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Abstract 

Mycotoxins (MTs), produced by filamentous fungi, represent a severe hazard to the health of humans and food 
safety, affecting the quality of various agricultural products. They can contaminate a wide range of foods, during any 
processing phase before or after harvest. Animals and humans who consume MTs‑contaminated food or feed may 
experience acute or chronic poisoning, which may result in serious pathological consequences. Accordingly, develop‑
ing rapid, easy, and accurate methods of MTs detection in food becomes highly urgent and critical as a quality control 
and to guarantee food safety and lower health hazards. In this review, we highlighted and discussed innovative 
approaches like biosensors, fluorescent polarization, capillary electrophoresis, infrared spectroscopy, and electronic 
noses for MT identification pointing out current challenges and future directions. The limitations, current challenges, 
and future directions of conventional detection methods versus innovative methods have also been highlighted 
and discussed.
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Introduction
Since the discovery of the first MTs, aflatoxins (AFs), in 
1965, there has been an upward trend in the publication 
of scholarly articles on MTs, with 16,821 papers being 
listed in Scopus. Data unmistakably demonstrated the 
importance of MTs research, nevertheless, in many low-
income nations where MTs have an impact on staple 
foods, the MTs-related global health problem is still com-
monly disregarded (Wild & Gong 2009). Unfortunately, 
these locations represent the least controlled regard-
ing farming methods and exposure to humans, resulting 
in long-term and frequently high amounts of exposure. 

Only the wealthier countries in the world have focused 
on adhering to strict import laws regarding MTs contam-
ination (Battilani et  al. 2016). The population in devel-
oping nations, particularly in rural regions, depends on 
locally produced foods and frequently faces issues with 
food security and MTs contamination, which is seen as 
a significant problem with food quality (Singh and Mehta 
2020).

MTs are secondary metabolites of filamentous fungi, 
belonging to the Ascomycota phylum, with a low molec-
ular mass (MW 700  Da) that endanger the health of 
both people and animals (Liew & Mohd-Redzwan 2018) 
(Alshannaq and Yu 2017). The incidence of the AF-
caused Turkey X sickness, which claimed the lives of 
over 100,000 turkeys in 1960, sparked research in MTs. 
After that, it was discovered that Hepatocellular car-
cinoma (HCC) can develop because of AFs, which are 
carcinogenic in both people and animals (Liew & Mohd-
Redzwan 2018). Since then, we discovered more than 
400 distinct MTs with varied chemical compositions 
and characteristics that are produced by numerous dif-
ferent fungi species (Palumbo et  al. 2020). Penicillium, 
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Alternaria, Claviceps, Aspergillus, Fusarium, and Stachy-
botrys are the primary genera of mycotoxigenic fungus 
(Zain 2011). The most dangerous MTs are deoxynivale-
nol (DON), fumonisins (FBs), ergot alkaloids (EAs), T-2 
and HT-2 toxins (T-2, HT-2) as well as aflatoxins (AFs), 
ochratoxin A (OTA), zearalenone (ZEN), enniatins (ENs), 
patulin (PAT), and Alternaria toxins (ATs) (Wokorach 
et  al. 2021; Abrunhosa et  al. 2001). MTs have been dis-
covered to be present in a variety of agricultural goods, 
including wheat, barley, maize, oats, rice (Palumbo et al. 
2020), vegetables, and fruits (Sanzani et al. 2016). Addi-
tionally, MTs can infect herbs (Sedova et al. 2018; Ałtyn 
et  al. 2020), spices (Potortì et  al. 2020), drinks such as 
wine, fruit juices, and beer (Quintela 2020), milk (Becker-
Algeri et  al. 2016), nuts (Kluczkovski 2019), coffee and 
cocoa (Bessaire et  al. 2019; Huertas-Pérez et  al. 2017). 
Various fungal species’ development and MT genera-
tion processes can be influenced by a variety of variables. 
These include the surrounding environment, including 
its humidity, temperature, pH, water activity, substrate 
type, nutrients, physiological condition, level of inocula-
tion, and microbial interactions (Brzonkalik et  al. 2012; 
Agriopoulou et al. 2020). MTs production can take place 
during the preparation, packaging, distribution, and 
storage of agricultural products, or during the prepara-
tion of food (Karlovsky et al. 2016). Due to the environ-
ment, inadequate production methods, and poor storage 
conditions in developing nations, MTs contamination 
occurs more frequently in food and feed (Al-Jaal et  al. 
2019). Additionally, because many MTs are resistant to 
heat, chemical, and physical treatments, they are chal-
lenging to remove from food during processing (Marin 
et al. 2013). Numerous approaches have been put out to 
reduce the MTs contamination of various food products, 
but no definitive answers have been found.

MTs harm people’s and animals’ health, impede inter-
national trade, waste food and feed, and take money away 
from initiatives to address MTs’ problems through legis-
lation, research, and enforcement (Stoev 2013). Unfor-
tunately, every year, MTs infect over 25% of the world’s 
harvested crops, resulting in billion-dollar losses for 
business and agriculture (Marin et  al. 2013). A recent 
study revealed that MTs are present in 60–80% of crops 
globally (Eskola et  al. 2020). Both OTA and AFB1 were 
categorized by the International Agency for Research 
on Cancer (IARC) as being potentially carcinogenic to 
humans in Group 2B and Group 1, respectively while Tri-
chothecenes and ZEN (Group 3) were not acknowledged 
as Human Carcinogens  (Accessed on 12 November 
2023). The World Health Organisation (WHO), the Euro-
pean Commission (EC) (https:// eur- lex. europa. eu/ legal- 
conte nt/ EN/ TXT/ PDF/? uri= CELEX: 02006 R1881- 20140 
701& from= EN) (Accessed on 12 November 2023), the 

Food and Agriculture Organisation of the United Nations 
(FAO), and other national and international institutions 
and organizations have identified potential health risks to 
humans and animals associated with food- or feedborne 
MTs intoxication. They have addressed this issue by 
developing regulatory limits for major MTs classes and 
selected individual MTs types (Krska et al. 2008). Based 
on the health consequences of MTs, there is an urgent 
need for rapid, easy, and accurate methods of MTs detec-
tion in food as a quality control and to ensure food safety 
and lower health dangers. Accordingly, we highlighted 
and discussed the up-to-date innovative approaches that 
have been employed for MT detection pointing out cur-
rent challenges and future directions. The limitations, 
current challenges, and future directions of conventional 
detection methods versus innovative methods have also 
been highlighted and discussed.

Occurrence of mycotoxicosis
When exposure to mold toxins/substances results in poi-
soning, this condition is known as Mycotoxicosis. Myco-
toxicosis can affect the health of people and animals in 
a variety of ways, including ingestion, inhalation, skin 
contact, lymphatic system entry, and bloodstream entry. 
While chronic impacts can take months, years, or even 
decades to appear, acute effects show up within 72 h of 
exposure. The type of MT determines the symptoms 
and effects of mycotoxicosis, although two or more MTs 
may have comparable effects (Bulgaru et al. 2021). When 
MTs are present in toxic doses, they typically have the 
following impacts on humans and animals: recogniz-
able diseases, weakened immunity, mortality, and act-
ing as irritants or allergens. Numerous MTs are toxic to 
other living things, including fungi and bacteria (Keller 
et  al. 2005). The uncommon phenotypical sex changes 
in chickens, whereby they appear and behave as though 
they are male, have been attributed to MTs in stored 
animal feed (Melina 2020). By means of inhalation and 
absorption into the blood and lymphatic pathways, MTs 
infect humans (Bennett and Klich 2003). Mycotoxicosis 
symptoms depend on mycotoxin type, sex, age, and gen-
eral health of the victims, as well as the amount of MT 
present and the duration of exposure (Claeys et al. 2020). 
Insufficient research has been done on the interactions 
between several elements, including food, genetics, and 
relationships with various toxins. As a result, there is a 
chance that mycotoxicosis will be made worse by vita-
min deficiencies, alcoholism, calorie restriction, and viral 
infections (Bennett and Klich 2003). In the 1990s, MTs 
contributed to public health worries over the increas-
ing number of mold settlements, which might have cost 
millions of dollars. This was a direct outcome of research 
conducted in Cleveland, Ohio, which gave proof of the 

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20140701&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:02006R1881-20140701&from=EN
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association between MTs in infants’ pulmonary hemor-
rhage and the spores of Stachybotrys (Agriopoulou et al. 
2020). The maximal concentration of MTs in research on 
dietary (nutritional) supplements derived from plants in 
2015 was estimated to be around 37  mg per kg for the 
supplement based on milk thistle (Veprikova et al. 2015).

Types of mycotoxins
Aflatoxins (AFs)
Many Aspergillus species, particularly Aspergillus para-
siticus and Aspergillus flavus, are responsible for the 
production of AFs (Martins et  al. 2001). The four main 
forms of AFs are AFs B1, B2, G1, and G2 (Fig. 1). Total 
AFs is the name for all AFs taken collectively. AFs are 
well-known MTs that are produced by molds that thrive 
in hay, cereals, decomposing plants, and soil. Cereals 
(such as acha, millet, guinea corn, rice, wheat, sorghum, 
and corn), tree nuts (such as walnut, coconut, pistachio, 
and almond), oilseeds (such as sesame, cotton, sunflower, 
peanut, and soybean seeds), and spices (such as ginger, 

turmeric, coriander, black pepper, garlic, and chili pep-
pers) are among the crops that are frequently impacted 
by such moulds. The strongest carcinogen and most 
harmful toxin known as AFB1 has been directly con-
nected to numerous health issues in various animals, 
including liver cancer (https:// www. who. int/ news- room/ 
fact- sheets/ detail/ mycot oxins) (Accessed on 14 Novem-
ber 2023); Agriopoulou et al. 2020; Martins et al. 2001). 
Animal dairy and milk products can also include these 
MTs, especially if the animals were fed contaminated 
feed (https:// www. who. int/ news- room/ fact- sheets/ 
detail/ mycot oxins) (Accessed on 14 November 2023). It 
is usual to find AFM1, a byproduct of AFB1 detoxication, 
in dairy products. The primary sources of AFs in feeds 
are maize, cottonseed, and peanut meal. According to the 
World Health Organisation (WHO), AFs can cause Acute 
aflatoxicosis poisoning which can be fatal frequently due 
to liver damage. It has also been claimed that AFs are 
genotoxic, meaning they could harm DNA and result in 
animal cancer. There is enough proof to conclude that 

Fig. 1 Chemical Structures of Various AFs Forms (structure were created using the ChemSpider|Search and share chemistry)( https:// www. chems 
pider. com/ FullS earch. aspx (Accesed on 21 November 2023)

https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.chemspider.com/FullSearch.aspx
https://www.chemspider.com/FullSearch.aspx
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AFs cause liver cancer in both humans and animals (Wild 
& Turner 2002).

Mechanisms of action of AFs
Numerous studies have been conducted on AFB1, with a 
spot on the mutagenicity and carcinogenicity of AFs. Due 
to the double bond at positions 8, and 9, AFB1 is typi-
cally metabolized to AFB1-8,9-epoxide, which can attach 
to biological macromolecules like deoxyribonucleic acid 
(DNA) in its reactive form (Wild & Turner 2002; Uru-
sov et  al. 2015; Anfossi et  al. 2016). The primary DNA 
adduct, a pro-mutagenic lesion called AFB-N7-guanine, 
frequently results in G-T transversions.

Urine tests show the presence of AFB-N7-guanine, 
which is utilized as an exposure biomarker in epidemio-
logical research. Because they lack the 8,9 double bond, 
AFG2 and AFB2 are less physiologically active. AFB1-
8,9-epoxide promptly inserts into the DNA in compari-
son to AFG1, resulting in the development of greater 
quantities of DNA adduct at any given dose. AFG1 is 
capable of biological activation to 8,9- epoxide, yet it 
is not as mutagenic as AFB1 (Agriopoulou et  al. 2020; 
Qiu et  al. 2016). Years ago, reports of AFs poisoning in 
humans were made, yet prior research on the causes 
seemed to be unclear (Awuchi et al. 2020). The affected 
individuals initially displayed anorexia, fever, and jaun-
dice after vomiting, which developed into lower extrem-
ity edema and ascites. There is proof that people with AFs 
poisoning exhibit low-grade fever, general malaise, ano-
rexia, stomach discomfort, and tachycardia. Kenya, an 
East African nation, was the site of an aflatoxicosis inci-
dent in 2004 (Lewis et al. 2005; Azziz-Baumgartner et al. 
2005). As a result of these outbreaks, hundreds of people 
died after eating maize infected with AFs. Aflatoxico-
sis is characterized by severe jaundice of unclear source. 
Case–control studies on the disease showed that foods 
from exposed families have much more AFs in them 
than foods from unexposed families. Examining blood 
levels of AFs biomarkers revealed significant differences 
between patients and controls. (Azziz-Baumgartner et al. 
2005; McCoy et al. 2008).

Aflatoxin-contaminated maize has been linked to afla-
toxicosis and acute hepatitis, and the evidence for this 
association is strong enough. Most cases of aflatoxicosis 
are recorded in areas where maize is a common staple 
grain. It has been investigated how much AFs people con-
sume to get aflatoxicosis and the reasons why (Wild and 
Gong 2009). Natural AFs are categorized by the Interna-
tional Agency for Research on Cancer (IARC) as Group 
1 human carcinogens (https:// monog raphs. iarc. who. int/ 
wp- conte nt/ uploa ds/ 2018/ 06/ mono82. pdf ) (Accessed 
on 14 November 2023). Moreover, children who live in 
areas where food contamination is common are exposed 

to high levels of AFs regularly. Exposure begins during 
pregnancy and continues during the first few years of life; 
however, nursing provides some relief from high daily 
intake. Numerous animal studies have demonstrated that 
being exposed to AFs has negative impacts on growth 
(Lombard 2014). Early investigations looked at the con-
nection between AFs exposure and kwashiorkor (Hen-
drickse et al. 1982). Research also connected the presence 
of AFs in mothers’ blood to considerably lower birth 
weights in female infants (De Vries et al. 1989).

Ochratoxin A (OTA)
Ochratoxin A (OTA), ochratoxin B (OTB), and ochra-
toxin C (OTC) are three different MTs known as OTs 
(Fig. 2). The fungal species A. niger, A. ochraceus, Asper-
gillus melleus, Aspergillus sclerotiorum, Aspergillus sul-
phureus, Penicillium verrucosum, and A. carbonarius 
create OTA, which is poisonous. Species of Aspergillus 
and Penicillium release all OTs. OTC is OTA’s ethyl ester, 
whereas OTB is its non-chlorinated version (Bayman and 
Baker 2006). OTA was initially discovered in the Balkan 
area (Vrabcheva et al. 2000). Numerous products, includ-
ing cereals, seeds, coffee, nuts, fruits, dried meat, and 
alcoholic beverages like wine and beer, are thought to be 
contaminated by OTA. The primary Aspergillus found 
in vine fruit is A. carbonarius, which produces harmful 
byproducts during the production of beverages (Mateo 
et al. 2007).

OTA toxicity
Although there has been little research on people due 
to confounding variables (Bayman and Baker 2006; 
Mateo et  al. 2007) it showed that OTA is a carcinogen 
and nephrotoxin, directly connected to tumors in the 
human urinary tract. In poultry and pigs, OTA has been 
connected to nephropathy. OTA has been linked to the 
etiology of a number of kidney diseases (Fuchs and Pera-
ica 2005; Marin-Kuan et al. 2008; Pfohl-Leszkowicz and 
Manderville 2007). Balkan endemic nephropathy (BEN) 
is a Chronic tubulointerstitial disease that causes irre-
versible renal failure. Indeed, 15-year research found 
that BEN is linked to cancer of the upper urothelial tract 
(Rouprêt et al. 2015). The OTA’s toxic action modes are 
the inhibition of protein synthesis and energy produc-
tion, the formation of DNA adducts, apoptosis, and 
oxidative stress induction (Kőszegi and Poór, 2016). Evi-
dence for OTA carcinogenicity primarily comes from 
research done on experimental an←imals. OTA is carci-
nogenic to rats and mice according to studies of labora-
tory, causing kidney cancer in mice and rats and HCC in 
mice (Bayman and Baker 2006; Mateo et al. 2007).

https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono82.pdf
https://monographs.iarc.who.int/wp-content/uploads/2018/06/mono82.pdf
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OTA carcinogenicity’s exact mechanism of action 
is still being investigated. Consuming OTAs has been 
linked with an increased risk of cancer according to 
descriptive studies. As stated by the International Agency 
for Research on Cancer, there is enough data to clas-
sify OTA as dangerous for lab animals’ cancer, but not 
enough to say that it raises the risk of cancer in humans. 
As a result, OTA is classified by the IARC as Group 2B, 
potentially carcinogenic to humans (https:// www. who. 
int/ news- room/ fact- sheets/ detail/ mycot oxins) (Accessed 
on 14 November 2023;) (Accessed on 12 November 
2023). Other OTA toxicities include kidney lesions in 
poultry, bone marrow toxicities in mice, GI tract and 
lymphoid tissue lesions in hamsters, as well as liver and 
heart lesions in rats and chickens (Pfohl-Leszkowicz & 
Manderville 2007). Furthermore, recent research has 
shown that OTA causes autism through an epigenetic 
mechanism (Mezzelani et  al. 2016). Previous research 
has revealed that OTA causes gut changes in addition 
to its negative effects on the kidney. Nutrition absorp-
tion in the intestine was altered by OTA. In  vitro stud-
ies revealed that OTA reduced glucose absorption via the 
SGLT1 transporter (Liew & Mohd-Redzwan 2018).

Zearalenone (ZEN)
Some Fusarium and Gibberella species produce ZEN, 
also named as F-2 mycotoxin (Fig. 3a), which is an estro-
genic nonsteroidal metabolite (Bulgaru et al. 2021; Malir 
et al. 2016). ZEN has been found in oats, almonds, soy-
beans, and sesame, along with corn, sorghum, wheat, 

rice, barley, and other grains (Gadzała-Kopciuch et  al. 
2011).

ZEN toxicity
Because ZEN resembles naturally occurring estrogens, 
it has been observed in multiple in  vivo experiments 
to alter the hormonal balance (Abia et  al. 2013). Since 
this MT has a strong affinity for estrogen receptors, it 
causes fertility and reproductive problems in mammals 
(El-Sayed et  al. 2022). Based on the hormonal mecha-
nism of ZEN and its carcinogenic effect, it can increase 
the occurrence of pituitary various tumors in mice (Rai 
et  al. 2020; https:// publi catio ns. iarc. fr/ 74) (Accessed 
on 15 November 2023). The IARC categorized ZEN as 
being in Group 3, or not classifiable as human carcino-
genic. Additionally, current research indicates that ZEN 
is metabolized in the liver and has been shown in animal 
research to have nephrotoxic, immunotoxic, carcino-
genic, and hepatotoxic effects (Chatopadhyay et al. 2012). 
Since this MT is so dangerous to consumer health, the 
European Union (EU) has set ZEN limits for a diversity of 
uncooked and processed cereals (20–350 g/kg) (El-Sayed 
et al. 2022).

Even though its major target is the reproductive organ, 
adverse effects on the gastrointestinal tract have been 
documented. When compared to other MTs, the impacts 
of ZEN ingestion on the GI tract are not as severe. ZEN 
caused cell death in intestinal epithelial cells without 
affecting cell integrity. As ZEN can cause hyperkeratotic 
papillomas in the rat esophageal squamous epithelium 

Fig. 2 Chemical Structures of Various ochratoxins Forms (structure obtained from ChemSpider|Search and share chemistry) (Accesed on 21 
November 2023)

https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://publications.iarc.fr/74
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stomach, ZEN may contribute to the development of 
tumors in the gastrointestinal tract. Regions with high 
MTs contamination are thought to have a higher inci-
dence of esophageal cancer (Richard 2007). In summary, 
ZEN harms gut health, although no visible histological 
changes have been observed.

Deoxynivalenol (DON)
DON (Fig.  3b) is a trichothecene MT that is generated 
in a variety of cereals like wheat by fungi like Fusarium 
graminearum. Various toxins are released by fusarium 
fungus, which are frequently found in soil. Fumonisins, 
DON, fumonisol (NIV), T-2, HT-2 toxins, and ZEN are 
few examples of trichothecenes. (https:// www. who. int/ 
news- room/ fact- sheets/ detail/ mycot oxins) (accessed on 
14 November 2023).

DON toxicity
In humans, trichothecenes can be acutely hazard-
ous, causing cutaneous or intestinal mucosal irritation 
quickly and diarrhea as a result (https:// www. who. int/ 
news- room/ fact- sheets/ detail/ mycot oxins) (Accessed on 
14 November 2023). DON causes vomiting (hence the 
name “vomitoxin”), reproductive toxicity, oxidative dam-
age, and digestive problems, but it is not carcinogenic to 
humans (Ji et al. 2019). DON is categorized as Group 3 by 
the International Agency for Research on Cancer (IARC) 

(non-carcinogenic substances) (Ji et al. 2019). DON has 
been shown to have numerous poisonous effects, such 
as diarrhea, reduced weight gain, immunotoxicity, tera-
togenicity, cardiotoxicity, and feed refusal (Chidozie and 
Pestka 2010; Gray and Pestka 2007). A recent study con-
ducted in 2023 showed that, glycyrrhinic acid and pro-
biotics relieved deoxynivalenol-induced cytotoxicity in 
intestinal tissues (Xu et al. 2023).

Fumonisins
MTs called fumonisins are created by the section Liseola 
of the genus Fusarium. They structurally resemble sph-
inganine, the precursor of the sphingolipid backbone 
(Fig. 3c). The most prevalent fumonisins are types B1, B2, 
B3, and B4 (FB1, FB2, FB3, and FB4, respectively) (Mar-
asas 2000). There are currently over 28 fumonisins that 
have been identified and categorized into four classes 
(A, B, C, and P). (Marasas 2000). Grapes with Aspergil-
lus welwitschiae infections were found to have an uncom-
mon class of non-aminated fumonisins in 2015, although 
their toxicity has not yet been fully determined (Renaud 
et  al. 2015). The majority of fumonisins are found in 
maize, with smaller amounts in other grains. (https:// 
www. who. int/ news- room/ fact- sheets/ detail/ mycot oxins) 
(acces sed on 14 November 2023); https:// iris. who. int/ 
bitst ream/ handle/ 10665/ 42448/ WHO_ TRS_ 906. pdf; 
seque nce=1) (acces sed on 14 November 2023); https:// 

Fig. 3 Structural Representation of a ZEN b DON c Fumonisin d patulin e citrinin (structure obtained from ChemSpider|Search and share 
chemistry(Accesed on 21 November 2023)

https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins)(accessed
https://www.who.int/news-room/fact-sheets/detail/mycotoxins)(accessed
https://www.who.int/news-room/fact-sheets/detail/mycotoxins)(accessed
https://iris.who.int/bitstream/handle/10665/42448/WHO_TRS_906.pdf;sequence=1)(accessed
https://iris.who.int/bitstream/handle/10665/42448/WHO_TRS_906.pdf;sequence=1)(accessed
https://iris.who.int/bitstream/handle/10665/42448/WHO_TRS_906.pdf;sequence=1)(accessed
https://www.who.int/publications/i/item/9789240060760)(accessed
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www. who. int/ publi catio ns/i/ item/ 97892 40060 760) (acces 
sed on 14 November 2023). Fumonisin has been con-
nected to esophageal cancer in people (Shephard 2012). 
It also has diverse effects on animals. It has been linked 
to several disorders, including leukoencephalomalacia in 
horses and rabbits (Giannitti et al. 2011).

Patulin
Patulin (Fig.  3d) is released by species of Aspergillus, 
Penicillium, and Paecilomyces. Penicillium expansum 
is typically found in a wide variety of vegetables, rotting 
fruits, grains, including rotting maize, apple, peanuts, fig 
and acha (Awuchi et al. 2019; Moss 2008). Since patulin 
is known to be destroyed by fermentation, it is not pre-
sent in apple beverages that are fermented, such as cider. 
Although patulin has not been proven to cause cancer, it 
has been shown to impair animal immune systems (Moss 
2008). Apples and their juices from diseased fruits are the 
primary dietary sources of patulin in humans, however, it 
is also found in numerous grains, fruits, and other foods 
(https:// www. who. int/ news- room/ fact- sheets/ detail/ 
mycot oxins) (Accessed on 14 November 2023).

Patulin toxicity
Immunological toxicity, spleen damage and toxic-
ity, and toxicity to the liver and kidneys are some of the 
acute signs of patulin. Gastrointestinal problems, nau-
sea and vomiting are frequently documented in humans. 
6-Methylsalicylic Acid is the precursor to patulin; com-
bined, they are acetyl-CoA derivatives, making them 
polyketides and potential carcinogens (Ahmed Adam 
et al. 2017). When administered to pregnant mice, patu-
lin has also shown toxicity; both female and male mice 
died. In addition to damaging the intestine, patulin is 
carcinogenic, mutagenic, and teratogenic. It also dam-
ages cellular DNA in both bacteria and human, which 
can result in cancer and tumour development (Ahmed 
Adam et al. 2017; Mahfoud et al. 2002). Even though the 
IARC has voiced serious concerns about the potential 
carcinogenicity of patulin, it has assigned the substance 
to Carcinogenicity Group 3 (Baert et al. 2007). Prior to its 
discovery as being harmful, patulin was used as an anti-
microbial against both Gram-negative and Gram-positive 
bacteria. As a result, its use as an Antibiotic has been dis-
couraged due to its toxicity (Puel et al. 2010).

Citrinin
A MT called citrinin (Fig. 3e) was initially discovered in 
the mould Penicillium citrinum. More than 12 Penicil-
lium species and multiple Aspergillus species have docu-
mented cases of it (Bennett and Klich 2003). Additionally, 
citrinin is produced by several Monascus species (Singh 
and Mehta 2020). MT citrinin is a polyketide. Its natural 

fluorescence is caused by its conjugated, planar structure; 
the maximum fluorescence is produced by a nonionized 
citrinin molecule at pH 2.5 (Singh and Mehta 2020). Cit-
rinin is linked to the yellowed rice illness that has been 
documented in Japan, according to a study in 2003 by 
Bennett and Klich. Additionally, it is a nephrotoxin in 
all studied animal species. Citrinin has been linked to 
several agricultural grains, including oats, barley, maize, 
rye, rice, and wheat, as well as foods coloured with the 
Monascus pigment, although its full effects on humans 
are still unknown. Citrinin and OTA are said to work 
together to inhibit RNA synthesis in murine kidneys 
(Bennett and Klich 2003). Citrinin was identified quan-
titatively in samples of red fermented rice using high-
performance liquid chromatography with fluorescence 
detection (HPLC-FLD) and LC–MS/MS, and it was 
found that LC–MS/MS performed better than HPLC-
FLD concerning quantification and limit of detection 
(LOD) (Ji et al. 2015).

Ergot alkaloids
Ergot alkaloids are poisonous alkaloid combinations that 
Claviceps species, which are popular pathogenic micro-
organisms of many types of grasses, emit in their scle-
rotia. Ergotism, often named as St. Anthony’s Fire, is a 
human disease caused by ingesting ergot sclerotia from 
infected cereals, typically in the shape of baked bread 
from polluted flour (Bennett and Klich 2003). Convul-
sive ergotism, which affects the central nervous system 
(CNS), and gangrenous ergotism, which is known to 
damage the blood supply to the extremities, are the two 
types of ergotism. Ergot alkaloids cause low nerve fever 
and ergotism and have significant impacts on human 
fertility (Bhat et  al. 2010). Ergotism incidence has been 
greatly reduced as a human disease, according to Ben-
nett and Klich, but it is still a significant veterinary issue 
(Bennett and Klich 2003). Additional file 1:  Table S1 is a 
summary of the different types of MT, Predominant Food 
Sources, Toxicity Levels, IARC Carcinogenicity Classifi-
cation, and Regulatory Limits in the US and EU. The dif-
ferent factors affecting MT production are summarized 
in Additional file 1: Table S2.

Analysis of MTs
More reliable analytical techniques for MTs determina-
tion are desperately needed, as the EU and other devel-
oped countries have reduced the restriction limits of 
MTs in foods and feeds (EC466 2001; EC472 2002). Cur-
rently, the most often used analytical techniques are con-
firmatory quantification and fast screening approaches. 
Trichothecenes in food and several other MTs in feed 
are being studied, and standardized procedures for AFs 
(EN12955 1999; EN14123 2001), OTA (EN14132 2003), 

https://www.who.int/publications/i/item/9789240060760)(accessed
https://www.who.int/publications/i/item/9789240060760)(accessed
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
https://www.who.int/news-room/fact-sheets/detail/mycotoxins
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fumonisins (EN13585 2001; EN14352 2004), and patu-
lin (EN14177 2003) in diverse foods are available. A 
comprehensive set of official MTs analysis methods has 
been published in previous studies (Rahmani et al. 2009). 
The International Official Procedures of Analysis of the 
AOAC 991.31(Association of Agriculture and Culture) 
includes approved analytical techniques for determining 
the presence of MTs in food and feed (Rai et  al. 2020). 
MTs levels in food samples are often determined using 
procedures that involve the sampling, homogenization, 
extraction, cleanup, and ultimately detection and quan-
tification, which are carried out using a variety of instru-
mental and non-instrumental approaches (Pereira et  al. 
2014; Shephard 2016; Whitaker 2003).. Biological degra-
dation as a method of analysis proved to be more effec-
tive, specialized, and environmentally friendly (Xia et al. 
2022).

Sampling
Among environmental factors, humidity and tempera-
ture have the greatest effect on mycotoxigenic fungi to 
produce MTs. In terms of Optimal storage procedures, 
temperature, humidity, and moisture content in the ware-
house are critical factors for mould growth and MTs pro-
duction (Agriopoulou et al. 2020). MTs are generated in 
isolated areas and are not uniformly distributed in com-
modities that are stored. Furthermore, because of its het-
erogeneity, it is difficult to collect representative samples. 
By making the sample size larger, degree of crushing, and 
number of aliquots quantified, the inconsistency associ-
ated with MTs analyses is reduced (Whitaker 2003). EC 
has defined sample collection requirements as well as 
performance criteria for analytical techniques (Elkenany 
and Awad 2020). The method used to sample grains and 
grains products for lots under 50 tonnes, for instance, 
calls for the employment of a sampling plan and incre-
mental samples of 10 to 100, depending on the weight, 
for an aggregate sample of 1 to 10  kg (https:// food. ec. 
europa. eu/ system/ files/ 2016- 10/ cs_ conta minan ts_ sampl 
ing_ guida nce- sampl ing- final_ en. pdf#: ~: text= Commi 
ssion% 20Reg ulati on% 20% 28EC% 29% 20No% 20401% 
2F2006% 20of% 2023% 20Feb ruary ,for% 20the% 20con trol% 
20of% 20myc otoxi ns% 20in% 20var ious% 20foo dstuf fs). 
(Accessed on 25 september 2023).

Sample preparation (grinding and mixing)
The sample should be homogenised and milled to a final 
particle size of around 500 µm opening size to speed up 
the chemical reaction process of extraction and improve 
the likelihood that the MTs will be detected (Nakhjavan 
et al. 2020). The sample should be blended once homoge-
neity has been achieved. slurry mixing yields lowest vari-
ation ratio. (Spanjer et al. 2006).

Extraction and purification (clean up)
Extraction
The initial step in sample preparation is MTs extrac-
tion from the sample, which is succeeded by cleanup 
techniques to improve the specificity and sensitivity of 
a particular detection method (krska 1998). Three main 
considerations often determine the choice of extraction 
and cleanup procedures for MTs from food samples: the 
chemical makeup of the MTs, the makeup of the food 
matrix, and the intended technique of detection (Ridg-
way et  al. 2012). The QuEChERS (Quick, Easy, Cheap, 
Effective, Rugged, and Safe) procedure is an extraction 
using acetonitrile–water, followed by the induction of 
liquid–liquid partitioning with adding inorganic salts 
followed by dispersive solid phase extraction to remove 
additional matrix components from the organic phase 
(González-Jartín et  al. 2019). Another extraction tech-
nique, called liquid–liquid extraction (LLE), depends on 
the differing solubilities of toxins in aqueous and immis-
cible organic layers (Turner et  al. 2009). The extraction 
of MTs from solid matrices of varied consistencies can 
be accomplished easily using the liquid–solid extrac-
tion (SLE) technique (Xie et al. 2016). Pressurised liquid 
extraction (PLE), commonly referred to as accelerated 
solvent extraction (ASE), is the similar process to sol-
vent-free extraction (SLE), but it is carried out at higher 
temperature and pressure in a pressure-resistant vessel 
(Rico-Yuste et  al. 2018). These techniques use ordinary 
solvents at high pressures (1500–2000 psi) and tempera-
tures (100–180 °C) to enhance the extraction of analytes 
from the matrix (Razzazi-Fazeli and Reiter 2011). Super-
critical Fluid Extraction (SFE) is another technique. By 
using supercritical CO2, SFE can reduce or eliminate the 
need of organic solvents. The SFE process is primarily 
used to extract non-polar chemical compounds (Xie et al. 
2016).

Clean‑up
After extraction, it’s critical to further clean up the 
extract to lessen matrix impacts and get rid of everything 
that might get in the way of the next MT detection. The 
extract’s purification improves the extract’s specificity 
and sensitivity, which raises the accuracy and precision of 
measurement. Immunoaffinity columns (IAC) and solid 
phase extraction (SPE), which are quick, effective, repeat-
able, and have a broad spectrum of selectivity, are the two 
techniques most frequently employed for MTs cleanup 
(Alshannaq & Yu 2017; Razzazi-Fazeli & Reiter 2011). 
The SPE method involves the solid absorbents and cap-
ture the MTs (Huertas-Pérez et al. 2017). SPE is a quick, 
effective, and repeatable technology, but it has significant 
drawbacks, such as the difficulty to identify all mycotox-
ins with a single cartridge. Additionally, several factors, 

https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_guidance-sampling-final_en.pdf#:~:text=Commission%20Regulation%20%28EC%29%20No%20401%2F2006%20of%2023%20February,for%20the%20control%20of%20mycotoxins%20in%20various%20foodstuffs
https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_guidance-sampling-final_en.pdf#:~:text=Commission%20Regulation%20%28EC%29%20No%20401%2F2006%20of%2023%20February,for%20the%20control%20of%20mycotoxins%20in%20various%20foodstuffs
https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_guidance-sampling-final_en.pdf#:~:text=Commission%20Regulation%20%28EC%29%20No%20401%2F2006%20of%2023%20February,for%20the%20control%20of%20mycotoxins%20in%20various%20foodstuffs
https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_guidance-sampling-final_en.pdf#:~:text=Commission%20Regulation%20%28EC%29%20No%20401%2F2006%20of%2023%20February,for%20the%20control%20of%20mycotoxins%20in%20various%20foodstuffs
https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_guidance-sampling-final_en.pdf#:~:text=Commission%20Regulation%20%28EC%29%20No%20401%2F2006%20of%2023%20February,for%20the%20control%20of%20mycotoxins%20in%20various%20foodstuffs
https://food.ec.europa.eu/system/files/2016-10/cs_contaminants_sampling_guidance-sampling-final_en.pdf#:~:text=Commission%20Regulation%20%28EC%29%20No%20401%2F2006%20of%2023%20February,for%20the%20control%20of%20mycotoxins%20in%20various%20foodstuffs
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including the solvent type used or the ionic strength and 
pH of the sample, might have an impact on efficiency 
(Pereira et al. 2014).

Monoclonal antibodies are employed in the case of 
IAC to identify specific MTs. Particular antibodies on the 
column bind the target MT in the extract as the sample 
flows through the column. Pure methanol or acetonitrile 
is used to elute the MTs from the IAC for further detec-
tion while water-soluble contaminants are also elimi-
nated during column washing. IACs are a highly sensitive 
and selective purification method that can be used to 
identify MTs. Because of the specificity of the antibodies, 
it is also a solvent-saving and easy-to-use technique (Liu 
et al. 2018). However, this strategy has significant draw-
backs. MTs can only be absorbed by columns to a certain 
extent; if the sample’s MTs content exceeds this limit, the 
MTs cannot be efficiently captured and bound, leading to 
incorrect results. Furthermore, the matrix’s many com-
ponents may conflict with the antibodies (Castegnaro 
et al. 2006). Moreover, the organic solvents have another 
disadvantage as they might denature the antibodies, and 
has very high operational costs (Liu et al. 2018).

Conventional techniques used in detection and analysis 
of MTs
Numerous techniques have been tried and tested to 
determine the presence of MTs in food and feed since the 
first MTs were discovered (Le et  al. 2021). The employ-
ment of several distinct chromatography types, includ-
ing High-performance liquid chromatography (HPLC) 
and thin-layer chromatography (TLC) in combination 
with diverse detectors including UV, fluorescence, and 
diode array, is what primarily accounts for the supremacy 
of chromatographic techniques. MTs detection has also 
made extensive use of Liquid chromatography-tandem 
mass spectrometry (LC–MS/MS) and gas chromatogra-
phy-tandem mass spectrometry (GC–MS/MS) (Turner 
et  al. 2015). Immunoassay techniques, such as (ELISA) 
enzyme-linked immunosorbent assay, (Hendrickson 
et  al. 2018) and (LFIA) lateral flow immunoassay also 
(Lattanzio et al. 2019) are used when a quick mycotoxin 
detection is necessary. A recent study conducted by 
Boshra et  al. (2023) revealed no significant differences 
were determined between ELISA and immunoaffinity 
fluorometric analysis. They can substitute for each other 
whenever necessary. However, significant differences 
were detected upon analyzing different food categories, 
highlighting the urgent need for more specific, rapid and 
accurate detection methods that can cover all food cat-
egories whenever possible (Boshra et al. 2023).

Chromatography techniques
Thin layer chromotography (TLC)
TLC is a well-known method of MT detection that allows 
for the cost-effective screening of several samples (Yang 
et al. 2014). TLC consists of a stationary phase consisting 
of cellulose, silica, or immobilized alumina on an inert 
matrix made of glass or plastic. Methanol, acetonitrile, 
and water mixes make up the mobile phase, which trans-
ports the sample in the solid stationary phase (Wacoo 
et  al. 2014). It is crucial in the investigation of several 
MTs due to its simplicity, low costs and luminous spots 
under UV light. This method was created for MTs quali-
tative (Abrunhosa et  al. 2001) and quantitative analysis 
(Andrade et  al. 2013). However, due to TL’s weak accu-
racy and sensitivity, quantification is quite difficult (Singh 
& Mehta 2020). Additionally, one of the primary criteria 
is sample preparation and the kind of cleanup method, 
that heavily relies on the characteristics and MT type 
(Yang et al. 2014).

Liquid chromatography (LC)
The LC methods have been created to get over some of 
the TLC technique’s drawbacks, such as the limited plate 
height or effects of temperature and humidity (Singh 
and Mehta 2020). A mobile phase and an analytical col-
umn are utilized to separate the analytes from the matrix 
components, and for high polarity, non-volatile, and 
thermally labile MTs, LC is also utilized as a separation 
and determination method. This is true regardless of 
their biological activity and chemistry (Yang et al. 2020). 
According to the physical and chemical makeup of the 
MTs, the analysis of MTs mainly depends on HPLC with 
various adsorbents. Most of the detection procedures 
for MTs are relatively similar. The most popular HPLC 
detectors are fluorescent (FLD) or UV–visible (UV) ones, 
which depend on the molecules having a chromophore 
but also on MS (single mass spectrometry, and tandem 
MS (MS/MS) (Turner et  al. 2009). Some MTs such AFs 
and OTA already have a natural fluorescence and can 
be found in HPLC-FLD without further testing. For the 
detection of OTA in diverse matrices, like rice, HPLC-
FLD is most frequently utilized (Zinedine et  al. 2007). 
Derivatization is required for other varieties of MTs, like 
fumonisin B1 (FB1), which have no chromophores in 
their composition (Zhang et al. 2018a, b). The portability, 
practical concerns depending on the matrix impact, sam-
ple preparation and type, as well as the calibration, are 
the primary drawbacks of the HPLC technique (Singh & 
Mehta 2020). Over the past two decades, there has been 
a substantial growth in the usage of LC–MS/MS for the 
detection of low molecular weight pollutants and resi-
dues. Better reliability and sensitivity are offered by MS/
MS when combined with LC. Because of this, LC–MS/
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MS is an excellent standard instrument for addressing the 
analytical issues in food and feed safety chemical analy-
sis, both in research and in a commercial study (Mala-
chová et al. 2018). Compared to conventional procedures 
employing conventional detectors, LC–MS/MS offers 
excellent selectivity and sensitivity, greater assurance 
of analyte identification, and a larger choice of matrices 
(Pascale et al. 2019).

Gas chromatography (GC)
The differential analytes partitioning between the two GC 
column phases is essential for GC. Between the station-
ary and mobile phases, the sample’s numerous chemical 
components are distributed. Utilizing a flame ioniza-
tion detector (FID), a mass spectrometer, or an electron 
capture detector (ECD), volatile compounds are found 
following the separation procedure (Singh and Mehta 
2020). Due to the minimal volatility and strong polar-
ity of the analytes, GC is not frequently utilized in the 
analysis of MTs. Additionally, the derivatization process 
is necessary for their transformation into volatile deriva-
tives (Alshannaq and Yu 2017). However, volatile MTs 
like trichothecenes (TCTC) and patulin have been iden-
tified and quantified using gas chromatography (GC) in 
conjunction with flame ionization (FID), electron capture 
(ECD), or MS detectors (Pereira et al. 2014). The method 
can be derivatized to a chemical that is volatile enough 
to be applied to gas chromatography and is very sensitive 
and specific to MTs. Column obstruction, swaying con-
sequences, cross-contamination from previous samples, 
and nonlinearity of calibration curves in specific detector 
types are the main issues in MTs GC analysis (Singh & 
Mehta 2020).

Enzyme‑linked immunosorbent assay (ELISA)
Immunochemical approaches, like ELISA, are quick and 
easy screening procedures for the on-site MTs analy-
sis together with the sensitive but difficult and expen-
sive techniques of chromatography (Al-Jaal et  al. 2019). 
ELISA is easy to use, allows for simultaneous examina-
tion of numerous samples, and has accurate detection 
(Urusov et al. 2010). In comparison to chromatographic 
techniques like HPLC or TLC, it requires less sample 
volume, fewer clean-up steps and is a high-throughput 
test (Singh & Mehta 2020). The antigen–antibody com-
plex’s interaction with chromogenic substrates serves as 
the basis for the test. By using spectrophotometric analy-
sis, the quantitative outcome is obtained (Li et al. 2009). 
This method does, however, have evident disadvantages. 
The antibodies can react with elements that share simi-
lar chemical moieties (Thway & Salimi-Moosavi 2014). 
Furthermore, inadequate ELISA validation limits the 

method to the media for which they have accepted vali-
dation (Omar et al. 2020).

Lateral flow immunoassay (LFIA)
As a signal reagent, a labeled antibody is utilized in the 
membrane-based immunoassay known as LFIA, also 
known as the immunochromatographic strip test (Song 
et al. 2014). Capillary beds, which resemble porous pieces 
of paper, drive the analyte during the test, and particu-
lar elements of recognition bind moieties adsorbed on 
the surface of the membrane (Anfossi et al. 2013). Signal 
labels have a major impact on LFIA accuracy. Gold nano-
particles (GNPs) have historically been the most popular 
label for producing visual signals (Li et  al. 2019). Com-
mercially available LFDs are accessible for the identifica-
tion of OTA, ZEN, DON, T-2 toxin, and AFs (Krska & 
Molinelli 2009). However, because of several issues with 
the sensitivity and dependability of various matrices, 
their use in the field is limited (Goryacheva et al. 2007).

Limitations and current challenges of the conventional 
detection methods
Although numerous conventional techniques including 
different chromatographic methods, ELISA, and immu-
noaffinity methods, have been extensively employed for 
the detection of various MTs in food. However, they still 
have many drawbacks and limitations such as the need 
for accurate and very long procedures for sample prepa-
ration (including, grinding, mixing, and ensuring homog-
enization), extraction, and clean up which are considered 
very tedious processes in addition to the extensive use of 
solvents, need of well-trained personnel as well as high 
cost of analysis. Because of heterogeneity of the tested 
samples, it is difficult to collect representative samples. 
Therefore, by making the sample size larger, degree of 
crushing, and number of aliquots quantified, the incon-
sistency associated with MTs analyses in food is reduced 
(Whitaker 2003). Moreover, organic solvents have 
another disadvantage as they might denature the anti-
bodies in the case of ELISA and Immunoaffinity analy-
sis, and besides the very high operational costs (Liu et al. 
2018). All such factors encourage researchers worldwide 
to find and examine novel approaches to circumvent the 
respective drawbacks of the conventional methods of 
analysis.

Novel technologies of mycotoxins analysis and detection
Biosensors
Typically, biosensors include a transducer that trans-
forms biological signals into electrical signals, along with 
a biological or sensory element with a biological basis 
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to identify bio-analytes (Perumal and Hashim 2014). 
MTs detection can be carried out using a variety of 
transducers, including optical (fluorescence and surface 
plasmon resonance-SPR), electrochemical (potentiomet-
ric, amperometric, and impedimetric), and piezoelec-
tric (quartz crystal microbalance-QCM) ones (Santana 
et  al. 2019). Cells, peptides, enzymes, antibodies, and 
nucleic acids are well-known materials, but other bioin-
spired components can also be used, such as molecules 
imprinted polymers (MIPs), aptamers, and recombinant 
antibodies (Malekzad et  al. 2017). Additionally, a wide 
range of QDs, metal nanoparticles, nanofibers, and car-
bon nanotubes (CNTs) are used in the biosensors to 
increase their sensitivity because of their physicochemi-
cal properties, biocompatibility, and a high surface vol-
ume ratio (Doria et al. 2012). One significant privilege of 
biosensors over other rapid screening strip tests is their 
possibility for recycling use. Surface plasmon biosensor 
chips with DON immobilized can be reused more than 
500 folds without experiencing significant activity reduc-
tion (Tüdös et  al. 2003). Most biosensor processes still 
require sample cleanup, even though several formats for 
biosensors could be helpful in MTs analysis. Additionally, 
the equipment is unable to do numerous analyte studies 
simultaneously (Logrieco et al. 2005).

Electronic nose
An electronic nose, often known as a “e-nose,” is made 
up of a variety of general-purpose chemical detectors 
that can pick up a variety of volatile organic compounds 
(VOCs) and identify the toxic fungi’s qualitative vola-
tile fingerprints. Finding a fingerprint comes after odor 
identification provides a pattern recognition system’s 
early classification of the generated metabolites (Cama-
rdo et al. 2021). E-nose technology depends on recogniz-
ing particular VOCs connected to the fungi growth on 
grains to detect fungal infections. A relationship between 
VOCs and the amount of MTs in food can be seen, and 
this relationship is influenced by the proliferation and 
metabolic pattern of mycotoxigenic fungal species (Otto-
boni et al. 2018). The e-nose has been utilised well to find 
OTA in the dry-cured pork (Lippolis et al. 2016), AFs and 
fumonisins in maize (Ottoboni et al. 2018), and DON in 
wheat bran (Lippolis et  al. 2018). The measurement of 
low quantities of MTs in food samples must be optimized 
to accomplish widespread use of e-nose for the identifica-
tion of MTs. A further issue with e-nose detection is that 
the bulk of MTs are non-volatile chemical substances 
(Alshannaq & Yu 2017).

Fluorescent polarization
The principle behind fluorescent polarization (FP) 
immunoassay is that the tracer and the analyte 

(fluorophore-labeled analyte) compete for antibody-
binding sites. The fluorescence polarization value is 
raised by the tracer’s rotation due to the tracer’s binding 
to the antibody. The value of polarization has an inverse 
relationship to the analyte concentration because the 
amount of bound tracer has an inverse relationship to 
the concentration of free analyte in the sample (Valen-
zano et al. 2014). Some immunoassay procedures, such as 
ELISA, demand that the analyte be separated from anti-
body-bound analyte or washed several times. The pre-
analytical processes that consume time are not required 
with the FP approach (Huang et  al. 2020). FP immuno-
assay has been used to identify a variety of MTs in food 
products, including ZEN in corn (Zhang et  al. 2017), 
DON in wheat-based products (Lippolis et  al. 2006), 
AFB1 in maize (Zhang et al. 2018a, b), and OTA in rice 
(Huang et al. 2020). Compared to HPLC, the FP method 
has lower accuracy and sensitivity. This is most likely 
caused by antibodies’ cross-reactivity with food matrix 
components and other fungal metabolites (Alshannaq 
and Yu 2017).

Capillary electrophoresis
Using fluorescence or UV absorbance, capillary electro-
phoresis (CE) separates various components according 
to electrochemical potential. Small volumes of solvents 
and buffers are needed for this approach, which has the 
particular advantage of producing only small amounts of 
waste (Shephard 2008). Numerous MTs have been distin-
guished by CE, including AFs, DON, fumonisins, OTA, 
and ZEN (Maragos &Appell 2007). However, as only 
small sample quantities can be evaluated, this approach 
lacks sensitivity (Maragos 1998). ZEN in maize has 
recently been analyzed using CE combined with cyclo-
dextrin-enhanced fluorescence, which has a 5 ng/g detec-
tion limit (Maragos &Appell 2007).

Infrared spectroscopy
Optical non-destructive and Fast methods for MTs 
detection in grains include principal component analysis 
(PCA) and infrared (IR) analyzers for identification and 
quantitative determination of MTs without preparation 
of sample. These procedures have the advantages of being 
simple to use, not needing the use of chemicals, extrac-
tion or sample preparation and having quick results (Pet-
tersson and Aberg 2003). Although the two methods 
face difficulties, including the non-homogeneous distri-
bution of MTs within the food matrix, the particle size 
distribution of ground grains, and the detection limits 
of the method, more research is required to fully realize 
IR spectroscopy’s potential for detecting various MTs 
(Shepherd, 2008).
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The aggregation‑induced emission
A collection of fluorescent dyes shines dimly in the 
condition of diluted solution, but their fluorescence is 
noticeably amplified in the state of aggregation due to 
a photophysical phenomenon known as aggregation-
induced emission (AIE) (Zhu et  al. 2019). One possi-
ble explanation for the high fluorescence of dyes in the 
aggregate state could be limited intramolecular rotations 
(Li et al. 2018). AIE dyes such as 9,10-distyryllanthracene 
(DSA), silacyclopentadiene (silole), tetraphenylethene 
(TPE), and its derivatives exhibit high emission of fluo-
rescence in the aggregate states (Wang and Liu 2018). 
Aptasensor (biosensor) based on AIE dye, has been cre-
ated effectively for OTA detection in wine and coffee 
(Zhu et al. 2019). Table 1 summarizes different types of 
technologies and which technologies can be applied best 
in different circumstances in terms of sample material, 
sample condition cost-effectiveness and comparison of 
sensitivity for these methods.

Current challengs and future directions
Several novel techniques that have been created and 
may be helpful in MTs detection have been developed in 
addition to the traditional techniques mentioned above. 
However, outside of the study fields, these techniques 
have not been extensively used and have limited utility. 
Additionally, they need additional validation and veri-
fication from reputable organizations like the European 
Standardization Committee (EN), International Organi-
zation for Standardization (ISO), or Association of Offi-
cial Analytical Chemists (AOAC) (Alshannaq & Yu 2017).

In conclusion, in food and feed all over the world, 
MTs are unpredictable pollutants. These low molecular 
weight substances constitute a significant risk to human 
and animal health, raise questions about food safety, 
and cause the agriculture sector to suffer enormous 
financial losses. Although Numerous conventional 
techniques including different chromatographic meth-
ods, ELISA and immunoaffinity methods, have been 
extensively employed for the detection of various MTs 
in food. However, they still have many drawbacks and 
some limitations such as tedious sampling, extensive 
use of solvents, need of well-trained personnel as well 
as high cost of analysis. Various innovative approaches 
have been recently studied to bypass the disadvantages 
of conventional methods; however, they are still not 
widely used and have limited utility. Additionally, they 
need additional validation and verification from reputa-
ble and standard organizations and committees.
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