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Alterations of the gut microbiota in patients 
with postherpetic neuralgia
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Abstract 

Postherpetic neuralgia (PHN) is a prevalent, intricate, and intractable form of neuropathic pain. The available evi-
dence indicates that alterations in the gut microbiota are significant environmental determinants in the develop-
ment of chronic neuropathic pain. Nevertheless, the correlation between the gut microbiota and PHN remains 
elusive. A cross-sectional study was performed on a cohort of 27 patients diagnosed with PHN and 27 matched 
healthy controls. Fecal samples were collected and subjected to microbiota analysis using 16S ribosomal RNA gene 
sequencing. Comparable levels of bacterial richness and diversity were observed in the gut microbiota of PHN 
patients and healthy controls. A significant difference was observed in 37 genera between the two groups. Further-
more, the LEfSe method revealed that the abundance levels of Escherichia-Shigella, Streptococcus, Ligilactobacillus, 
and Clostridia_UCG-014_unclassified were elevated in PHN patients, while Eubacterium_hallii_group, Butyricicoccus, 
Tyzzerella, Dorea, Parasutterella, Romboutsia, Megamonas, and Agathobacter genera were reduced in comparison 
to healthy controls. Significantly, the discriminant model utilizing the predominant microbiota exhibited efficacy 
in distinguishing PHN patients from healthy controls, with an area under the curve value of 0.824. Moreover, Spear-
man correlation analysis demonstrated noteworthy correlations between various gut microbiota and clinical symp-
toms, including disease course, anxiety state, sleep quality, heat pain, pain intensity, and itching intensity. Gut micro-
biota dysbiosis exists in PHN patients, microbiome differences could be used to distinguish PHN patients from normal 
healthy individuals with high sensitivity and specificity, and altered gut microbiota are related to clinical manifesta-
tions, suggesting potentially novel prevention and therapeutic directions of PHN.
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Introduction
Postherpetic neuralgia (PHN) is a neuropathic pain that 
is commonly observed, and it endures for a duration 
of one month or more after the herpes zoster rash has 
resolved. PHN is the most frequent sequela of herpes 

zoster (Johnson and Rice 2014). It is clinically character-
ized by persistent pain, often accompanied by sensory 
anomalies, sleep disruption, and emotional comorbidities 
(Geha et  al. 2007; Hunt and Mantyh 2001). The disease 
course of PHN can range from a few months to a lifetime, 
with an extremely difficult-to-treat nature and a signifi-
cant impact on patients’ quality of life. Despite extensive 
research, the pathogenesis of PHN remains incompletely 
understood. Besides neurological damage, risk factors 
may also act as disease triggers. Diverse clinical pres-
entations and different severity of this disease indicate 
that risk factors, such as age, the number of herpes, pain 
intensity, and perceived mental stress may have vital roles 
in the pathogenesis of PHN (Jung et al. 2004; Takao et al. 
2018; Yang et al. 2019). The gut microbiota has garnered 
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significant attention as a potential environmental fac-
tor that may impact the health status of a host. There is 
mounting evidence linking the gut microbiota to various 
chronic pain conditions in humans, such as inflamma-
tory pain and neuropathic pain (Alizadeh et al. 2022; Guo 
et  al. 2019). However, it is currently unknown how the 
gut microbiota plays a role in PHN patients.

It was reported that the gut microbiota is involved in 
the functioning of pain-related receptors or ion channels 
and exerts direct control over both peripheral and central 
sensitization through the release of inflammatory media-
tors (Guo et  al. 2019). Furthermore, mounting evidence 
supports the notion of a causal relationship between the 
gut microbiome and neuropathic pain in murine models, 
with potential mechanisms involving circulating bacte-
rial metabolites and lipopolysaccharide levels, immune 
responses, and microglia activation (Minerbi and Shen 
2022). Additionally, gut dysbiosis is linked to pain-asso-
ciated behavior, including pain sensitivity and depression 
(Defaye et al. 2020; Lin et al. 2020). Convincing evidence 
suggests that intestinal microorganisms may play a cru-
cial role in manifestations of neuropathic pain through 
gut-brain axes (Zhong et al. 2019). Whereas, no study has 
addressed the relevance between the gut microbiota and 
PHN to date, and correlations between the gut microbi-
ota and clinical manifestations of PHN remain undefined.

Therefore, we hypothesized that PHN patients exhibit 
gut microbial dysbiosis that contributes to the develop-
ment of PHN. To evaluate this hypothesis, we employed 
16S rRNA sequencing to compare the gut microbiota 
composition of PHN patients and healthy controls, iden-
tified the biomarkers of PHN, and analyzed the relation-
ship between microbiota and clinical manifestations of 
PHN. The present study will enhance the comprehension 
of gut microbiota in PHN pathogenesis, which may sug-
gest new potential prevention strategies and therapeutic 
directions.

Materials and methods
Study population
This study was approved by the institutional ethics com-
mittee at Tongji Medical College, Huazhong Univer-
sity of Science and Technology (No.: S083), which was 
registered at the Chinese Clinical Trial Registry (No.: 
ChiCTR2100049883). In total, 54 participants were 
recruited. We conducted a cross-sectional study of 27 
PHN patients and 27 matched healthy controls (HCs). All 
participants provided written informed consent. All par-
ticipants recruited in our study resided in Hubei province 
for a long time to mitigate the potential impact of diverse 
lifestyles and regions on gut microbial compositions. 
Patients with PHN were obtained from the pain clinic of 
the Tongji Hospital, Tongji Medical College, Huazhong 

University of Science and Technology during their initial 
visit to the clinic.

Dietary data was obtained over a period of two weeks 
through the administration of questionnaires, as docu-
mented in Additional file  2: Table  S1. Clinical data per-
taining to each patient was obtained through the use of 
medical history records and interview-based question-
naires (Additional file  3: Table  S2). The general charac-
teristics, the psychological state, and sleep quality of all 
participants were also evaluated using questionnaires, 
as listed in Additional file 3: Table S2. Subsequent to the 
interview, fecal samples were collected from each partici-
pant between October 2021 and June 2022.

The inclusion criteria of the PHN group were as fol-
lows: (1) Over 18  years old; (2) Diagnosed with PHN; 
(3) Without serious complication. The HC group was 
recruited from healthy volunteers and was matched 
with the PHN group according to age, gender, and BMI. 
The following exclusion criteria were conducted for all 
groups: probiotics or prebiotics has been taken within 
one month; Hypertension; diabetes; obesity (body mass 
index (BMI) ≥ 30 kg/m); dyslipidemia; cancer; metabolic 
syndrome; a history of disease with an autoimmune com-
ponent (such as rheumatoid arthritis); intestinal dysfunc-
tion (such as irritable bowel syndrome, Crohn’s disease, 
and inflammatory bowel disease); and abnormal liver and 
kidney function; medications such as pain medications, 
anti-inflammatory drugs, antibiotics, or psychotropic 
medications have been taken in the last 6 months.

Clinical manifestations records and assessments
The disease course and the location of the lesion were 
recorded. Simultaneously, whether the following symp-
toms existed was also recorded, including preherpetic 
pain, spontaneous pain, dynamic mechanical allodynia, 
and sensory disturbance (itching or numbness).

The assessment of depression and anxiety states was 
conducted through the utilization of the Patient Health 
Questionnaire-9 (PHQ-9) and the Generalized Anxiety 
Disorder-7 (GAD-7), respectively (Kroenke et  al. 2001; 
Spitzer et  al. 2006). The scoring system for the PHQ-9 
ranging from 0 to 4 indicate no depression, 5–9 indicate 
mild depression, 10–14 indicate moderate depression, 
15–19 indicate moderately severe depression and ≥ 20 
indicate severe depression (Wang et  al. 2014). Likewise, 
scores of  ≥ 5, ≥ 10, ≥ 14, and ≥ 19 on the GAD-7 repre-
sent mild, moderate, moderately severe, and severe lev-
els of anxiety (Spitzer et al. 2006). The sleep quality was 
assessed using the Insomnia Severity Index (ISI), with 
scores ranging from 0 to 28. According to the recom-
mended score interpretation guidelines (Bastien et  al. 
2001), scores of 0–7 indicate no clinically significant 
insomnia, 8–14 indicate subthreshold insomnia, 15–21 
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indicate moderate clinical insomnia, and 22–28 indicate 
severe clinical insomnia. The cold pain and heat pain was 
assessed. The assessment of pain intensity was conducted 
through the utilization of a numerical rating scale (NRS), 
whereby a score of 0 indicated the absence of pain, while 
scores of 1–3, 4–6, and 7–10 represented mild, moder-
ate, and severe pain, respectively. In a similar manner, 
the evaluation of itching intensity was performed using 
an NRS, with scores ranging from 0 to 10, where higher 
scores indicated a greater severity of itching intensity.

Sample collection and sequencing
Following collection, fecal samples were immediately 
frozen at a temperature of −80  °C. Subsequently, fecal 
genomic DNA was extracted utilizing the CTAB method. 
The quality of the DNA extraction was assessed through 
agarose gel electrophoresis, and quantification was per-
formed using an ultraviolet spectrophotometer. PCR 
amplification was carried out using primers 341F (5’-
CCT ACG GGNGGC WGC AG-3’) and 805R(5’-GAC TAC 
HVGGG TAT CTA ATC C-3’) which were specific to the 
V3–4 hypervariable regions of the 16S rRNA gene. The 
PCR products were purified using AMPure XT beads 
(Beckman Coulter Genomics, Danvers, MA, USA), quan-
tified by Qubit (Invitrogen, USA), and recovery was facil-
itated using the AMPure XT beads recovery kit.

The purified PCR products were assessed using the 
Agilent 2100 Bioanalyzer (Agilent, USA) and Illumina’s 
library quantification kit (Kapa Biosciences, Woburn, 
MA, USA). A library concentration exceeding 2 nM was 
deemed acceptable. The qualified computer sequencing 
libraries, which featured non-repeatable index sequences, 
were subjected to gradient dilution, mixed in accordance 
with the required sequencing volume, and denatured into 
a single strand via NaOH for computer sequencing. The 
NovaSeq 6000 sequencer was employed for 2 × 250  bp 
double-ended sequencing, utilizing the NovaSeq 6000 SP 
Reagent Kit (500 cycles).

16S rRNA gene sequencing analysis
For the double-ended data obtained by sequencing, data 
separation of the sample was performed according to 
barcode information, and the connector and barcode 
sequence were removed. Primer sequence and balance 
base sequence of RawData were were removed accord-
ing to the Cutadapt (V1.9.1). FLASH (v1.2.8, http:// ccb. 
jhu. edu/ softw are/ FLASH/) was employed to concatenate 
each pair of paired-end reads into a longer tag based on 
the overlap area. Subsequently, Fqtrim (v0.94, http:// ccb. 
jhu. edu/ softw are/ fqtrim/) was utilized to perform win-
dow quality scanning on the sequencing reads, with a 
default scanning window of 100 bp. If the average quality 
value in the window was lower than 20, the reading part 

from the beginning of the window to the end of 3’was 
truncated. Sequences whose length was less than 100 bp, 
or sequences with content of N (uncertain fuzzy bases) 
over 5% after truncation were removed. Additionally, the 
chimera sequence was eliminated through the utilization 
of Vsearch (v2.3.4, https:// github. com/ torog nes/ vsear ch). 
Then, the high-quality Clean Data was finally obtained.

Divisive Amplicon Denoising Algorithm (DADA2) 
was invoked with QIIME 2 (Bolyen et al. 2019) denoise-
paired for length filtering and denoising. The utilization 
of Amplicon Sequence Variants (ASVs) was employed 
for the creation of Operational Taxonomic Units (OTU) 
(Blaxter et  al. 2005), resulting in the acquisition of the 
final ASV feature list and feature sequence.

Species annotation was conducted using the SILVA 
(Release 138, https:// www. arbsi lva. de/ docum entat ion/ 
relea se138/) and NT-16S databases, based on the ASV 
sequence file, and the abundance statistics of each spe-
cies in each sample were determined using the ASV 
abundance table. The confidence threshold for comments 
was set at 0.7.

Statistical analyses
The statistical analysis was conducted utilizing SPSS 26.0 
(SPSS Inc., Armonk, New York, United States). Continu-
ous variables that displayed a normal distribution were 
expressed as mean ± standard deviation (SD), while non-
normally distributed variables were presented as median 
(interquartile range, IQR). Percentages were used to rep-
resent other variables. Statistical significance was deter-
mined when p < 0.05.

The present study employed R software (Version 3.4.4) 
to conduct an analysis of alpha and beta diversity. Spe-
cifically, alpha diversity was assessed through the calcula-
tion of two indices, namely chao1 and shannon, using R’s 
ggplot2 package. Meanwhile, beta diversity was utilized 
to examine the dissimilarities in gut microbial commu-
nities between PHN and HCs. To achieve this, a Princi-
pal Coordinate Analysis (PCoA) was performed, and the 
resulting multidimensional data were visualized using the 
ade4 and vegan packages in R software.

An analysis of differential abundance of intestinal flora 
was conducted at the class, order, family, and genus lev-
els using the doBy package (Version 4.6.13) and ggplot2 
package (Version 3.3.6) in R software (Version 4.1.3). 
Taxa with average abundance levels greater than 1%, P 
values less than 0.05, and Q values less than 0.05 were 
visualized (White et  al. 2009). the linear discriminant 
analysis (LDA) effect size (LEfSe) method was utilized 
for biomarker discovery to identify the key fecal micro-
biota responsible for discriminating between the PHN 
group and the HC group. Sequentially, the Kruskal–
Wallis rank sum test, Wilcoxon rank sum test, and LDA 

http://ccb.jhu.edu/software/FLASH/
http://ccb.jhu.edu/software/FLASH/
http://ccb.jhu.edu/software/fqtrim/
http://ccb.jhu.edu/software/fqtrim/
https://github.com/torognes/vsearch
https://www.arbsilva.de/documentation/release138/
https://www.arbsilva.de/documentation/release138/
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were executed to identify all distinctive biomarkers. The 
Receiver operating characteristic (ROC) analysis, a statis-
tical tool utilized to evaluate the predictive accuracy of a 
model, was conducted utilizing SPSS 26.0, and the area 
under the curve (AUC) was employed to assess the ROC 
performance. The corrplot package in R software (Ver-
sion 3.4.4) was employed to compute Spearman rank cor-
relation between gut microbiota and clinical features.

Results
Basic information of recruited subjects
The general characteristics of all participants are sum-
marized in Table 1. There were no statistically significant 
differences observed in age, gender, BMI, or education 
between the PHN and HC groups. However, the PHN 
group exhibited significantly more severe depressive 
symptoms (p = 0.002), anxiety symptoms (p = 0.006), and 
insomnia (p = 0.000) compared to the HC group. Addi-
tionally, the detailed clinical manifestations of the PHN 
group are shown in Table 2.

Differences in gut microbiota composition 
between postherpetic neuralgia patients and healthy 
controls
The examination of rarefaction curves at the species 
level indicates that the sequencing sample size employed 
in this study was of sufficient magnitude and reliability. 
Furthermore, the gut microbiota in PHN patients dem-
onstrated a tendency towards greater species richness 
(observed OTU number) in comparison to that of the 
healthy controls (Fig.  1A). The analysis of α-diversity 
involved the consideration of both species richness and 
evenness, as measured by the Chao1 index and the Shan-
non diversity index, respectively. However, no statistically 
significant differences were observed in the comparison 
of α-diversity between the two groups (p > 0.05) (Fig. 1B). 
The PCoA plot, as determined by the β-diversity analy-
sis, indicated no statistically significant differences in 

Table 1 Demographics assessments for all participants

SD standard deviation, BMI body mass index, n sample size, PHQ-9 Patient Health 
Questionnaire-9, GAD-7 Generalized Anxiety Disorder Screener-7, NRS numerical 
rating scale, ISI Insomnia Severity Index

PHN (n = 27) NC (n = 27) P value

Age (y, mean ± SD) 58.93 ± 14.597 55.70 ± 15.384 0.433

Gender (M/F) 16/11 15/12 0.788

BMI (kg/m2, median ± SD) 21.65 ± 2.85 22.29 ± 2.33 0.37

Education (y, mean ± SD) 10.52 ± 3.23 10.41 ± 3.41 0.903

PHQ-9 (score, median [IQR]) 8.0(3.0–13.0) 1.0 (0.0–6.0) 0.002

GAD-7 (score, median [IQR]) 5.0(1.0- 7.0) 0.0 (0.0–4.0) 0.006

ISI (score, median [IQR]) 10.0(8.0–13.0) 1.0 (1.0–7.0) 0.000

Table 2 Clinical manifestations of PHN

PHN (n = 27)

Disease course (month), n (%)

 1–3 13 (48.15%)

 4–6 4 (14.81%)

 7–12 6 (22.22%)

 > 12 4 (14.81%)

Location of lesion, n (%)

 Face (Trigeminal nerve region) 1 (3.70%)

 Neck and upper limbs (Cervical nerve region) 8 (29.63%)

 Trunk (Thoracic nerve region) 16 (59.26%)

 Buttocks and lower limbs (Lumbar and Sacral nerves 
region)

2 (7.41%)

Preherpetic pain, n (%) 17 (62.96%)

Spontaneous pain, n (%) 25 (92.59%)

Dynamic mechanical allodynia, n (%) 16 (59.26%)

Sensory disturbance, n (%)

 Itching 15 (55.56%)

 Numbness 13 (48.15%)

PHQ-9 (score), n (%)

 No depression (0–4) 10 (37.04%)

 mild (5–9) 7 (25.93%)

 moderate (10–14) 4 (14.81%)

 moderate-severe (15–19) 4 (14.81%)

 Severe (20–27) 2 (7.41%)

GAD-7 (score), n (%)

 No anxiety (0–4) 13 (48.15%)

 Mild (5–9) 12 (44.44%)

 Moderate (10–13) 0 (0%)

 Moderate-severe (14–18) 0 (0%)

 Severe (19–21) 2 (7.41%)

ISI (score), n (%)

 Insomnia without clinical significance (0–7) 6 (22.22%)

 Subclinical insomnia (8–14) 16 (59.26%)

 Clinical insomnia (moderate) (15–21) 4 (14.81%)

 Clinical insomnia (severe) (22–28) 1 (3.70%)

Cold pain, n (%)

 Normal 10 (37.04%)

 Hypalgesia 14 (51.85%)

 Hyperpathia 3 (11.11%)

Heat pain, n (%)

 Normal 15 (55.56%)

 Hypalgesia 8 (29.63%)

 Hyperpathia 4 (14.81%)

Pain intensity (NRS 0–10), n (%)

 No pain (0) 1 (3.70%)

 Mild (1–3) 12 (44.44%)

 Moderate (4–6) 6 (22.22%)

 Severe (7–10) 8 (29.63%)

Itching intensity (NRS 0–10), n (%)

 No itching (0) 9 (33.33%)

 Mild (1–3) 12 (44.44%)

 Moderate (4–6) 5 (18.52%)

 Severe (7–10) 1 (3.70%)
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the degree of similarity among microbial communities 
between the two groups (Fig. 1C). Additionally, the Venn 
diagram analysis revealed that 1237 ASVs were common 
to both the PHN and HC groups, while 2670 and 1827 
ASVs were unique to PHN patients and HCs, respectively 
(Fig. 1D).

The analysis of Community Profiling revealed no sta-
tistically significant differences between the PHN group 
and HCs from phylum to species levels (Additional file 1: 
Figure S1 and Fig.  2). The bacterial phyla Firmicutes, 
Bacteroidota, and Proteobacteria were found to be pre-
dominant (Fig. 2A). In comparison to HCs, PHN patients 
exhibited lower levels of Firmicutes, but higher levels 
of Bacteroidota and Proteobacteria. At the class level, 
Bacteroidota and Gammaproteobacteria were found 
to be more abundant in PHN patients, while Clostridia 
and Negativicutes were more prevalent in HCs. At the 
level of order, it was observed that PHN patients exhib-
ited an increase in Bacteroidales and Enterobacterales, 
but a decrease in Oscillospirales and Lachnospirales, in 
comparison to HCs. The family level analysis revealed 
that Bacteroidaceae and Enterobacteriaceae were more 
abundant in the PHN group, while Lachnospiraceae, 

Ruminococcaceae, and Prevotellaceae were more preva-
lent in the healthy group. At the genus level, Bacte-
roides and Faecalibacterium were the most dominant in 
both groups, with Bacteroides being more abundant in 
the PHN group, and Faecalibacterium and Prevotella_9 
being more prevalent in the HCs group (Fig. 2B and C). 
At the species level, the abundance of Roseburia_unclas-
sified and Escherichia-Shigella_unclassified was observed 
to be higher in the PHN group, whereas Faecalibacte-
rium_unclassified and Prevotella_9_unclassified were 
more prevalent in the HCs.

These findings suggest that the gut microbiota of PHN 
patients and healthy controls exhibit comparable levels of 
bacterial richness and diversity, but the overall composi-
tion of the gut microbiota differs significantly between 
the two groups.

Alteration in gut microbiota between postherpetic 
neuralgia patients and healthy controls
A significant difference was observed between PHN 
patients and HCs in 3 classes, 13 orders, 16 families, 
37 genera, and 46 species of gut microbiota (Addi-
tional file  4: Table  S3). Taxa with average abundance 
levels exceeding 1% were graphically represented. Spe-
cifically, at the class level, the proportion of Bacilli 
was found to be higher in the PHN group compared to 
the HCs (Fig. 3A). At the order level, Actinomycetales, 

Table 2 (continued)
PHQ-9 Patient Health Questionnaire-9, GAD-7 Generalized Anxiety Disorder 
Screener-7, NRS numerical rating scale, ISI Insomnia Severity Index

Fig. 1 Rarefaction curves and comparison of diversity indexes between PHN patients and HCs. A Rarefaction curves of patients with PHN and HCs. 
B α-diversity indexes in PHN patients and HCs (chao1, Shannon). C PcoA for β-diversity analysis. D Venn diagram
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Lactobacillales, Clostridia_UCG-014, and Micrococ-
cales were more abundant in the PHN group, while 
Veillonellales-Selenomonadales, and Rhodospirillales 
were more prevalent in the HCs (Fig. 3B). At the fam-
ily level, proportions of Streptococcaceae, Enterobacte-
riaceae, Actinomycetaceae, and Clostridia_UCG-014 
unclassified were higher in the PHN group than that in 
the HCs, while Selenomonadaceae, Butyricicoccaceae, 
Rhodospirillaceae, and Bacteroidales_unclassified were 
lower (Fig. 3C). At the genus level, 20 genera displayed 
substantial variation between the PHN group and HCs. 
Specifically, the proportions of Odoribacter, Butyricico-
ccus, Romboutsia, Allisonella, Megamonas, Tyzzerella, 
Thalassospira, Dorea, Adlercreutzia, Parasutterella, 
Agathobacter, and Bacteroidales_unclassified genera 
were decreased, whereas the proportions of Eisen-
bergiella, Streptococcus, Actinomyces, Anaerotruncus, 
Bilophila, Clostridia_UCG-014_unclassified, Lactoba-
cillus, and Ligilactobacillus genera were increased in 
PHN patients (Fig. 3D).

To further explore the specific bacterial taxa related 
to PHN, the LEfSe algorithm was employed to assess 
the abundance of the fecal microbiota (Fig. 4). A clad-
ogram was generated to facilitate the comparison of 
the phylogenetic distribution between healthy controls 
and PHN patients. The results revealed significant dif-
ferences at each taxonomic level analyzed (LDA > 3, 
p < 0.05), with 34 differential ASVs being identified. 
Concretely, one class, two orders, three families, four 
genera, and five species were found to be enriched in 
PHN patients, while one order, two families, eight 
genera, and eight species were more abundant in HCs 
(p < 0.05). In comparison to NCs, patients with PHN 
exhibited ten enriched ASVs primarily belonging to 
the class Bacilli. Notably, the families Streptococcaceae, 
Clostridia_UCG-014_unclassified, and Enterobacte-
riaceae were more abundant in PHN patients, while 
the Butyricicoccaceae and Selenomonadaceae fami-
lies were more prevalent in NCs. At the genus level, 
Escherichia-Shigella, Streptococcus, Ligilactobacillus, 

Fig. 2 Community Profiling analysis showing differential relative abundances of fecal microbiota in PHN patients and HCs. A Microbiome 
composition of the two groups at the phylum level. B Microbiome composition of the two groups at the genus level. C Relative abundance 
of the top 30 genus in each sample
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and Clostridia_UCG-014_unclassified were enriched 
in PHN patients, whereas Eubacterium_hallii_group, 
Butyricicoccus, Tyzzerella, Dorea, Parasutterella, Rom-
boutsia, Megamonas, and Agathobacter were enriched 
in NCs. The findings indicate notable variations in the 
intestinal microbiota between PHN and HC groups.

ROC curve analysis
Consequently, our objective was to ascertain potential 
biomarkers that could differentiate between the two 
groups. We identified the five most prominent gen-
era (Escherichia_Shigella, Agathobacter, Streptococ-
cus, Megamonas, and Romboutsia) based on their LDA 
value, and subsequently employed these microbiota to 
construct the ROC curve (Fig. 5). The AUC of the ROC 
curve was determined to be 0.824, indicating that the 
model possessed the ability to differentiate between the 
two groups. Additionally, the model exhibited a speci-
ficity and sensitivity of 92.6% and 63.0%, respectively, 
signifying a notable diagnostic efficacy. These findings 
suggest that the gut microbiota may serve as a robust 
predictor of PHN.

Clinical manifestations correlated with the gut microbiota
The associations between the gut microbiota and clini-
cal manifestations were investigated (Fig. 6). The results 
revealed a negative correlation between Anaerotruncus 
and disease course, while Allisonella exhibited a positive 
correlation with disease course. Additionally, a positive 
trend was observed between Megamonas abundance and 
GAD-7, and Odoribacter demonstrated a direct negative 
association with ISI. Moreover, Lactobacillus and Odori-
bacter were negatively correlated with heat pain. Bacte-
roidales_unclassified was negatively associated with pain 
intensity, but positively correlated with itching intensity. 
Additionally, Clostridia_UCG-014_unclassified was neg-
atively associated with itching intensity.

Discussion
In recent years, accumulating evidence has demonstrated 
that the disorder of gut microbiota plays a significant role 
in modulating the development of neuropathic pain (Lin 
et  al. 2020). This study employed 16S rRNA sequenc-
ing analysis to characterize the gut microbiota of PHN 
patients for the first time. The results revealed that PHN 

Fig. 3 Gut microbiota differences between PHN patients and controls. Gut microbiota is compared between PHN patients and healthy control 
subjects at class (A), order (B), family (C), and genus (D) levels. Only the taxa with average abundance levels exceeding 1% are plotted. The 
bars on the left side of each figure show the relative abundance. On the right side of each figure, the center of circles represents the difference 
between the means of the two groups. The error bars represent the 95% confidence interval. P values of unpaired t-test are listed on the right
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patients displayed an altered gut microbiota composition. 
Furthermore, a prediction model was developed based 
on the results of LEfSe and achieved high values of AUC. 
Moreover, the Spearman correlation analysis revealed 
robust associations between differentiated gut microbi-
ota and diverse clinical presentations. These results indi-
cate that dysbiosis of gut microbiota is a crucial factor in 
the pathogenesis of PHN.

In our study, we observed a lower abundance of Firmi-
cutes at the phylum level in PHN patients, while Bacte-
roidota exhibited a higher abundance. Several previous 
studies also observed marked decreases in Firmicutes 
and increase in Bacteroidota in the intestines of patients 
with neuralgia (Lin et  al. 2020; Zhang et  al. 2019). It is 
noteworthy that phylum Firmicutes is known to play a 
crucial role in regulating inflammatory responses and 
human metabolic functions (Bhat and Kapila 2017). The 
depletion of the Firmicutes phylum may result in the 
production of pro-inflammatory cytokines and toxic 
metabolites, while simultaneously reducing the pres-
ence of beneficial substances such as short-chain fatty 
acids (SCFAs), ultimately leading to damage to the gut 
epithelial barrier. The Bacteroidota phylum is character-
ized by its major outer membrane component, lipopoly-
saccharide (LPS). LPS is known to play a critical role in 

Fig. 4 LEfSe identified the taxa with the greatest differences in abundance between PHN patients and HCs. A Cladogram showing differential 
bacterial abundance in the PHN and control groups. B Microbiome biomarkers were identified. The green color represents the PHN group, 
and the red color represents the HCs. LDA score for discriminative features > 3.0

Fig. 5 ROC curves of the gut genus bacterium relative abundance 
for the prediction of PHN. Vertical coordinate indicated the sensitivity 
of prediction, horizontal coordinate indicated the 1-specificity 
of prediction, AUC > 0.5 indicated a predictive efficiency of the gut 
bacterium
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the initiation of systemic inflammation and the release of 
pro-inflammatory cytokines. Thus, the missing phylum 
Firmicutes and enriched phylum Bacteroidota in PHN 
patients may exacerbate neuroinflammation in humans, 
thereby augmenting the likelihood and advancement of 
PHN.

At the genus level, a reduction in the abundance lev-
els of many microbiotas was observed in PHN patients. 
According to the LEfSe results, Eubacterium_hal-
lii_group, Butyricicoccus, Tyzzerella, Dorea, Parasutte-
rella, Romboutsia, Megamonas, and Agathobacter were 
decreased in PHN patients. Previous research has estab-
lished the significant roles played by these species in 
preserving human health. Eubacterium_hallii, Butyricico-
ccus, and Agathobacter were shown to produce butyrate 
(Duncan et al. 2004; Geirnaert et al. 2014; Iversen et al. 
2022). According to Hamer et al., butyrate serves as the 
primary energy source for colonocytes, thereby pro-
moting the maintenance of gastrointestinal health by 
enhancing epithelial barrier integrity and suppressing 
inflammation (Hamer et  al. 2008). Furthermore, recent 
studies have shown that butyrate possesses the ability to 
ameliorate neuropathic pain (Bonomo et al. 2020; Kukkar 
et al. 2014). The genera Tyzzerella, Dorea, Parasutterella, 
Romboutsia, and Megamonas have been shown to pro-
duce SCFAs, which are important for maintaining the 
health of the gut lining and supporting immune func-
tion (Huang et al. 2022; Jiao et al. 2018; Xiao et al. 2020; 
Xu et al. 2021; Zhang et al. 2022). Therefore, we hypoth-
esized that a decrease in these genera of bacteria might 

be detrimental to PHN by affecting the abundance of 
SCFAs. Furthermore, Dorea has been demonstrated neg-
atively linked to inflammatory diseases (Bajaj et al. 2012). 
It was shown that Romboutsia and Megamonas may be 
beneficial for individuals with inflammatory bowel dis-
ease or other inflammatory conditions because of their 
anti-inflammatory effects (Qiu et al. 2020; Yu et al. 2021). 
Consequently, the reduced levels of these species in PHN 
patients may contribute to the destruction of the intes-
tinal mucosal barrier, thereby triggering inflammation 
and immune responses and ultimately exacerbating the 
pathology of PHN.

While, the abundance levels of several genera were 
found to be increased in PHN patients according to 
the LEfSe results. Specifically, Escherichia_Shigella, 
Streptococcus, Ligilactobacillus, and Clostridia_UCG-
014_unclassified were observed to be elevated in PHN 
patients. Previous studies have linked certain species 
with increased abundance levels to inflammatory dis-
eases or neuropathic pain. Notably, Escherichia_Shigella 
has been associated with a pro-inflammatory status, and 
chronic and persistent peripheral inflammation has been 
observed in individuals with persistent infection with this 
species (Qiu et  al. 2020). Similar to our findings, previ-
ous studies also revealed remarkably increased Strepto-
coccus in rats with CCI-induced neuropathic pain (Chen 
et al. 2021). Additionally, Streptococcus is associated with 
inflammatory pain (Chakravarthy et  al. 2014; Guo et  al. 
2019). Thus, we hypothesized that an increase in these 
genera of bacteria might contribute to PHN development 

Fig. 6 Spearman correlation analysis of PHN clinical symptoms. The intensity of the color indicates the r value (correlation). The red color represents 
a positive score, and the purple color represents a negative one. *p < 0.05



Page 10 of 12Jiao et al. AMB Express          (2023) 13:108 

by exacerbating inflammation. Interestingly, it was 
reported that Ligilactobacillus and Clostridia_UCG-014_
unclassified may be involved in maintaining a healthy 
gut environment (Guerrero Sanchez et al. 2022; Liu et al. 
2021). It is noteworthy that in our study, there was a neg-
ative correlation between Clostridia_UCG-014_unclassi-
fied and itching intensity in patients with PHN. Further 
investigation is necessary to determine the potential 
impact of elevated levels of these particular species on 
PHN in humans.

We used LEfSe analysis to select five species based on 
their LDA values for use as biomarkers for predicting 
disease status. A ROC Curve was constructed using the 
abundance of the top five genera, selected from a pool of 
12 genera, resulting in an AUC value of 0.824. Therefore, 
it was confirmed that the discriminant model could effec-
tively distinguish PHN patients from healthy controls, 
which suggests that the gut microbiota could be used to 
forecast PHN. Additionally, a heat map was employed 
to depict the associations between species and clinical 
phenotype, revealing that certain gut microbiota exhib-
ited significant correlations with clinical manifestations 
related to PHN, including disease course, anxiety states, 
sleep quality, heat pain, pain intensity, and itching inten-
sity. These outcomes establish a basis for investigating 
the interplay between the gut microbiota and the host in 
relation to the onset of PHN.

One of the primary strengths of our study is the utiliza-
tion of the 16S rRNA gene sequencing method to profile 
the gut microbiota of patients with PHN. Additionally, 
we have developed a pioneering predictive model and 
conducted Spearman correlation analysis to explore asso-
ciations between differentiated gut microbiota and clini-
cal presentations in PHN. Theoretically, the variability of 
the microbiome may offer a degree of plausible explana-
tions for longstanding clinical enigmas, such as the devel-
opment of chronic pain in certain patients following the 
resolution of herpes zoster rash and the variability of 
clinical symptoms among patients. However, it is impera-
tive to acknowledge that this study is in its preliminary 
stages and is subject to several limitations that require 
further investigation. Firstly, our study is a single-center, 
cross-sectional study with a limited sample size. Sec-
ondly, despite age-, gender-, BMI-, and diet matching of 
PHN patients in the analysis, other confounding factors 
such as stress may have influenced our results. Thirdly, 
it was suggested that SCFAs may be implicated in the 
development of PHN in our study, while the association 
of fecal or plasma levels of SCFAs with gut microbiota in 
PHN patients was not further explored. Additionally, the 
impact of certain treatments for PHN, including phar-
macological, nonpharmacological, and interventional, on 
the gut microbiota remains unclear. Lastly, our research 

lacks animal experiments to investigate the underly-
ing mechanisms linking gut microbiota dysbiosis to the 
development of PHN, as well as animal experiments 
exploring the potential of fecal microbiota transplan-
tation as a treatment for PHN. Consequently, further 
research is imperative, incorporating larger sample sizes, 
multicenter designs, follow-up studies after treatment, 
animal experimentation, and innovative research tech-
niques such as metagenomics and metabonomics. This 
will facilitate the exploration of potential causal mecha-
nisms between gut microbiota and PHN, thereby pro-
viding guidance for future scientific investigations and 
interventions aimed at the prevention and treatment of 
PHN.

In summary, our study revealed a significant correla-
tion between gut microbiomes and PHN, suggesting 
that disruptions in gut microbiota may play a role in the 
development of PHN. Our results provide evidence to 
support the potential use of gut microbiota as a predic-
tive tool for PHN and targeting gut microbiota as a novel 
therapeutic approach for PHN.
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