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Abstract 

Herbal tea residue (HTR) is generally considered to be a reusable resource which has still retains considerable pro-
portion of nutrients and active substances. This study aimed to investigate the effects of substitution of whole corn 
silage with fermented herbal tea residue (FHTR) on meat quality, serum indices, rumen fermentation, and microbes 
in Chuanzhong black goats. Twenty-two female Chuanzhong black goats (4 months old) with similar weight 
(9.55 ± 0.95 kg) were selected and randomly divided into two groups. FHTR was used to replace 0% (CON group) 
and 30% (FHTR group) of whole corn silage in the diets and fed as a total mixed ration (TMR) for Chuanzhong black 
goats. The adaptation feeding period was 7 days, and the experimental period was 35 days. Results illustrated 
that the FHTR group had higher value of a* and concentrations of DM and CP and lower rate of water loss (P < 0.05) 
than the CON group. For the serum indices, goats fed with 30% FHTR had higher (P < 0.05) concentration of CR 
on day 35. For rumen fermentation, the pH and ratio of acetic acid/propionic acid (AA/PA) in the FHTR group were 
significantly lower than those in the CON group (P < 0.05). In addition, we studied the goats’s rumen microbial com-
munity composition and found that the dominant phyla were Firmicutes, Bacteroidetes,and Tenericutes; and the domi-
nant genera were Quinella, Candidatus_Saccharimonas, and Saccharofermentans. There was a significant difference 
in the beta diversity of the rumen microbiota between groups (P < 0.05). To sum up, the addition of FHTR can affect 
the meat quality, serum indices, improved rumen fermentation by adjusted the diversity and function of the rumen 
microbiota.
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Introduction
Herbal medicine tea, also known as Guang-style HT, is 
composed of seven traditional herbs (jelly grass, frangi-
pani, honeysuckle, chrysanthemum, prunella spike, cloth 
residue leaves and licorice). These traditional Chinese 
HT contains a variety of biologically active compounds, 
such as flavonoids, polysaccharides, and alkaloids (Zhao 

et  al. 2013). Currently, drinking HT is widely because 
of their has a long history of being used to prevent and 
treat diseases (Liu et al. 2013) such as essential functions 
in humans and animals, including treatment for colds 
(Melnyk et  al. 2021); anti-oxidant, anti-inflammatory, 
anti-proliferative, anti-mutagenic, anti-bacterial, and 
anti-viral properties (Patel 2022) and cardiovascular dis-
eases (Fu et al. 2018). Researchers find that adding HT to 
food increased the average lifespan of fruit flies by more 
than 50% (Shen et al. 2020). However, the HT by-prod-
ucts (herbal tea residues, HTR) have not been effectively 
used. Conventional incineration, landfill, composting, 
and other treatments have led to severe environmental 
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pollution (Zhang et al. 2020). Processing and utilization 
of HTR is of great significance for industrial development 
and environmental protection. Tea residues (TR) can be 
used not only as organic fertilizers (Li et  al. 2021a) but 
also as an adsorbent to remove various heavy metal ions 
(Zhu et al. 2022). HTR is difficult to preserve and digest 
due to its high fiber and water content. Microbial fer-
mentation can refine the nutrition and preservation time 
of HTR (Xie et al. 2020). A previous study suggested that, 
fermented HTR (FHTR) can improve the performance 
of fattening cattle under heat stress (Zhuang et al. 2021). 
This potentially indicates that FHTR have the function of 
improving animal performance.

Mutton is popular among consumers because of its 
high-quality protein and mineral elements (such as iron 
and zinc), and amount consumed continues to increase 
(Wang et  al. 2021a), people have higher requirements 
for the quality of meat products. To date, some plant 
by-products with many biologically vigorous substances 
have attracted people’s attention (Chen et  al. 2019; Cui 
et  al. 2019). For instance, the addition of flavonoid-rich 
ginkgo biloba residue meal enhanced the meat quality in 
Haimen white goats (Chen et al. 2021). The supplementa-
tion of ramie to the diet of Liuyang black goats improved 
the meat amino acid content (Tang et al. 2021). In addi-
tion, adding purple corn anthocyanins to the diet can 
ameliorate the quality of lamb meat by regulating the 
abundance of several flavor-related genes in the mus-
cle (Tian et al. 2021). Herbal tea residue (HTR) has still 
retains considerable proportion of nutrients and active 
substances. Therefore the potential feeding value of the 
FHTR prompted us to develop a suitable technology for 
animal production.

To date, few scholars have emphasized whether FHTR 
can improve meat quality and regulate rumen fermenta-
tion and microbial functions after replacing conventional 
feed ingredients in goats. In the present study, we aim 
to investigate the effects of substitution of whole corn 
silage with FHTR on meat quality, serum indices, rumen 
fermentation, and ruminal bacterial diversity in Chuan-
zhong black goats. This work provides a basis for using 
FHTR as a functional feed source for ruminants.

Materials and methods
Preparation of FHTR
HTR was provided by Wong Lo Kat Co. LTD (Guang-
zhou, China), cut into 2–3  cm pieces, and mixed with 
oat hay (fresh weight 640:360). HTR was added with 
2% molasses, and 1% Lactobacillus plantarum (Heyuan 
Jilongxiang Biotechnology Co., Ltd., 5 ×  109 colony-
forming unit/g) and mixed evenly using a feed mixer. 
The mixture was pressed into 50 kg per bag for anaerobic 

fermentation for 20 days. The nutrient compositions of 
FHTR are shown in Additional file 1: Table S1.

Experimental design and animal management
This study was conducted in a commercial farm in Zhao-
qing City (Guangdong Province, China). Twenty-two 
female Chuanzhong black goats (4 months old) with 
similar weight (9.55 ± 0.95 kg) were assigned randomly 
into two groups. The experimental feed was composed 
of two levels of FHTR (0% and 30%) as a substitute for 
WCS (labeled CON and L30, respectively). All of the 
goats were fed a total mixed ration (TMR). The TMRs 
were formulated based on the Chinese feeding Stand-
ards (China Standard NY/T816-2004). Dry matter (DM), 
crude protein (CP), and ether extract (EE) were measured 
following the procedures of the Association of Official 
Analytical Chemists (AOAC) (2000). Acid detergent fiber 
(ADF) and neutral detergent fiber (NDF) were examined 
using the method described in a previous study (Van 
Soest et  al. 1991). Net energy for maintenance (NEM) 
and net energy for weight gain (NEG) were calculated 
according to the method provided by the Chinese Feed-
ing Standards (China Standard NY/T816-2004). The 
dietary ingredients and the nutrient compositions for 
the trial were shown in Additional file  1: Table  S2. The 
goats were fed twice daily at 8:00 and 15:00, and water 
was freely available throughout the experimental period. 
The adaptation feeding period was 7 days, and the experi-
mental period was 35 days. All animal procedures were 
approved by the Animal Care Committee at South China 
Agricultural University.

Measurements and sampling
Serum indices
On day 0, 17, and 35, blood samples were gathered from 
each group via the jugular vein before the morning feed-
ing. The blood samples were placed on the ice for 6 h and 
then centrifuged at 3000 rpm for 15 min. The serum was 
placed in a 2 mL sterile EP tube and stored at − 80 °C for 
further analysis of serum indices. Serum indices, includ-
ing alanine aminotransferase (ALT), uric acid (UA), cre-
atinine (CR), glucose (GLU), creatine kinase (CK), and 
lactate dehydrogenase (LDH), were detected using a bio-
chemical auto-analyzer (Hitachi automatic biochemical 
analyzer 7080, Tokyo, Japan).

Meat quality‑related indices
Feeding was stopped the day before the end of the experi-
ment. On the last day of the experiment, eight goats 
from each treatment group were selected randomly and 
slaughtered according to the method provided by the 
operating procedures of livestock and poultry slaughter-
ing-Sheep and goat (China Standard NY/T3469-2019). 
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The longissimus dorsi (LD) samples were removed from 
each carcass at the 11th–13th rib position and divided 
into two parts. The pH value, meat color, water loss rate, 
and shear force were tested to evaluate meat quality. All 
measurements were carried out on the LD samples. The 
pH of muscles was measured at 45  min and 24  h after 
slaughter, and the samples were preserved in a refrigera-
tor at 4 °C after each measurement.

Meat color: meat color [lightness (L*), redness (a*), 
and yellowness(b*)] was measured with a color differ-
ence meter (NR10QC, 3NH Company, Shenzhen, China) 
45 min after slaughter.

Water loss rate: meat samples were prepared. The fas-
cia and fat were removed and the muscle was cut into 
long strips weighing 3–4 g. The sample was centrifuged 
at 1500 rpm and 4 °C for 30 min, and weighed. Water loss 
rate (%) = (meat sample weight after centrifuging/meat 
sample weight before centrifuging) × 100%.

Shear force: meat samples were cut into 1  cm thick 
pieces, vacuum-packaged in non-permeable polyethyl-
ene bags, and cooked in a water bath at 85 °C for 10 min, 
resulting in a core temperature of about 75 °C. The shear 
force (N) was determined by the c-LM muscle tenderness 
meter (Northeast Agricultural University Engineering 
College, Heilongjiang, China).

Meat chemical analysis: Meat samples were cut into 
pieces and dried in a vacuum freeze-drying machine 
(ScienTZ-18ND, Ningbo Xinzhi Biotechnology Co, 
Ltd., Ningbo, CHN). Chemical analyses of CP, EE, and 
DM were carried out following the method of AOAC. 
Dried muscle tissue (approximately 100 mg) was put in a 
hydrolysis tube, After this, 15 mL of 6 mol/L hydrochlo-
ric acid solution and four drops of phenol were added. 
Samples were put in a cryogenic chamber and frozen 
for 5 min, then sealed under nitrogen filled atmosphere 
stored for over one hour. Samples were then placed at 
110 °C for hydrolysis for 22 h. The obtained hydrolysate 
was filtered into a 50 mL volumetric flask, and mix-
tures were vortexed. A 0.2 N sodium citrate buffer (pH 
2.2) was added to the test tubes to dissolve the residue 
and homogenized, then 0.22 μm syringe filter (Sarto-
rius, Göttingen, Germany) was used for filtration. The 
amino acid contents were analyzed by an amino acid ana-
lyzer (L-8900, Hitachi, Japan) (Khalid et  al. 2022; Liang 
et al. 2022). The determination principle is to distinguish 
amino acids according to their different structure, acidity, 
alkalinity, polarity, and molecular size.

Determination of rumen fermentation parameters
Rumen fluid was collected, and the container was thor-
oughly cleaned with fresh water between sample collec-
tions. The rumen fluid samples were filtered with four 
layers of gauze, which were subjected high-pressure 

sterilization. The filtered rumen fluid was separated into 
two 50 mL centrifuge tubes and three 2 mL cryogenic 
vials. The cryogenic vial was instantly frozen in liquid 
nitrogen and stored in a freezer at − 80 °C. The pH of the 
rumen fluid in a 50 mL centrifuge tube was tested using 
a portable pH meter, and measurement was repeated 
three times. The rumen fluid in the other 50 mL centri-
fuge tube was centrifuged for 15  min at 4000 r/min to 
collect the supernatant, which was divided into three 15 
mL centrifuge tubes. One bottle was used for the deter-
mination of VFA content. The other tube was stored 
at − 20  °C for the determination of ammonia nitrogen 
 (NH3–N). The remaining tube was stored at − 80  °C as 
a backup sample. VFAs, including acetic acid (AA), pro-
pionic acid (PA), isobutyric acid (IBA), isovaleric acid 
(IVA), and butyric acid (BA), were analyzed by HPLC, 
which was equipped with a Shodex RS Pak KC-811 col-
umn (Showa Denko K.K., Kawasaki, Japan) and an SPD-
20  A detector (Shimadzu, Kyoto, Japan). Measurement 
was conducted using the following conditions: eluent of 
3 mmol/L  HClO4, running rate of 1.0 mL/min, and col-
umn oven temperature of 50  °C. The concentration of 
 NH3–N was measured according to the method of Brod-
erick and Kang (1980):  NH3–N concentrations:  NH3–N 
(mg/100 mL) = C×1.4, where C is the concentration of 
 NH3–N (mmol/L) calculated by the standard curve and 
1.4 is the conversion factor.

Analysis of rumen bacterial community
Total genomic DNA of rumen fluid samples was 
extracted by CTAB method. DNA concentration was 
determined using the Nanodrop2000/2000c nucleic acid 
protein detector (Thermo, Waltham, Massachusetts, 
USA). DNA quality was evaluated using 2% gel electro-
phoresis. The V1–V9 regions of the bacterial 16S rRNA 
gene was amplified using primers 27F (5ʹ-AGA GTT TGA 
TCC TGG CTC AG-3ʹ) and 1492R (5ʹ-GNTAC CTT GTT 
ACG ACTT-3ʹ) (He et  al. 2019). PCR amplification was 
conducted using the TransStart® FastPfu DNA polymer-
ase kit (TransGen Biotech, Beijing, China). After ampli-
fication, the quality control and purification of the PCR 
products were carried out and high-throughput sequenc-
ing was performed by the PacBio Sequel platform. The 
PacBio off-machine data was exported to bam format 
files, and LimA software was used to distinguish data 
according to barcode sequence, save the sequences of all 
samples in bam format, and use CCS (SMRT Linkv7.0) to 
correct the sequences. The sequence correction param-
eters were as follows: the circular-consensus sequence 
(CCS) = 3, the minimum accuracy was 0.99, and sequence 
length of less than 1340 bp; sequences with length greater 
than 1640 bp were removed. The read sequence data 
were compare with the reference database by using the 
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UCHIME (http:// www. drive5. com/ usear ch/ manual/ 
uchime_ algo. html) algorithm to detect and eliminate chi-
meric sequences and obtain clean reads for subsequent 
analysis (Haas et al. 2011; Edgar 2013). Uparse software 
was used to cluster all clean reads of all samples. By 
default, the sequences were clustered into operational 
taxonomic units (OTU) with 97% consistency, and the 
representative sequences of OTU were selected (Edgar 
et  al. 2011). Species annotation analysis of OTU repre-
sentative sequences (threshold set at 0.8–1) was per-
formed using Mothur method and SILVA’s SSUrRNA 
database (https:// www. arb- silva. de/) (Quast et  al. 2012). 
The data of each sample were normalized, and subjected 
to analyses of alpha diversity analysis and beta diversity. 
Alpha diversity was calculated using Qiime software 
(Version 1.9.1), and differences between groups were 
analyzed using R software (Tang et  al. 2021) (Version 
2.15.3). Unweighted UniFrac distances were computed 
using the Phyloseq default script to measure beta diver-
sity. Principal component analysis (PCA) was conducted 
using the ade4 and ggplot2 packages of R software. Func-
tion prediction was detected using Tax4Fun, an R pack-
age (Version 2.15.3) for the function prediction based on 
the16s Silva database (Aßhauer et al. 2015).

Statistical analysis
Excel 365 was used for the preliminary collation and 
analysis of experimental data measured. The meat qual-
ity indices and rumen microorganism data were analyzed 
as ANOVA procedure using SAS 9.4 (SAS Inst Inc, Cary, 
NC, USA). The model used was Yij = µ + Τi + εij, where Yij 
is the dependent variable, µ is the general mean, Τi is the 
fixed effect of treatment, and εij is the random error.

Serum indices data were analyzed by MIXED pro-
cedure using SAS 9.4 to determine whether they were 
affected by the interaction of diet and feeding time. The 
CLASS statement was used to define categorical vari-
ables; The MODEL statement was used to define serum 
indices as dependent variables, and diet, feeding time, 
and interaction of diet and feeding time was independ-
ent variables. DDFM = KENWARDROGER was used to 
estimate the modified degrees of freedom. REPEATED 
sentences determined the variance and covariance 
of the repeated measures. Variance type and covari-
ance structure were used in the auto-regressive models 
[type = AR(1)]. LSMEANS sentence was used to calculate 
the average. When the interaction was not significant, 
ANOVA was used to analyze the effect of diet on serum 
indices. Experimental data were shown in the table by 
means and standard error of means (SEM). P < 0.05 
indicated significant difference, and P < 0.01 indicated 
extremely significant difference.

Results
Carcass characteristics and meat quality
Table  1 shows the effect of dietary treatment on the 
chemical composition and characteristics of LD. Com-
pared with CON, the FHTR group had higher a* value, 
concentration of DM, CP, and lower water loss rate 
(P < 0.05). No effect due to the dietary treatment was 
found in EE (P > 0.05). FHTR had no effect on the 
pH45min, pH24h, L* value, b* value, or shear force of 
goats (P > 0.05). Table 2 shows the effect of dietary FHTR 
on the amino acid content of LD. We found that feeding 
FHTR did not affect the amino acid composition of LD of 
goats (P > 0.05). The amino acid composition and content 
in each test group were evaluated according to the scor-
ing standard of the Food and Agriculture Organization of 
the United Nations/World Health Organization (FAO/
WHO). The scoring results are shown in Additional file 1: 
Table S3. The two groups had similar amino acid scores.

Serum indices
Serum indices are listed in Additional file  1: Table  S4. 
Our finding suggested that these serum indices were not 
affected by the interaction of diet and feeding time. For 
the serum indices, dietary FHTR supplementation did 
not influence the concentrations of ALT, UA, CK, GLU, 
and LDH in the experiment period (P > 0.05). On day 35, 
goats fed with 30% FHTR had higher CR concentration 
(P < 0.05).

Rumen fermentation
Table 3, shows that supplementation with FHTR did not 
alter the concentrations of PA (P = 0.069), IBA (P = 0.414), 

Table 1 Effects of FHTR on chemical composition and 
characteristics of longissimus dorsi (LD) of Chuanzhong black 
goats

CON 0% fermented herbal tea residue silage, L30 30% fermented herbal tea 
residue silage, DM dry matter, CP crude protein, EE ether extract, SEM standard 
error of means

Items Treatment SEM P-value

CON L30

DM (%) 19.17 23.30 2.16 0.003

CP (%) 81.05 84.23 1.57 0.001

EE (%) 7.82 7.65 0.18 0.549

L* 53.89 53.41 0.59 0.729

a* 15.2 17.06 0.50 0.040

b* 8.63 8.60 0.15 0.934

pH45min 5.99 5.90 0.03 0.196

pH24h 5.85 5.75 0.03 0.109

Shear force 47.79 47.74 1.23 0.974

Water loss rate (%) 5.61 4.93 0.01 0.019

http://www.drive5.com/usearch/manual/uchime_algo.html
http://www.drive5.com/usearch/manual/uchime_algo.html
https://www.arb-silva.de/
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and IVA (P = 0.235) between groups. In contrast, the con-
centrations of  NH3–N (P = 0.001), AA (P = 0.024), BA 
(P = 0.019), VA (P = 0.040), and total VFA (P = 0.016) were 
significantly increased in the FHTR group. The ruminal 
pH value (P = 0.007) and the ratio of AA/PA (P = 0.026) 
were significantly decreased by the addition of FHTR to 
the goat diets.

Sequencing depth and microbiota diversity
In our study, the richness indices (Chao1 and Ace), phy-
logenetic diversity(PD) whole tree, observed species, and 
diversity indices (Shannon and Simpson) were calculated 
to reckon the reliability of sequencing and the changes of 
alpha diversity of sample microbiota (Fig. 1A–F). No sig-
nificant differences in these indices were found between 

the groups (P > 0.05). Principal component analysis 
(PCA) enables the samples to be represented by linear 
transformation and dimensionality reduction so that the 
data can be visually presented. As shown in Fig. 1G, the 
sample distances in each group were relatively dispersed, 
showing two diverse settlements. The UPGMA cluster-
ing results (Fig.  2) were integrated. In addition, analysis 
of multi-response displacement process (MRPP) analysis 
similarity (ANOSIM), and permutational multivariate 
analysis of variance (PERMANOVA) were performed to 
the rumen microflora in the two treatments (Additional 
file  1: Table  S5), which further proved that there was a 
significant difference in the beta diversity of the rumen 
microbiota between groups (P < 0.05).

Rumen bacterial community composition across different 
dietary treatments
In this experiment, the bacteria with more than 0.1% rela-
tive abundance in at least one sample were analyzed. The 
relative abundance of 13 phyla is shown in Table 4. The 
dominant bacteria were Firmicutes (35.12% and 46.52% 
on average), Bacteroidetes (39.80% and 29.47% on aver-
age), and Tenericutes (11.41% and 13.16% on average) in 
CON and L30, respectively (Fig. 3A). The relative abun-
dance of 17 general is shown in Table  5. The dominant 
bacteria were Quinella (4.90% and 8.70% on average), 
Candidatus_Saccharimonas (2.25% and 4.11% on aver-
age), and Saccharofermentans (1.57% and 1.04% on aver-
age) in CON and L30, respectively (Fig. 3B). In general, 
the relative abundance of these bacteria were not affected 
by diet treatments.

Table 2 Effects of FHTR on amino acid composition and content 
of LD of Chuanzhong black goats

CON 0% fermented herbal tea residue silage, L30 30% fermented herbal 
tea residue silage, EAA essential amino acid, NEAA nonessential amino acid, 
DAA delicious amino acid, TAA  total amino acids, Thr threonine, Val valine, 
Met methionine, Ile isoleucine, Leu leucine, Phe phenylalanine, Lys lysine, 
Asp aspartic acid, Ser serine, Glu glutamic acid, Gly glycine, Ala alanine, 
Cys cystine, Tyr tyrosine, His histidine, Arg arginine, Pro proline, SEM standard 
error of means

Items Treatment SEM P-value

CON L30

EAA, g/100 g

 Thr 3.55 3.59 0.04 0.624

 Val 3.83 3.85 0.05 0.865

 Met 2.03 2.01 0.05 0.508

 Ile 3.59 3.65 0.05 0.581

 Leu 6.43 6.52 0.07 0.541

 Phe 3.23 3.34 0.06 0.434

 Lys 7.03 7.15 0.08 0.459

NEAA, g/100 g

 Asp 6.95 7.02 0.10 0.744

 Ser 2.91 2.94 0.04 0.692

 Glu 11.8 11.8 0.16 0.867

 Gly 3.50 3.37 0.04 0.103

 Ala 4.39 4.45 0.04 0.369

 Cys 0.76 0.8 0.05 0.748

 Tyr 2.74 2.78 0.08 0.837

 His 2.01 2.37 0.12 0.133

 Arg 5.09 5.13 0.04 0.706

 Pro 3.10 3.03 0.03 0.206

 EAA 29.69 30.11 0.35 0.504

 NEAA 43.25 43.69 0.45 0.611

 DAA 32.61 32.76 0.32 0.759

 TAA 72.94 73.80 0.79 0.556

 EAA/NEAA, % 68.65 68.92 0.31 0.567

 EAA/TAA, % 40.70 40.80 0.11 0.565

Table 3 Effects of FHTR on the ammonia nitrogen  (NH3–N) and 
volatile fatty acids (VFA) of rumen samples of Chuanzhong black 
goats

CON 0% fermented herbal tea residue silage, L30 30% fermented herbal tea 
residue silage, pH pH value, VFA volatile fatty acids, NH3–N ammonia nitrogen, 
AA/PA acetic acid/propionic acid, T-VFA total volatile fatty acids, SEM standard 
error of means

Items Treatment SEM P-value

CON L30

pH 6.62 6.37 0.51 0.007

NH3–N (mg/dL) 13.90 17.74 1.97 0.001

VFA (mmol/L)

 Acetic acid 52.36 66.06 3.16 0.024

 Propionic acid 12.34 14.06 0.48 0.069

 Isobutyric acid 0.89 0.94 0.31 0.414

 Butyric acid 6.16 7.84 0.38 0.019

 Isovaleric acid 0.95 1.09 0.58 0.235

 Valeric acid 0.47 0.58 0.29 0.040

 Acetic acid/propionic acid 4.24 4.68 0.10 0.026

 T-VFA 73.14 90.57 14.98 0.016
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Function prediction of rumen flora with different diets
The KEGG pathways can be divided into levels 1, 2, and 
3. Tax4fun was used to predict the rumen microbial 
function of different treatment groups (Fig. 4A), and the 
top 10 pathways at these 3 levels are shown in Fig. 4B–D. 
In level 1, the top three predicted functions were Metab-
olism, Genetic information processing, and Environ-
mental information processing; In level 2, the top three 
predicted functions were Carbohydrate metabolism, 
Replication and repair, and Translation; in level 3, the top 

three predicted functions were Transporters, DNA repair 
and recombination proteins and Two component sys-
tem. In general, dietary treatments did not alter the pri-
ority of these pathways. LDA Effect Size analysis (LEfSe) 
is an analytical tool used to for discover and interpret 
high-dimensional data for finding biometric identifiers 
with statistical differences between groups. As shown in 
Fig. 3E, F, LEfSe analysis revealed that 4 and 22 pathways 
are significantly different in level 2 and level 3 from the 
CON and L30, respectively, among which CON and L30 

Fig. 1 Sequencing depth and fecal microbiota diversity: A Ace index; B Chao1 index; C observed species index; D Shannon index; E Simpson index; 
F PD whole tree. G Principal Component Analysis (PCA)



Page 7 of 13Wang et al. AMB Express          (2023) 13:106  

had 13 pathways each. In level 2, FHTR had significantly 
higher function enrichment of genetic information pro-
cessing and excretory system than CON. However, L30 
dramatically reduced the function enrichment of metab-
olism of co-factors and vitamins compared to that in 
CON. In level 3, L30 had higher function enrichment of 
replication recombination and repair proteins, methane 
metabolism, glycolysis and gluconeogenesis, protein deg-
radation, fatty acid degradation, and energy metabolism 
than CON. Interestingly, dietary FHTR supplementation 
reduced the function enrichment of amino acid metabo-
lism and longevity regulating pathway.

Discussion
Carcass characteristics and meat quality
Meat quality is an important economic trait of goats 
husbandry. Crude protein and moisture content are 
the most important characteristics for evaluating meat 
production (Tang et al. 2021). In the present study, the 
inclusion of FHTR in the diet had significant effect 
on muscle moisture content and crude protein, indi-
cated that the addition of FHTR could improve the 
meat quality of goats. Moreover, meat color is the 
most important quality attribute that influences the 
purchasing decisions of consumers (Carpenter et  al. 
2001). Although the color of muscles has little correla-
tion with meat flavor, consumers usually prefer fresh 
meat with bright red color (Zhang et al. 2015). In the 
present work, the color index a* of meat was higher 
in FHTR than in CON. As previously reported, the 
value of a* is affected by the ratio of deoxymyoglobin 
to oxymyoglobin (Campos et  al. 2017). Myoglobin is 
a small molecule pigment protein that can revers-
ibly bind to oxygen. Moreover, the color values of L* 
and b* had no significant effect in the two treatment 
groups, which contradicted the findings of a previ-
ous study (Li et al. 2018). FHTR contains a number of 
antioxidant active substances, such as rosmarinic acid 
and chlorogenic acid (Wang et al. 2021b). These acids 
have significant application potential in meat products 
because they can reduce, the malondialdehyde content 
and improve the meat quality (Li et  al. 2019). Other 
factors can affect meat quality, such as natural dietary 
antioxidants have been used to improve meat quality 
by improving the antioxidant status via enhanced scav-
enging capacity and reduced capacity of DPPH and 
ABTS free radicals (Salami et al. 2016). In the present 

Fig. 2 The UPGMA clustering

Table 4 Effects of FHTR on rumen bacteria (phylum-level) of 
Chuanzhong black goats (relative abundance ≥ 0.1%)

CON 0% fermented herbal tea residue silage, L30 30% fermented herbal tea 
residue silage, SEM standard error of means

Items Treatment SEM P-value

CON L30

Firmicutes 35.12 46.52 14.54 0.233

Bacteroidetes 39.80 29.47 3.86 0.190

Tenericutes 11.41 13.16 1.62 0.605

unidentified_Bacteria 2.53 4.49 0.70 0.259

Proteobacteria 2.20 1.69 0.48 0.617

Lentisphaerae 1.98 0.61 0.46 0.139

Melainabacteria 1.94 0.93 0.30 0.091

Kiritimatiellaeota 1.40 0.72 0.29 0.255

Synergistetes 0.64 1.06 0.23 0.383

Planctomycetes 0.46 0.33 0.12 0.595

Spirochaetes 0.68 0.35 0.11 0.152

Gracilibacteria 0.45 0.21 0.08 0.144

Actinobacteria 0.05 0.21 0.05 0.162
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Fig. 3 Effect of FHTR on rumen microbiota composition. The rumen micobiota composition of goats in CON and L30 group at phylum (A) 
and genus level (B)
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study, the FHTR group had a lower water loss rate than 
CON. When exposed to air, the disulfide bond cross-
linking between the heavy chains of myofibril in meat 
resulted in a significant reduction in meat tenderness 
and water retention (Wang et al. 2020). In conclusion, 
the changes in the meat quality of goats could be due 
to the large amounts of active substances in FHTR. 
However, the molecular mechanism of FHTR in affect-
ing meat quality needs further investigation.

Serum biochemical indices
Serum biochemical indicators indicate the utilization 
of nutrients in the body. ALT and LDH are used to 
assess whether the liver’s ability to metabolize proteins 
and amino acids is abnormal (Jiang et al. 2014). In the 
present work, the serum ALT and LDH levels were not 
different between the groups (P > 0.05), indicating that 
the addition of FHTR did not damage the liver func-
tion of Chuanzhong black goats. CR is a metabolite of 
creatine and phosphocreatine, and its level can reflect 
the absolute amount of skeletal muscle. In general, CR 
can be used as a marker of nutrition and muscle qual-
ity (Yoshida et  al. 2019). In current study, on day 35, 
goats fed diets with 30% FHTR had a greater (P < 0.05) 
CR concentration, indicating that adding FHTR can 
improve muscle quality.

Rumen fermentation
Rumen pH and VFA content are essential index for 
assessing ruminant fermentation (Cui et  al. 2022). In 
this study, FHTR substituting for WCS significantly 
decreased the ruminal pH, which may be related to 
changes in rumen VFA. VFA plays a role in maintaining 
and providing energy for the growth of ruminants. The 
structure, quality, microbial activity, and microflora of 
ruminant diets affect the composition and concentra-
tion of VFA in the rumen (Sun et al. 2019). The digestion, 
absorption, and utilization of nutrients by ruminants can 
change (Lee 1985). AA is a product of fiber degradation 
and a main carbon resource for the synthesis of milk fat 
and body fat (El-Essawy et al. 2019). PA, as a product of 
starch fermentation, is the precursor of glucose synthesis 
in ruminants(Maldini et al. 2019). The addition of FHTR 
led to increases in the concentration of AA and the ratio 
of AA to PA. Krause et al. found that increasing the die-
tary particle size decreased the total rumen VFA in mid-
lactating dairy cows and increased the ratio of AA to PA 
(Krause et al. 2002). The ratio of AA to PA may indicate 
an increase in energy efficiency in organisms (Shah et al. 
2019). At present, few studies have been conducted to 
determine the regulatory mechanism of FHTR in the 
rumen. FHTR may improve rumen fermentation by con-
siderable proportion of the nutrients and bioactive com-
pounds mechanism. Based on the current results, the 
supplementation of FHTR in the diet promoted rumen 
fermentation, energy conversion, and absorption, result-
ing in a positive effect on the body.

Rumen microbiota
The rumen microbiota is closely concerned to the host’s 
overall metabolism and immune system (Jami et al. 2013). 
In the present study, no conspicuous differences were 
found in the richness indices (Chao1 and Ace), PD whole 
tree, observed species, and diversity indices (Shannon 
and Simpson), indicating the FHTR had no significant 
effect on the alpha diversity of the rumen microbiota. 
Nevertheless, by combining the PCA and UPGMA clus-
tering results, we found that FHTR significantly changed 
the beta diversity of the rumen microbiota,which by 
contrast Zhuang et  al. (2021) reported that feeding fat-
tening cattle with FHTR, did not significantly affect the 
beta diversity of the fecal microbiota. These results indi-
cated that the addition of FHTR had a certain effect on 
the diversity of rumen and fecal microorganisms. Differ-
ent diets did not alter the fact that Firmicutes and Bac-
teroidetes are the most abundant bacteria in the goat 
rumen (Wang et  al. 2021b). In the present study, Fir-
micutes, Tenericutes, and Bacteroidetes were the three 
dominant phyla, accounting for more than 80% of the 

Table 5 Effects of FHTR on rumen bacteria (genus-level) of 
Chuanzhong black goats (relative abundance ≥ 0.1%)

CON 0% fermented herbal tea residue silage, L30 30% fermented herbal tea 
residue silage, SEM standard error of means

Items Treatment SEM P-value

CON L30

Quinella 4.90 8.70 1.68 0.272

Candidatus_Saccharimonas 2.25 4.11 0.72 0.207

Saccharofermentans 1.57 1.04 0.35 0.466

Succiniclasticum 1.28 0.23 0.30 0.083

Methylobacterium 0.08 0.49 0.24 0.430

Fretibacterium 0.6 1.04 0.23 0.363

unidentified_Bacteroidales 1.33 1.09 0.21 0.581

unidentified_Ruminococcaceae 0.90 0.86 0.13 0.892

Anaeroplasma 0.96 0.38 0.17 0.083

Succinivibrio 0.42 0.09 0.12 0.169

unidentified_Lachnospiraceae 0.92 0.67 0.13 0.345

unidentified_Prevotellaceae 0.55 0.43 0.10 0.548

Cupriavidus 0.33 0.32 0.11 0.974

Sphaerochaeta 0.22 0.13 0.07 0.503

unidentified_Gracilibacteria 0.45 0.21 0.08 0.144

Anaerovorax 0.39 0.24 0.05 0.167

Pseudobutyrivibrio 0.18 0.32 0.06 0.239
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Fig. 4 Statistical graph of gene prediction function results of rumen microbiota via Tax4fun at A. Cluster heatmap of the relative abundance 
of rumen microbiota function analysis via Tax4fun at Level 1 (B), Level 2 (C) and Level 3 (D). The LDA Effect Size analysis (LEfSe) (E and F) of goats 
in CON and L30 group at Level 2 and Level 3, respectively
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microorganisms in the rumen. They are the most impor-
tant phyla, consistent with previous findings (Sadet-
Bourgeteau et al. 2010). Bacteroidetes are the main flora 
that assist organisms to digest carbohydrates. Firmicutes 
are the principal cellulose decomposers (Zhang et  al. 
2015). No significant differences were found in the rela-
tive abundance of Bacteroidetes and Firmicutes between 
the two groups. However, Firmicutes increased and Bac-
teroidetes decreased in the FHTR group compared with 
those in the CON group. Some researchers reported that 
the increase in Firmicutes and the decrease in Bacteroi-
detes can lead to obesity in mice (Stojanov et  al. 2020). 
Hence, dietary supplementation with FHTR may pro-
mote the growth of goat. At the genus level, the rumen 
bacteria with relative abundance greater than 0.1% were 
selected for analysis. These genera were not affected by 
the diet. In present study, we found that Quinella was the 
primary bacteria in the rumen. Han et  al. (2022) found 
that Rikenellaceae_RC9_gut_ group and Quinella were 
correlated with different altitudes and rumen fermen-
tation parameters, suggesting that they may play a key 
role in the adaptation to extreme environments. Hence, 
Quinella are beneficial bacteria that regulate rumen fer-
mentation. In general, FHTR can improve the structure 
and diversity of rumen bacteria. The relative abundance 
of Firmicutes, Bacteroidetes, and Quinella may serve as 
a biomarker of the rumen microbial structure, and the 
microbial structure of goats fed with FHTR becomes 
complete.

As expected, differences in the rumen microbiota sig-
nificantly affected the microbial function. Tax4fun is 
one of the most essential microbial community func-
tions. The 16S high-throughput sequencing data were 
available for classifying OTU species in the SILVA data-
base. Based on the classification results, the 16S copy 
number was standardized according to the function of 
the microbial community was predicted by construct-
ing the linear relationship between the SILVA classifi-
cation and the prokaryotic classification in the KEGG 
database realized. With the changes in the rumen 
microflora, LEfSe analysis showed that several path-
ways were enriched in goats fed with FHTR; these 
pathways include methane metabolism, glycolysis and 
gluconeogenesis, protein degradation, fatty acid deg-
radation, and energy metabolism, consistent with the 
findings of Li et  al. (2021b). It is worth emphasizing 
that the relative abundance of glycolysis, gluconeo-
genesis, and energy metabolism pathways in the FHTR 
group were significantly increased. Pan et  al. (2021) 
found that nutrient-related metabolism was enriched 
in the second rumen development, whereas differen-
tially expressed genes of the rumen microbiome were 

enriched in glycolysis/gluconeogenesis activities. This 
phenomenon may lead to higher concentrations of BA 
and AA in the rumen. Research on other differential 
KEGG orthologs remains limited. The regulation of 
rumen fermentation and the underlying mechanism 
need further investigation.

In conclusion, FHTR supplementation in diet could 
reduce the muscle shear force and water loss rate and 
improve rumen fermentation. We speculated that 
FHTR can can affect the meat quality, serum indices, 
improve rumen fermentation by regulating the rumen 
microbial function and increasing the abundance of 
glycolysis and gluconeogenesis, protein degradation, 
fatty acid degradation, and energy metabolism path-
ways. This finding might be related to a variety of bio-
logically active substances in FHTR. However, the 
specific mechanism needs further study.
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