou et al. 2014). This method is recom-
mended for TB diagnosis confirmation alongside other 
diagnostic methods, especially in cases with false-nega-
tive results (Eddabra and Ait Benhassou 2018b). It should 
be noted that this method is unable to identify and diag-
nose DR patterns (Bojang et al. 2016).

NGS
By growing the molecular sciences and emerging bioin-
formatics, new methods such as NGS are being devel-
oped to sequence nucleic acids. In order to perform NGS, 
several steps are required: (1) Fragmentation of DNA 
(can be implanted by various methods, including enzy-
matic digestion and PCR), (2) Preparation of the library 
(modification of DNA segments and addition of sequenc-
ing adaptors to segments for sequencing in the next 
step) (Hess et al. 2020), (3) Sequencing (NGS sequencer 
devices work based on massively parallel sequencing, 
library uploads into the system for sequencing, and dif-
ferent devices have different matrices and matrix design 
methods. Illumina® is one of the most popular systems), 
and (4) Analysis (sequences, nucleic bases, and their 
order, identified sequences must be analyzed by bioin-
formatics tools for data interpretation. This step involves 
finding variants and mutations) (Qin 2019) (Fig. 3A).

As a result of mutations in MTB and difficulties in 
identifying them, new devices and technologies are 
being used to identify drug-resistance genes. An NGS 
method is very useful for revealing mutations in MTB 

sequences (Beviere et al. 2023). Different species fol-
low similar steps, but there are a few differences, such 
as in library preparation kits and interpretation data-
bases. In addition to the data and methods available for 
MTB, there are several methods and libraries available 
as well: TBDReaMDB, MUBII-TB-DB, PhyResSe, TBDR, 
DRAGdb, Resistance Sniffer, ReSeqTB, PointFinder, 
and Deeplex® Myc-TB (Beviere et al. 2023; Dookie et al. 
2022a). As an example, Deeplex Myc-TB (Genoscreen, 
Lille, France) identifies, genotypes, and performs DST for 
MTB and is an ultradeep sequencing method (MacLean 
et al. 2020).

RFLP
One of the most widely used methods for genotyping 
MTB is the RFLP, a combination of a restriction enzyme 
and a clone-specific method (Ei et al. 2019). Since 1990, 
MTB IS6110-RFLP genotyping has been established as 
the standard method for MTB strain typing that is based 
on the presence of the IS6110 insertion sequence, this 
method can be used as a biomarker.

RFLP refers to the detection of differences in homolo-
gous DNA sequences through the presence of frag-
ments of different lengths after digestion of the DNA 
samples with specific restriction endonucleases. In terms 
of molecular markers, RFLP is specific for a combina-
tion of clones and restriction enzymes. It is common 
for RFLP markers to be co-dominant (both alleles are 
detected in a heterozygous sample) and locus-specific. 
After the digested DNA sample has been separated by gel 
electrophoresis, an RFLP probe hybridizes with one or 
more fragments of the digested DNA sample, revealing 
a unique blotting pattern characteristic of the genotype 
at the isolated locus (Fig.  3-B). A RFLP probe is typi-
cally composed of a short, single- or low-copy genomic 
DNA or cDNA clone. Genotyping, forensics, paternity 
tests, hereditary disease diagnostics, and forensics use 
RFLP probes for genome mapping and variation analysis 
(NCBI).

Due to the high variability in the number and position 
of insertions, it is a useful tool for strain differentiation 
(Arora et al., 2020). Also, in comparison with conven-
tional molecular phenotypic methods, it is the most 
stable and reliable (Kone et al. 2020). One of the disad-
vantages of this method is that it is not suitable for iso-
lates with low copy numbers (Bakhtiyariniya et al. 2022). 
In spite of this, semi-automated RFLP has been found to 
be a robust and promising method for routinely typing 
MTB (Said et al. 2016).

WGS
The WGS encompasses several key steps, including the 
culture of isolates, DNA extraction, sequencing, bioin-
formatics analysis, and data interpretation (Mintzer et 
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Fig. 3 A brief review of NGS, RFLP, and WGS. (A) The NGS: this technology is one of the sequencing methods approved by WHO for diagnosis. After the 
DNA extraction and PCR performance, DNA should be sequenced, and results will be uploaded to databases or analyzed by bioinformatics tools. (B) RFLP 
analysis: this method is one of the oldest methods to detect MTB. In this method, DNA after amplification, is restricted by enzymes and labeling. next, gel 
electrophoresis is done for the separation of different fragments of DNA. Detection of fragments is done with laser emission. (C) The WGS: this technology 
was presented after the introduction of molecular biology to identify microorganisms based on their genes. The DNA is separated by different methods 
(e.g., enzymic method) and amplified by PCR. Genome sequencing has several steps: (1) DNA cutting (to identify different genes, DNA is cut into pieces), 
(2) to identify the cut pieces (coded bands are added to the DNA fragments), and (3) the sequencing of DNA bases (is done by sequencing method and 
analyze). Strain identification can be done with genetic detection
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al. 2019) (Fig. 3-C). SNPs analysis is the most commonly 
employed bioinformatics approach for evaluating the 
similarity of isolates. In TB reference laboratories, the 
use of the WGS is increasing (Jajou et al. 2019). WGS is 
used to detect resistance and predict sensitivity and trace 
transmission of MTB (Takiff and Feo 2015). This technol-
ogy allows the detection of mutations outside the target 
area of the assays (Shea et al. 2017). WGS has made it 
possible to distinguish between infection and recurrence, 
and also, does not have the limitations of normal drug 
susceptibility tests (DSTs) and rapid molecular tests. 
Sensitivity to first and second-line drugs was determined 
using WGS (Iketleng et al. 2018). The DNA is then split 
into smaller pieces to be sequenced. The results should 
be analyzed quickly in a clear way to enable the use of 
WGS data (Lee and Behr 2016).

This is more cost-effective compared to NGS (Lázaro-
Guevara et al. 2023) and provides a wealth of informa-
tion surpassing that of other molecular techniques (Lee 
and Behr 2016), so it can be utilized in mixed infections 
(Tarashi et al. 2017). WGS is one of the strong technolo-
gies in comparison with other genome sequencing tools 
such as RFLP and Mycobacterial interspersed repetitive-
unit–variable-number tandem-repeat (MIRU-VNTR) 
(Vaziri et al. 2019). It boasts the highest discriminatory 
capability among established methods (Baert et al. 2021). 
This approach enables the assessment of low-frequency 
variations and the detection of single nucleotide and rare 
mutations (Lázaro-Guevara et al. 2023; Schwarze et al. 
2018). WGS finds extensive application in the diagnosis 
of disease outbreaks (Rubin et al. 2022).

Sekizuka et al. have developed a total genotyping solu-
tion (TGS) for TB (TGS-TB) based on WGS. TGS-TB 
allows for more accurate and differentiated strain typing 
in clinical specimens and epidemiological research (Seki-
zuka et al. 2015). The results of TGS-TB align with those 
of conventional molecular genotyping methods through 
in-silico analysis (Xiao et al. 2023). This bioinformatics 
platform stands out as one of the most widely developed 
and user-friendly tools available (Macedo et al. 2018). 
The TGS-TB enables the detection of genetic resistance 
to a broad range of first- and second-line drugs (Takii et 
al. 2019; Van Beek et al. 2019). TGS-TB, when combined 
with the KvarQ algorithm, enhances efficiency by saving 
time and enabling batch upload of samples (Sekizuka et 
al. 2015). TGS can continuously read long single mole-
cules and produce facilitative assembly. The results of the 
tool are conveniently displayed on one screen, stream-
lining the process of evaluation and data collection (Van 
Beek et al. 2019). MTB’s TGS lineage analyses occur due 
to phylogenic core and complete genome sequencing. 
Genome phylogenetic data are based on VNTRs single 
nucleotide variants (SNVs), and analysis of the IS6110 
insertion site (Iwamoto et al. 2019; Panossian et al. 2018).

Truenat
The Truenat endorsed by WHO in 2020 for the detection 
of microorganisms in suspected samples (Ngangue et al. 
2022). Truenat drew attention to itself in Coronavirus 
disease 2019 (COVID-19) (Premraj et al. 2020). Truenat 
utilizes the chip-based RT-PCR to detect pathogens such 
as MTB from DNA (Meaza et al. 2021). Truenat [MTB, 
MTB RIF, and MTB Plus (Molbio Diagnostics, Goa, 
India)] are applicable to detect RIF-resistance strains. 
As we mentioned, different kits are available for MTB 
DNA extraction; to utilize the Truenat we should apply 
the Trueprep for DNA extraction. Truenat contains some 
steps to get results: (1) DNA extraction by Trueprep: liq-
uefaction of sputum, adding lysis buffer, incubation, add-
ing binding reagent, washing by wash buffer, (2) RT-PCR: 
extracted DNA should be placed on chip in the Truenat 
device, on the other hand, extracted DNA should be 
amplified by PCR on ABI 7500, and (3) Results should 
be compared with each other with the same master mix 
(Nikam et al. 2013; Premraj et al. 2020).

Cobas TaqMan MTB
The Cobas TaqMan MTB stands as one of the most 
extensively employed molecular detectors for detecting 
MTB that utilizes NAA (Park et al. 2017). Cobas TaqMan 
MTB relies on RT-PCR (Causse et al. 2011). To detect the 
DNA of MTB, the Cobas TaqMan MTB employs the Taq-
Man MTB probe, amplifying a segment of the 16S rRNA 
gene (Bloemberg et al. 2013). Executed in two sequential 
steps, the COBAS TaqMan MTB encompasses sample 
DNA preparation and RT-PCR (Diagnostics 2009; Lee et 
al. 2013). This procedure begins with sample sterilization, 
followed by centrifugation at 60 °C for 45 min and lysis. 
This method is primarily designed for liquid, decontami-
nated, and concentrated specimens from respiratory-TB 
patients, so it applies to non-respiratory and other clini-
cal specimens. Modern microbiology laboratories com-
monly employ this method for TB diagnosis. It’s essential 
to note that this method is costlier than the traditional 
culture method, yet it significantly contributes to TB 
diagnosis (Causse et al. 2011).

Gen-probe enhanced MTB Direct (E-MTD)
E-MTD represents a modified iteration of Gen-Probe 
MTD (E-MTD; Gen-Probe, Inc., San Diego, California). 
It boasts a shortened amplification time and accommo-
dates larger sample volumes while dispensing with both 
hybridization control and amplification termination steps 
(Bergmann et al. 1999). Notably, this test received its ini-
tial approval from the Food and Drug Administration 
(FDA) in 1995 (Smith et al. 1999). The execution of this 
method calls for the utilization of both a thermal block 
and a light meter. DNA serves as the primary component 
in the E-MTD test (Bergmann et al. 1999; Gangania et al. 
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2017), which has been formulated through the transcrip-
tion amplification system, an NAA approach (Yu et al. 
2022). It is important to acknowledge that E-MTD does 
possess certain limitations, including the potential for 
false positive or negative outcomes. Therefore, the inter-
pretation of test results should always be grounded in the 
broader clinical context (Bergmann et al. 1999).

The E-MTB is a direct test for detecting MTB in respi-
ratory samples. Typically, this test can be completed in an 
average of three and a half hours (Smith et al. 1999; Wu 
et al. 2019). For negative smear samples, if the initial test 
yields a negative result, a second sample should undergo 
testing. Should the second sample also return a negative 
result, it is advisable to inform the healthcare provider 
to consider investigating the presence of inhibitory sub-
stances (Pagaduan and Altawallbeh 2023). A positive 
E-MTD test result is sufficient for diagnosing TB. This 
laboratory procedure is commonly employed when there 
is a strong suspicion of TB (Gangania et al. 2017). Over-
all, this method is dependable, expeditious, and straight-
forward, effectively reducing the risk of contamination 
during testing (Smith et al. 1999).

LPA MTB
LPA utilizes a DNA strip technology with a cellulose 
acetate membrane strip. LPA relies on reverse hybridiza-
tion (RH) of amplicons to immobilize membrane-bound 
probes, enabling the detection of mutations at frequently 
mutated codons (509 to 534) by using multiple probes 
(Mäkinen et al. 2006; Nguyen et al. 2019). In brief, the 
LPA process consists of three stages: DNA extraction, 
PCR, and RH. These three stages are conducted in sepa-
rate rooms with limited access and a one-way workflow 
(Yadav et al. 2013). LPA can be performed using DNA 
extracted from clinical specimens or cultured samples. 
PCR is used to amplify the resistance determinant region 
of the related genes, followed by biotinylation of the 
PCR products and hybridization by probes and immo-
bilized on a strip (Nguyen et al. 2019) (Fig.  4A). LPA is 
designed in three modules: module 1 identifies INH and 
RIF resistance by targeting the rpoB, katG, and inhA. 
Module 2 detects aminoglycoside resistance by targeting 
rrs and rpsL. Module 3 can detect mutations in gyrA and 
embB (Molina-Moya et al. 2015). the LPA exhibits high 
specificity, and high sensitivity in the early detection of 
MDR-TB, making it a valuable tool for the early identi-
fication of DR-TB, particularly in countries with a high 
TB burden (Yadav et al. 2013). LPA-based methods such 
as GenoType MTBC (Hain Lifesciences, Germany), and 
INNO-LiPA Mycobacteria (Inno-genetics, Belgium) are 
available for accurate diagnosis of TB and other myco-
bacterial diseases (Noor et al. 2015).

The GenoType® Mycobacterium tuberculosis plus 
(MTBDRplus) and GenoType MTBDRsl (Hain 

Lifescience, Henren, Germany) are direct detection 
methods designed to identify the presence of MTBC and 
derived from LPA (Somoskovi et al. 2008). These meth-
odsconcurrently identify mutations within the rpoB, 
katG, and inhA genes (Bwanga et al. 2009). Common 
mutations in the rpoB, katG, and inhA genes are respon-
sible for resistance to the primary anti-TB drugs, RIF, and 
INH (Barnard et al. 2008). In more than 95% of cases, TB 
resistance to RIF is linked to mutations occurring within 
an 81-base pair segment of the rpoB gene (Somoskovi et 
al. 2006). Resistance to INH is a more intricate process 
involving several genes, including katG and the inhA 
promoter region (Barnard et al. 2008; Seid et al. 2022; 
Takawira et al. 2017; Zaw et al. 2018). The procedure for 
this method can be summarized as follows: DNA extrac-
tion, PCR, RH, and the detection of mutations (Zaw et al. 
2018).

Additionally, the GenoType® MTBDRplus can identify 
additional mutations in the rpoB gene, and the promoter 
of the inhA gene (Somoskovi et al. 2006). In this, resis-
tance to INH is recognized through probes targeting the 
katG and inhA genes (Zaw et al. 2018). Different levels of 
resistance to INH can be attributed to mutations in the 
katG gene and the inhA promoter region, resulting in 
higher and lower frequencies of resistance, respectively 
(Kohli et al. 2021). The primary advantage of this method 
lies in its automated detection step, which allows for the 
parallel processing of up to 48 samples. As a result, this 
method can be carried out with a high degree of accu-
racy, significantly reduced reporting times, and enhanced 
throughput, making it suitable for high-volume laborato-
ries even without prior experience in routine molecular 
assays. However, it’s important to note that this method 
may not a 100% detection for INH and RIF resistance 
(Somoskovi et al. 2008).

Xpert MTB/RIF
WHO-recommended diagnostic tool called Xpert MTB/
RIF (Xpert) offers rapid and automated NAA, enabling 
the simultaneous detection of RIF resistance (Kohli et al. 
2021). Notably, the FDA has approved Xpert for use with 
raw sputum specimens and concentrated sputum sedi-
ment only. Xpert is widely employed for the concurrent 
identification of MTBC and RIF resistance in sputum 
samples. The assessment for RIF resistance is integral, 
whether the patient is at risk or not, and it cannot be sep-
arated from the TB diagnosis (Wu et al. 2020; Zong et al. 
2019). This versatile Xpert can be implemented across all 
levels of the healthcare system. Detailed guidelines and 
extensive practical information regarding the implemen-
tation of this method have been issued by WHO (Orga-
nization 2014). The Xpert is utilized for the detection of 
MTBC based on DNA; represents one of the automated 
diagnostic assays (Sharma et al. 2015). This particular 
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Fig. 4 Quick view on LPA, Xpert, and TB-CRISPR. (A) LPA: This is a molecular line probe assay. It contains specified probes for MTBC and also probes for 
common RIF and INH mutations (Dorman et al. 2012). The expectorated sputum samples were decontaminated, then the pellet was suspended in a 
phosphate buffer. Then DNA was extracted, and amplified by PCR. Amplified nucleic acids RH to specific DNA probes bound on strips. In the final step, 
the DNA strip is evaluated by color formation (Dorman et al. 2012). (B) The Xpert MTB/RIF assay: sample preparation and reagent adding, transferring to 
the related cartridge (green section), and putting into the device for analysis and screening the results (blue section). (C) TB-CRISPR: this is a new method 
presented by different scientists with different protocols, this method uses the Cas protein to identify MTB in samples. After DNA extraction and amplifica-
tion, transcription of T7, Cas protein will bind to the occurred complex, and target activators will bind to the complex to detect MTB’s DNA.
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method possesses the capability to concurrently identify 
the MTBC and mutations linked to RIF resistance within 
the rpoB gene (Banada et al. 2010; Bunsow et al. 2014; 
Kohli et al. 2021). Outcomes are obtainable with minimal 
technical delay, typically within a two-hour timeframe 
from test initiation. What sets the Xpert apart is its inte-
gration of DNA extraction, nested PCR for amplification, 
and labeling with fluorescent dye. Process and detec-
tion occurs into a self-contained testing unit called the 
GeneXpert cartridge (Blakemore et al. 2011). All post-
sample loading steps are executed as fully automated, 
autonomous measurements (Nicol et al. 2013) (Fig.  4-
B). Moreover, the assay sample reagent used for sputum 
liquefaction possesses potent anti-TB properties, signif-
icantly mitigating biosafety concerns during the proce-
dure (Banada et al. 2010; Kohli et al. 2021). Importantly, 
Xpert demonstrates the capability to detect both viable 
and non-viable bacteria (Miotto et al. 2012).

By hemi-nested PCR, Xpert amplifies MTB rpoB’s RIF 
resistance-determining region (RRDR). There are five 
molecular beacons specific for rpoB RRDR that detect 
the presence of MTB and mutations that cause approxi-
mately 95% of RIF-R (Chakravorty et al. 2017). Molecular 
beacons, classified as nucleic acid probes, are deployed to 
ascertain and report the presence or absence of normal, 
RIF-sensitive, and “wild-type” sequences within the rpoB 
gene of TB. These beacons emit light in five distinct col-
ors, with each color corresponding to a distinct nucleic 
acid sequence within the amplified rpoB gene (Kohli et al. 
2021). Furthermore, the Xpert MTB/RIF test has demon-
strated resilience against contamination by MTBDRplus 
amplicons, rendering it a safe option for laboratory use 
(Banada et al. 2010; Blakemore et al. 2011). Five genera-
tions of cartridges have been introduced: G1, G2, G3, 
G4, and Xpert Ultra (Ultra), since the inception of the 
Xpert. Both the Xpert and Ultra versions share a similar 
approach to sample preparation and cartridge usage (Kay 
et al. 2020). However, Ultra stands out from the previous 
Xpert iterations in several technical aspects. It employs 
two distinct multi-copy amplification targets (IS6110 and 
IS1081) to enhance the detection of MTB (Kolia-Dia-
fouka et al. 2019). Additionally, Ultra employs a melting 
temperature-based analysis (MTA) instead of RT-PCR to 
improve the identification of resistance to RIF (Chakra-
vorty et al. 2017).

Anyplex MTB/MDR
MTB has a remarkable ability to rapidly develop resis-
tance to drugs such as INH and RIF. As a result, we are 
witnessing a growing number of patients with TB resis-
tant to RIF and MDR-TB. This surge can be attributed 
to improper and inadequate patient treatment (Organi-
zation 2018). An alternative to the Xpert MTB/RIF, the 
Anyplex™ II MTB/MDR, offers swift detection of both 

INH and RIF-resistant MTB (Mpanyane 2015). How-
ever, it’s important to note that the WHO has not yet 
approved the use of the multiplex RT-PCR for identify-
ing DR strains (Organization 2013). A method known as 
the multiplex RT-PCR, specifically the Anyplex™ II MTB/
MDR, has been introduced to indirectly identify the pres-
ence of MTBC (Sawatpanich et al. 2022). This particular 
kit has been applied effectively for the early detection of 
MTB, particularly in cases involving AFB-positive smear 
samples (Mpanyane 2015; Sawatpanich et al. 2022).

The Anyplex™ II MTB/MDR is designed for the detec-
tion of MTB using dual priming oligonucleotide (DPO™) 
technology. This technology comprises two priming seg-
ments: terminal separator 5 and terminal determinant 
3, connected by polydeoxyinosine to create a distinc-
tive “bubble-like structure” (Si et al. 2021). This segment 
ensures a clear demarcation without actively partici-
pating in the priming process, thereby enhancing the 
sensitivity and specificity of the reaction. Tagging-oligo-
nucleotide cleavage and extension (TOCETM) is another 
technology that entails targeting a gene (Huh et al. 2014), 
allowing for the simultaneous detection of 25 mutations 
in katG, inhA, and rpoB genes associated with MDR-TB 
(Chumpa et al. 2020). However, it’s worth noting that 
one limitation of this molecular diagnosis method is its 
inability to identify all drug-resistant genes (Chumpa et 
al. 2020). The new Anyplex™ II MTB/MDR was devel-
oped by Seegene Co. Technologies in South Korea (Iga-
rashi et al. 2017; Nguyen et al. 2019).

Genedrive MTB/RIF
The Genedrive MTB/RIF offers a detection of TB RIF-
resistance which has a combination of paper-based 
DNA extraction, asymmetric RT-PCR, and a proprietary 
hybridization probe technology (Highlighter Probes). 
Laboratories find this method suitable when they have 
up to eight samples per day (Castan et al. 2014; Nguyen 
et al. 2019). To illustrate its method, DNA is extracted 
from bacteria with composite paper based on chemi-
cals. Next, asymmetric RT-PCR is used for two regions 
of DNA: a short repetitive region which is the REP13E12 
family and the 81  bp hotspot region of rpoB. Mutation 
regions of rpoB at codons 516, 526, and 531 are detected 
by the Highlighter probes which have 72.3% sensitivity in 
detection. When it comes to diagnosis of MTB, between 
Genedrive and Xpert, Genedrive is better due to 100% 
sputum samples, the capability of detection as low as 
five genome copies, the rapid and user-friendly system, 
and the low price of Genedrive. Moreover, this method 
is usable for TB point-of-care sites and many AFB smear 
microscopy centers for screening because of its features 
of a 12V DC stable power supply, capacity to function 
without air conditioning, and low-power thermal cycling 
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which its weight is 560 gr and portable (Niemz and Boyle 
2012; Organization 2013).

FluoroType MTB
A swift and precise diagnosis of resistance in the MTB 
complex (MTBC) is crucial for promptly commenc-
ing appropriate diagnosis and treatment. An innova-
tive molecular diagnostic tool, known as the FluoroType 
MTB, has been introduced to identify resistance to RIF 
and INH. FluoroType MTB is a molecular method for 
TB diagnosis (Hillemann et al. 2018). FluoroType MTB 
involves DNA amplification and detection through PCR 
within a closed system, with automatic analysis. DNA 
extraction can be executed either manually or with the 
assistance of an automated DNA extraction system 
(GenoXtract) (Hofmann-Thiel and Hoffmann 2014). Flu-
oroType employs an asymmetric PCR approach, utilizing 
a set of light-on/off probes with a specific device (Fluo-
roCycler® XT) (de Vos et al. 2018). Here’s how it oper-
ates: primers amplify distinct amplicons for inhA, rpoB, 
and katG genes, along with control (de Vos et al. 2018; 
Haasis et al. 2018). Single-stranded (SS) nucleic acids are 
identified at the endpoint through melt curve analysis of 
hybridized sets of on/off probes (de Vos et al. 2018; Hille-
mann et al. 2018). The cumulative signals from all probes 
featuring a temperature-dependent fluorescent signature 
in the same color are interpreted automatically by Flu-
oro-Software to distinguish each fluorescent signature.

The FluoroType MTBDR displays high sensitivity 
in identifying RIF resistance in culture isolates of the 
MTBC but exhibits lower sensitivity in detecting INH 
resistance. The test is enclosed in a tube, thereby prevent-
ing the dispersion of amplicons and eliminating the risk 
of cross-laboratory contamination. Overall, the advan-
tages of this method encompass reduced processing time, 
quicker results, diminished risk of acid nucleic contami-
nation, and automatic interpretation with the option for 
data (Haasis et al. 2018; Hillemann et al. 2018). The Fluo-
roType, when coupled with an automated DNA extrac-
tion and PCR setup system, have the potential to enhance 
the operational efficiency of laboratories in diagnosing 
drug susceptibility, showing potential for implementation 
in a molecular drug susceptibility model (Dippenaar et al. 
2021).

TB-CRISPR
Clustered Regularly Interspersed Short Palindromic 
Repeats (CRISPR) we know as a newly emerged method 
for gene-editing is the immune mechanism of archaea 
and bacteria in dealing with bacteriophages (Qian et 
al. 2022). CRISPR-associated (Cas) proteins combined 
with CRISPR RNA (crRNA) and trans-acting crRNA 
(tracRNA) [form the guide RNA (gRNA)] have a func-
tional role in the cleavage viral sequence in bacteria and 

archaea (Mali et al. 2013). Cas enzymes will be active 
after attachment of the gRNA molecule. In next step, 
activated Cas nucleases cleavage the foreign sequence in 
the host. This fantastic collaboration is usable for detec-
tion of nucleic acid for diagnosis of diseases and gives 
bright future in the diagnosis of different disorders and 
diseases such as pathogenic diseases for its accuracy and 
specificity (Wang et al. 2020).

In different studies from 2019, the CRISPR-Cas system 
was implicated in the detection of specific genes such 
as virulence genes and nucleotides sequence of MTB 
(e.g., IS6110, IS1081, gyrA, rpoB, katG, and inhA). Cas 
proteins with neoclassic role have types and classified. 
Cas13a is a suitable protein for detecting MTB. Although 
this method and research are not valid by WHO and are 
in clinical trials, may be the most accurate and practi-
cal method in the near future. Ren et. al., worked on 
improving Cas13a for detection of MTB (Ren et al. 2023). 
They amplified IS1081 in 5’ terminal of PCR products 
T7 is attached. T7 sequence is related to promoter and 
main factor of these processes. After PCR, T7 was tran-
scripted by specific RNA polymerase and made a ssRNA. 
This RNA under the guidance of synthesized gRNA 
(crRNA and tracRNA) binds to Cas13a protein which is 
a RNase. Finally, this binding is detected by fluorescent 
probes attached to ssRNA reporters (Fig. 4C). With this 
new method, we can molecularly diagnose the TB with 
high-quality diagnosis. If the target sequence is absent, 
the results will be negative. Other studies with differ-
ent methodologies are designed and implicated. Most of 
them amplified DNA by recombinase polymerase ampli-
fication (RPA) or LAMP (Huang et al. 2023).

Utilization, challenges, and the operational process 
of crafted molecular assays
After countless centuries of contending with MTB, 
humanity has achieved victory over it. In the primary and 
pivotal initial phase, our focus should be on pinpointing 
MTB using purposefully crafted tests. Molecular assays 
prove highly effective and practical for this specific pur-
pose due to their accessibility and safety. Typically, within 
molecular assays, we identify MTB by scrutinizing the 
genes responsible for various characteristics (such as 
drug resistance, virulence factors, and proteins) or by 
investigating SNPs (Rabaan et al. 2022). We have delin-
eated a selection of specially designed molecularassays 
centered around genome identification. Diverse genes 
play crucial roles in these assays, including rpoB, gyrA, 
inhA, and katG, each serving distinct functions (Seid 
et al. 2022). Practical methodologies and assays for the 
detection of MTB have been detailed in Table 1. Accord-
ing to the development of molecular science and its com-
petition with microbial intelligent agents, it is obvious 



Page 13 of 20Mousavi-Sagharchi et al. AMB Express           (2024) 14:74 

Assays Utilization Challenges How it works? References
RT-PCR Identification of different 

genes in the simplest way
Low sensitivity After PCR, detect the amplified genes by connecting a 

probe and identify them based on fluorescent detec-
tion and/or melting curve analysis

(Rao et al. 
2016)

Microarray Identify many genes at 
the same time with high 
accuracy

Low sensitivity and 
diagnosis and needed 
improvement

In a typical microarray, labeling, and wiping desired 
nucleic acid fragments with a fluorescent dye during 
PCR

(Butcher 
2004; Nguyen 
et al. 2019)

PURE-LAMP Detect MTB quickly and 
accurately

Increases the economic 
burden on patients
Is not able to identify and 
diagnose drug-resistant 
patterns

Three stages: sample preparation, amplification, and 
detection by UV light from the tube

(Neonakis et 
al. 2011; Zije-
nah 2018)

NGS Sequencing of MTB for mu-
tated resistance genes

High-cost, difficulty After PCR and cell preparation, the library should select 
and apply, sequencing by devices, and finally bioinfor-
matical analysis

(Bagratee and 
Studholme 
2024; Beviere 
et al. 2023)

RFLP analysis Analysis of IS6110 Obsolete due to the rise of 
inexpensive DNA sequenc-
ing technologies

RFLP analysis: this method is one of the oldest methods 
to detect MTB. In this method, DNA after amplifica-
tion, is restricted by enzymes and labeling. next, gel 
electrophoresis is done for the separation of different 
fragments of DNA. Detection of fragments is done with 
laser emission

(Caws et al. 
2007; Hay-
ward 1995)

WGS Detect resistance to disin-
fectants, antimicrobials, and 
the relationship between 
isolates and the source of 
contamination
Detect resistance and 
predict sensitivity and trace 
transmission of MTB
Allows the detection of 
mutations outside the target 
area of the assays

WGS alone is not reliable to 
investigate the full preva-
lence of the disease

The WGS has various steps, including DNA extraction, 
sequencing, and data analysis
In WGS, extraction and purification of DNA is done 
first. The DNA is then split into smaller pieces to be 
sequenced. The results should be analyzed quickly in a 
clear way to enable the use of WGS data

(Katale et al. 
2020; Witney 
et al. 2016)

Truenat Resistance detection Unavailable for everyone, 
specific reagents, and 
master mix

RT-PCR done on the designed chip in the device after 
the DNA extraction by Trueprep kit

(Inbaraj et 
al. 2023; 
Ngangue et 
al. 2022)

Cobas TaqMan 
MTB

For liquid, disinfected, and 
concentrated samples of 
respiratory patients
The ability to accurately 
identify MTB in a suspect 
test

Cause false negative test 
results, we can mention 
the uneven distribution 
of bacteria in the sample, 
the presence of enzyme 
amplification inhibitors, 
and the small volume of 
the sample
More expensive than the 
traditional cultural method, 
but it has a wide contribu-
tion to the detection of 
MTB

Two steps, including sample DNA preparation and 
RT-PCR
The sample is first sterilized and then centrifuged at 
60 °C for 45 min and lysed. The mixture is prepared and 
DNA is added, the tubes are placed in the Cobas Taq-
Man analyzer for RT-PCR

(Eddabra and 
Ait Benhas-
sou 2018a; 
Yang et al. 
2011)

E-MTD The direct tests for the de-
tection of MTB in the sample
Ability to detect both 
smear-positive and smear-
negative pulmonary TB,

Including false positive or 
negative results, and the 
interpretation of the test 
results should be based on 
the clinical picture

The rRNA of the target cell is released and amplified, 
then the reaction product is labeled. These reactions 
require constant temperature

(Greco et al. 
2006; Smith 
et al. 1999)

LPA Helps to detect drug 
resistance. This qualita-
tive laboratory test for the 
identification of MTBC and 
its resistance

Very sensitive and specific 
for detection of MDR-TB

Is performed by DNA extracted from culture or directly 
from clinical samples. Genes are amplified using PCR. 
In the next step, PCR products are biotinylated, and 
immobilized probes are hybridized. Then the results are 
determined by colorimetric development

(Desikan et al. 
2017; Noor et 
al. 2015)

Table 1 Utilization, challenges, and operational processes of molecular assays that have been created
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that we will observe to improve the assays for detecting 
and identifying MTB in the coming years and decades.

Diagnostic molecular assays at a glance
The complexity of MTB and the various challenges asso-
ciated with its detection mandate diagnostic methods 
that are not only highly sensitive but also capable of dis-
cerning drug resistance patterns and strain diversity. 
Molecular assays, underpinned by the principles of NAA 
and detection, have emerged as indispensable tools in 
the armamentarium against TB. Molecular assays offer 
several key advantages over traditional methods, making 
them essential in addressing the gaps and limitations of 
current TB diagnostics (MacLean et al. 2020). First and 
foremost, they exhibit remarkable sensitivity, allowing 
for the detection of low numbers of MTB bacilli, which 
is especially crucial in cases of paucibacillary and extra-
pulmonary TB (Boehme et al. 2010). Second, these assays 
can rapidly provide results, often within hours, facilitat-
ing prompt initiation of treatment and reducing the risk 
of disease transmission. Additionally, molecular assays 
can simultaneously detect MTB and its drug resistance 
profiles, enabling tailored therapeutic interventions and 
containment of MDR-TB (Lawn et al. 2011). Finally, these 
assays can discriminate between MTB strains, aiding in 
epidemiological investigations and the identification of 
emerging strains of concern (Walker et al. 2015).

The development of molecular assays for MTB detec-
tion has been a dynamic process, marked by continuous 

innovation and refinement. The pivotal breakthrough was 
the advent of PCR-based methods in the 1980s, which 
allowed for the amplification of specific MTB DNA 
sequences. Subsequent adaptations, including RT-PCR 
and nucleic acid hybridization, further improved sensi-
tivity and reduced the risk of contamination (Liu 2011). 
The landscape of MTB molecular diagnostics witnessed 
a transformative shift with the introduction of the Xpert 
MTB/RIF assay. This fully automated platform combines 
RT-PCR with molecular beacon technology, enabling 
rapid detection of MTB and simultaneous determina-
tion of RIF resistance, a surrogate marker for MDR-TB 
(Boehme et al. 2010). The GeneXpert system has revo-
lutionized TB diagnostics in resource-limited settings, 
where its user-friendliness and minimal infrastructure 
requirements have made it an invaluable tool for TB con-
trol programs (Helb et al. 2010).

While PCR-based assays have been instrumental in 
TB diagnosis, recent advancements have expanded the 
molecular toolbox for TB diagnosis. Isothermal ampli-
fication techniques, such as LAMP, offer several advan-
tages over PCR, including simplified instrumentation 
requirements, faster amplification, and improved tol-
erance to inhibitory substances in clinical specimens 
(Notomi et al. 2000; Organization 2022). LAMP-based 
assays targeting MTB have shown promise in enhancing 
accessibility to TB diagnostics, particularly in resource-
constrained settings (Mitarai et al. 2011). Moreover, the 
era of NGS has ushered in a new dimension of MTB 

Assays Utilization Challenges How it works? References
Xpert MTB/RIF It is a relatively new WHO-

recommended, nucleic acid 
amplification assay that de-
tects MTB and RIF resistance 
at the same time

Has obstacles such as in 
poor countries, its cost, 
environmental restrictions 
(stable and regular electric-
ity, suitable room tem-
perature), and problems in 
supply and maintenance

Detects MTB complex and mutations associated with 
RIF resistance in the rpoB gene. Results are available 
with minimum technical time within two hours after 
the start. The Xpert assay integrates DNA extraction, 
PCR, and detection into a self-contained test unit

(Zifodya et al. 
2019)

Anyplex™ II 
MTB/MDR

Rapidly detects both INH-
resistant and RIF-resistant TB

Has not been approved by 
WHO
Is not identifying all drug-
resistant genes

It consists of two priming segments, terminal separator 
5 and terminal determinant 3. The two are linked by 
polydeoxyinosine to form a “bubble-like structure”. This 
section creates a clearer boundary without participat-
ing in the priming process by fixing the end of 5 and 
the end of 3

(Chumpa 
et al. 2020; 
Singh et al. 
2019)

Genedrive Detection of rpoB mutation 
and RIF resistance

Just determine one drug 
resistance

DNA extraction, asymmetric RT-PCR, and a proprietary 
hybridization probe technology

(Niemz and 
Boyle 2012; 
Shenai et al. 
2016)

FluoroType Available for the detection 
of resistance to RIF and INH

Less sensitivity for detect-
ing INH resistance

Includes DNA amplification and detection through PCR 
in a closed system with automatic analysis

(Dippenaar 
et al. 2021; 
Zabost et al. 
2022)

TB-CRISPR Detect and identify the 
target sequences such as 
IS6110 and IS1081

Difficulty and invalidated 
by WHO and FDA

The promoter of the target sequence after amplifica-
tion, is bound to the Cas protein with the guide of 
gRNA, and signaling RNAs will attach to the complex 
and emit the fluorescent light

(Zhang et al. 
2023)

Table 1 (continued) 
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molecular analysis. NGS not only enables the com-
prehensive characterization of MTB genomes but also 
facilitates the identification of genetic determinants asso-
ciated with drug resistance and virulence (Jagadeesan et 
al. 2019). The application of NGS in TB diagnostics holds 
immense potential for unraveling the intricacies of MTB 
biology and epidemiology, ultimately contributing to 
more effective disease control (Dookie et al. 2022b).

Future perspective for TB and its molecular 
diagnosis
The development of molecular diagnostics offers prom-
ise for the future management of TB. A cost-effective, 
accurate, and rapid diagnostic tool is urgently needed to 
improve disease diagnosis and treatment initiation with 
the global burden of TB persisting. The advent of novel 
technologies (e.g., NGS, and CRISPR-based detection) 
has revolutionized the diagnosis of TB, enabling highly 
sensitive and specific detection of MTB directly from 
clinical samples. Aside from expediting diagnosis, these 
assays facilitate identifying DR strains, which guides the 
development of individualized treatment plans. Further-
more, the integration of AI algorithms with molecular 
diagnostics can further refine TB diagnosis and progno-
sis by enhancing the interpretation of complex genetic 
data. TB management can be transformed through the 
adoption of these technologies, which can lead to earlier 
detection, improved treatment outcomes, and ultimately, 
a reduction in TB-related mortality and morbidity.

As we gain a deeper understanding of the molecular 
mechanisms underlying TB pathogenesis, we can develop 
targeted therapies as well as vaccines to combat the dis-
ease. Precision medicine approaches tailored to individ-
ual patients can be developed by identifying biomarkers 
associated with TB progression and treatment response. 
Moreover, the advent of new vaccine platforms, includ-
ing viral vectors and mRNA vaccines, offers hope for 
the development of more effective TB vaccines capable 
of conferring durable protection from infection and dis-
ease progression. Immunogenetics and systems biology 
advances are making it possible to design vaccines that 
elicit robust and long-lasting immune responses, poten-
tially overcoming the limitations of current Bacillus 
Calmette-Guérin (BCG) vaccination strategies. Further-
more, the integration of omics technologies, including 
genomics, transcriptomics, proteomics, and metabo-
lomics, is providing unprecedented insights into host-
pathogen interactions and immune responses to TB 
infection, paving the way for the development of novel 
therapeutics and vaccines. By harnessing these multidis-
ciplinary approaches, the future holds promise for a com-
prehensive strategy to combat TB, from early diagnosis to 
targeted treatment and prevention.
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