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Identification of hub genes 
and establishment of a diagnostic model 
in tuberculosis infection
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Abstract 

Tuberculosis (TB) poses significant challenges due to its high transmissibility within populations and intrinsic resist-
ance to treatment, rendering it a formidable respiratory disease with a substantial susceptibility burden. This study 
was designed to identify new potential therapeutic targets for TB and establish a diagnostic model. mRNA expres-
sion data for TB were from GEO database, followed by conducting differential expression analysis. The top 50 genes 
with differential expression were subjected to GO and KEGG enrichment analyses. To establish a PPI network, 
the STRING database was utilized, and hub genes were identified utilizing five algorithms (EPC, MCC, MNC, Radial-
ity, and Stress) within the cytoHubba plugin of Cytoscape software. Furthermore, a hub gene co-expression network 
was constructed using the GeneMANIA database. Consistency clustering was performed on hub genes, and ssGSEA 
was utilized to analyze the extent of immune infiltration in different subgroups. LASSO analysis was employed to con-
struct a diagnostic model, and ROC curves were used for validation. Through the analysis of GEO data, a total of 159 
genes were identified as differentially expressed. Further, GO and KEGG enrichment analyses revealed that these 
genes were mainly enriched in viral defense, symbiotic defense, and innate immune response-related pathways. Hub 
genes, including DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15, were identi-
fied using cytoHubba analysis of the PPI network. The GeneMANIA analysis unmasked that the co-expression rate 
of hub genes was 81.55%, and the physical interaction rate was 12.27%. Consistency clustering divided TB patients 
into two subgroups, and ssGSEA revealed different degrees of immune infiltration in different subgroups. LASSO anal-
ysis identified IFIT1, IFIT2, IFIT3, IFIH1, RSAD2, OAS1, OAS2, and STAT1 as eight immune-related key genes, and a diag-
nostic model was constructed. The ROC curve demonstrated that the model exhibited excellent diagnostic perfor-
mance. DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15 were hub genes in TB, 
and the diagnostic model based on eight immune-related key genes exhibited good diagnostic performance.
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Introduction
Tuberculosis (TB) is a highly prevalent infectious disease 
caused by Mycobacterium tuberculosis (Mtb), leading to 
substantial morbidity and mortality worldwide. Recent 
data indicates that in 2020 alone, there were an estimated 
9.87 million new cases of TB globally, resulting in an inci-
dence rate of 127 per 100,000 individuals Global tuber-
culosis report (2021), (2021). These figures highlight the 
significant burden imposed on the economic and health 
status of affected individuals 2021 (Bagcchi 2021). The 
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main cause of TB is the inhalation and ingestion of Mtb 
by alveolar macrophages, which leads to the formation 
of granulomas due to the interaction between Mtb and 
inflammatory cells (Moule and Cirillo 2020). The main 
clinical features of TB are long-term low fever, cough, 
and hemoptysis. Mtb has the capability to infect various 
tissues and organs across the body, encompassing the 
lungs, intestines, lymph nodes, joints, spine, and genitou-
rinary system (Gopalaswamy et  al. 2020). TB primarily 
spreads through the respiratory tract, making early and 
effective diagnosis and treatment pivotal in greatly reduc-
ing TB-related fatalities (Bouton and Jacobson 2021). The 
standard treatment for TB includes a four-drug regimen 
of isoniazid (INH), rifampicin (RMP), ethambutol (EMB), 
and pyrazinamide (PZA) for two months, followed by 
a two-drug regimen of RMP and INH for another four 
months. However, some patients develop drug resistance 
to at least one of the drugs, leading to adverse reactions 
and hepatotoxicity (Suarez et  al. 2019). The identifica-
tion of drug resistance and cure during treatment mainly 
relies on sputum culture and smear results. However, in 
the later stages of treatment, the reduced production of 
sputum in patients limits the applicability of this method 
(Gunther et al. 2021). Hence, the identification and devel-
opment of novel biomarkers that encompass persistent 
pathological alterations and individual variabilities in 
patients hold immense significance in facilitating early 
diagnosis of TB and devising personalized treatment 
strategies.

The occurrence, development, and outcome of TB are 
intricately determined by the immunological recognition, 
response, and regulation of Mtb. When the invasiveness 
of Mtb is weaker than that of the host immune system, 
alveolar macrophages can directly kill and eliminate 
Mtb (Walters et  al. 2021). Afterward, macrophages, NK 
cells, and other innate immune cell groups can generate 
immune memory, and the immune system can produce 
faster and more effective protective immune responses 
upon the second invasion of Mtb (Divangahi et al. 2021). 
When the invasiveness of Mtb reaches a balance with the 
host immune system, Mtb may enter a dormant state, 
presenting an immune escape and symbiotic state with 
the host (Gong and Wu 2021). When the invasiveness 
of Mtb is stronger than that of the host immune system, 
Mtb can replicate in granulomas, and granulomas may 
undergo caseous necrosis, liquefaction, and cavitation, 
leading to the spread of Mtb and the occurrence of active 
TB (de Martino et al. 2019). The integral role of immune 
responses in the immune defense against TB necessitated 
the exploration of immune response-derived biomark-
ers during Mtb infection. By establishing a diagnostic 
model incorporating immune-related genes, the diagnos-
tic efficacy of TB can be enhanced, enabling the timely 

assessment of patients’ immune status, infection progres-
sion, and prognostic risks, thereby facilitating prompt 
patient triage.

In this study, we performed bioinformatics analysis 
on the TB gene expression profile from GEO database 
and identified TB hub genes through PPI network and 
Cytoscape analysis of these hub genes’ functions in the 
onset and progression of TB. Then, we screened hub 
genes using LASSO analysis and constructed a diagnostic 
model for TB, offering new ideas for TB diagnosis.

Materials and methods
Data collection
TB microarray datasets GSE83456 (platform: GPL10558; 
control: 61; TB: 92) and GSE19444 (platform: GPL6947; 
control: 12; TB: 21) were from GEO database (https:// 
www. ncbi. nlm. nih. gov/) and used as the training and val-
idation sets, respectively.

Identification of differentially expressed genes (DEGs)
To identify DEGs between healthy individuals and TB 
patients, limma package (Ritchie, et al. 2015) was utilized 
to do differential expression analysis on GSE83456 data-
set. DEGs were selected with a threshold of |logFC|> 1 
and adjust_p < 0.05.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses
The top 50 genes with the highest affinity scores were 
chosen, and GO functional analysis and KEGG pathway 
enrichment analysis (P < 0.05) were performed using clus-
terProfiler package (Yu, et  al. 2012) in R software. The 
results were presented with corresponding bubble charts.

Construction of a protein–protein interaction (PPI) network
PPI network was constructed utilizing STRING database 
(https:// string- db. org/) to analyze interactions among 
DEGs. Interaction relationships with confidence scores 
greater than or equal to 0.7 were selected.

Screening of hub genes
The top 20 hub genes were calculated utilizing five algo-
rithms (EPC, MCC, MNC, Radiality, and Stress) in 
the cytoHubba plugin of Cytoscape software. Through 
the utilization of Venn diagram analysis, we success-
fully identified a set exhibit shared presence across five 
algorithms.

GeneMANIA database
The GeneMANIA (http:// www. genem ania. org) database 
was used to construct a co-expression network, provide 
gene function predictions, and identify genes sharing 
similar functions. In-depth analysis was performed on 
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the co-expression network and the associated functions 
of these hub genes.

Consensus clustering and immune infiltration analysis
The ConsensusClusterPlus package (Wilkerson and Hayes 
2010) was employed to conduct clustering analysis on all 
TB patient samples, utilizing the expression levels of hub 
genes as the basis for clustering. Single-sample GSEA 
(ssGSEA) method was utilized to evaluate the level of 
immune infiltration in each TB patient sample, and the 
ssGSEA package (Barbie, et  al. 2009) was used to ana-
lyze the variations in immune infiltration levels among 
patients in different subgroups.

Construction and validation of the diagnostic model
The glmnet package (Friedman et  al. 2010) was utilized 
to screen for key genes that affect TB and construct a 
LASSO analysis diagnostic model ground on the hub 
genes. Subsequently, pROC package (Robin et  al. 2011) 

was used to plot receiver operating characteristic (ROC) 
curve and calculate the area under the curve (AUC) value 
to validate the diagnostic model. The diagnostic accuracy 
of the model was subsequently validated using an inde-
pendent validation set.

Results
Differential expression analysis of TB
TB microarray data (GSE 83456, control: 61, TB: 92) were 
downloaded from the GEO database. The limma package 
was utilized to perform differential expression analysis 
on these 153 samples, and 159 DEGs were ascertained 
(|logFC|> 1 and FDR < 0.05) (Fig. 1). Among these DEGs, 
149 were significantly downregulated, and 10 were signif-
icantly upregulated.

GO and KEGG enrichment analyses of TB DEGs
Analyses were performed on DEGs with p-values < 0.05, 
with GO results showing that in the BP module, DEGs 

Fig. 1 Volcano plot of mRNA differential expression analysis between the normal and TB groups. Red represents significantly upregulated genes, 
and green represents significantly downregulated genes
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were basically enriched in response to virus, regulation 
of viral process, and defense response to symbiont GO 
terms. In CC module, they were basically enriched in 
endocytic vesicle and specific granule GO terms. In MF 
module, they were basically enriched in GTP binding 
and guanyl nucleotide binding GO terms, mainly involv-
ing virus defense and symbiont defense-related functions 
(Fig.  2A). KEGG analysis revealed that the majority of 
these genes exhibited significant enrichment in key path-
ways such as the NOD-like receptor signaling pathway, 
innate immune response, and diseases associated with 
coronaviruses (Fig. 2B).

Identification of hub genes in TB
STRING database was utilized to build a PPI network 
of the 159 DEGs, and 139 nodes and 436 edges were 
obtained with a confidence score > 0.7 (Fig. 3A). Based on 
the PPI network, the importance coefficients of the DEGs 
were calculated using five algorithms (EPC, MCC, MNC, 
Radiality, and Stress) in the Cytoscape software with 
the cytoHubba plugin, and the top 20 hub genes were 
selected. Venn diagram was utilized to identify 13 hub 
genes that were commonly included in all five algorithms 

(DDX58, IFIT2, IFIH1, RSAD2, IFI44L, OAS2, OAS1, 
OASL, IFIT1, IFIT3, MX1, STAT1, and ISG15) (Fig. 3B).

Co‑expression network and related functions of the hub 
genes
GeneMANIA database was utilized to dissect the co-
expression network and related functions of the 13 hub 
genes (Fig.  4). These genes exhibited a complex co-
expression network with a co-expression rate of 81.55%, a 
physical interaction rate of 12.27%, a co-localization rate 
of 2.10%, and a predicted rate of 2.24%. They were mainly 
concentrated in functions related to viral regulation 
and immune modulation, such as regulation of viral life 
cycle, regulation of viral process, regulation of symbiotic 
process, viral life cycle, cellular response to interferon-
gamma, response to interferon-gamma, and regulation of 
type I interferon production.

Clustering and immune infiltration analysis of hub genes
Consensus clustering was manipulated on TB patients 
based on the expression data of the 13 hub genes. The 
optimal number of clusters was determined to be 2 
grounding on the consensus CDF plot and delta area plot, 
and a K-means clustering plot was generated (Fig. 5A–C). 

Fig. 2 GO and KEGG enrichment analyses of TB DEGs. A GO enrichment analysis results; B KEGG enrichment analysis results. The size of the bubble 
represents the number of enriched genes, and the color represents the p-value. The darker the color, the more significant the p-value
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The immune infiltration levels of each TB patient sample 
were evaluated using the ssGSEA method. Differences 
in immune infiltration levels between patients in differ-
ent subgroups were analyzed, and it was found that the 
immune cell infiltration levels of aDCs, macrophages, 
and Th1-cells were higher in subgroup 2 than in subgroup 
1 (P < 0.05). The immune function scores of APC_coinhi-
bition, HLA, inflammation-promoting, parainflamma-
tion, T_cell_co-inhibition, Type_I_IFN_Reponse, and 
Type_II_IFN_Reponse were tellingly higher in subgroup 
2 (P < 0.05) (Fig.  5D, E). These results indicated that TB 
patients in subgroup 2 have a better response to immune 
therapy.

Screening of diagnostic biomarkers and model validation
LASSO analysis was performed on the 13 hub 
genes to screen for 8 key genes, which were IFIT1, 
IFIT2, IFIT3, IFIH1, RSAD2, OAS1, OAS2, and 
STAT1. A diagnostic model was constructed from 
these genes, with the index calculated as follows: 
index = 0.567 × IFIT3 + 0.0182 × RSAD2-0.1405 × O AS2 
-1. 1373 × IFIT1 + 2.4298 × STAT1 + 0.9271 × OAS1 + 0.05
42 × IFIT2 + 18721 × IFIH1.

To validate the accuracy of the model, we depicted an 
ROC curve using data from training set GSE83456 and 

calculated the AUC value of the diagnostic model, which 
was found to be 0.973 (Fig. 6C). The diagnostic ability of 
the key genes was further verified in the validation set 
GSE19444, and the diagnostic efficiency of the test set 
was ascertained to be 0.901 (Fig.  6A–D). The findings 
strongly indicated that the diagnostic model, constructed 
using immune-related key genes for TB, exhibited a 
robust diagnostic performance.

Discussion
The diagnosis of TB continues to pose significant chal-
lenges. Currently, sputum culture serves as the gold 
standard for TB diagnosis, yet it has long cultivation 
times, high false-positive rates, and is prone to transmis-
sion during the detection process, leading to many prob-
lems in clinical use (Chen et  al. 2020; Park et  al. 2021). 
The conventional diagnostic approaches are character-
ized by their time-consuming nature and inefficiency, 
resulting in potential delays in diagnosing TB patients. 
This delay, in turn, contributes to the widespread dis-
semination of the disease and presents a concealed 
threat to public health. Biomarker sequencing for TB is 
accurate, time-saving, and cost-effective, and there have 
been many studies on TB biomarkers. Mpande et  al. 
(2021) inferred the risk of TB by detecting the activity 

Fig. 3 Identification of hub genes in TB. A PPI network of the DEGs in the STRING database. Each node represents a protein, and the spiral 
structure inside the node represents the known three-dimensional structure of the protein. The color of the node represents the score value 
of the interaction. The lines between nodes represent the interactions between two proteins, and different colors correspond to different 
interaction types. B Upset plot of the hub genes identified using the five algorithms. The x-axis represents the five algorithms, and the y-axis 
represents the number of genes commonly identified by the five algorithms
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Fig. 4 Co-expression network of the 13 hub genes in TB constructed using the GeneMANIA database. The inner layer represents the hub genes, 
and the outer layer represents the co-expressed genes. The size of the node represents the strength of the correlation, and the color of the line 
represents the type of interaction
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of antigenic T cells in the blood, which can be used to 
classify different stages of TB infection and develop tar-
geted treatment plans. Wu et al. (2021) employed public 
datasets, along with bioinformatics analysis and clinical 
validation, to establish the utility of IRF1 as a novel bio-
marker for TB diagnosis. To improve the diagnostic effi-
ciency of TB patients, this study screened TB hub genes 
based on public databases and constructed an 8-gene 
diagnostic model for TB using LASSO analysis, which 
had important implications for the diagnosis and man-
agement of TB.

By analyzing DEGs between TB patients and healthy 
individuals and analyzing main functions and related 
pathways of these genes, we ascertained that these 
genes were tellingly enriched in viral defense, symbi-
otic defense, and innate immune response-related func-
tions and pathways. After being infected with Mtb, the 
body will coordinate multiple signal cascade responses 
through various pattern recognition receptors to activate 
multiple innate immune defense functions. The first step 
in activating innate immune responses during infection is 
pathogen recognition, and different innate immune cells 

will use different receptors or receptor combinations to 
recognize and engulf Mtb (Zhou et al. 2021). The KEGG 
analysis results from Wen et  al. (2022) study reported 
that a substantial proportion of the DEGs in TB were 
notably enriched in innate immune pathways, which 
echoes with the results of this study. Therefore, there is a 
close relationship between TB and innate immunity.

In order to screen the key genes of TB, this study lev-
eraged STRING database to establish a PPI network 
of DEGs between TB patients and healthy individuals 
and identified 13 hub genes using various algorithms 
in Cytoscape. Subsequently, LASSO analysis was used 
to screen 8 genes (IFIT1, IFIT2, IFIT3, IFIH1, RSAD2, 
OAS1, OAS2, and STAT1) to construct a diagnostic 
model for TB. The IFIT gene family, also known as inter-
feron-induced genes, consists of four members, IFIT1, 
IFIT2, IFIT3, and IFITM. IFIT family genes are typically 
expressed at low levels without stimulation, and IFIT is 
typically transcriptionally induced in response to viral 
and bacterial infections, participating in the regulation of 
innate immune responses, and limiting various viruses, 
stimulating apoptosis of infected cells, and regulating 

Fig. 5 Clustering and immune infiltration analysis of hub genes. A Consensus cumulative distribution function (CDF) plot. The different colored 
curves represent the CDF for different values of k, and the CDF reaches an approximate maximum when k is 2. B Relative change in the area 
under the CDF curve. Each point represents the total area under the CDF curve for a specific value of k, and the appropriate value of k is 2. 
C K-means clustering plot. The rows and columns of the matrix represent the samples, and the consistency matrix is arranged according 
to the dendrogram above the heatmap, with the bars between the dendrogram and the heatmap indicating the clusters. D Analysis of differences 
in immune cell components in the TB infection subgroups. E Analysis of differences in immune function components in the TB infection subgroups
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immune responses (Fensterl and Sen 2015). Studies have 
shown that IFIT1, IFIT2, and IFIT3 are upregulated 
during latent TB infection, and overexpression of IFIT 
genes in macrophages leads to a striking increase in key 
pro-inflammatory cytokines, which can ultimately kill 
Mtb (Madhvi et  al. 2022). OAS, or 2’-5’-oligoadenylate 
synthetase, is a protein family that encompasses OAS1, 
OAS2, OAS3, and OASL proteins, which are also a 
type of interferon-induced gene (Leisching et  al. 2018). 
OAS1 and OAS2 can limit intracellular pathogenic Mtb 

replication and foster pro-inflammatory cytokine secre-
tion (Leisching et al. 2019). In addition, the pathogenicity 
and virulence of Mtb strongly induce OASL expression, 
which can reduce pro-inflammatory cytokine secretion 
and inhibit the growth and survival of Mtb (Leisching 
et al. 2020). Cell apoptosis is one of the most important 
ways for macrophages to clear intracellular Mtb. Yao 
et  al. (2017) showed that elevated levels of phosphoryl-
ated STAT1 can impulse the expression of numerous 
pro-apoptotic genes, thus producing an anti-TB effect. 

Fig. 6 Screening of diagnostic biomarkers and model validation. A Coefficient distribution plot generated for the logarithmic sequence (λ) 
in the LASSO model. B LASSO coefficient spectrum of the LASSO Cox analysis. C ROC curve analysis of the training set GSE83456. D ROC curve 
analysis of the validation set GSE19444
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Nevertheless, unphosphorylated STAT1 inhibits mac-
rophage apoptosis, promoting Mtb immune evasion and 
helping Mtb to persist in infection. Yi et al. (2020) showed 
that STAT1 is essential for promoting macrophage polar-
ization into M1 polarized macrophages, which can effec-
tively defend against TB infection. In summary, this study 
built a reliable diagnostic model for TB based on hub 
genes and identified potential biomarkers for TB.

In conclusion, we used bioinformatics methods to iden-
tify 13 hub genes of TB and analyzed their functions and 
related pathways. Since TB is closely related to immu-
nity, we subsequently screened 8 immune-related genes 
to construct a TB diagnostic model with good diagnostic 
performance. This study identified potential therapeu-
tic targets for TB and constructed a reliable diagnostic 
model for TB. However, although this study was a strict 
bioinformatics analysis, it still had certain limitations. 
The diagnostic model for TB was constructed based on 
data from public databases, and although its predic-
tive performance was good when combined with other 
datasets, it was not validated in animal experiments or 
in clinical settings. Future investigations should focus on 
the validation of the diagnostic performance of the model 
through multi-center studies.
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