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Abstract
Chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd), has caused extreme losses in 
amphibian biodiversity. Finding bacteria that produce metabolites with antifungal properties may turn out to be 
invaluable in the fight against this devastating disease. The entomopathogenic bacteria, Xenorhabdus szentirmaii 
and X. budapestensis produce secondary metabolites that are effective against a wide range of fungal plant 
pathogens. To assess whether they may also be effective against Bd, we extracted cell-free culture media (CFCM) 
from liquid cultures of X. szentirmaii and X. budapestensis and tested their ability to inhibit Bd growth in vitro. As a 
second step, using juvenile common toads (Bufo bufo) experimentally infected with Bd we also tested the in vivo 
antifungal efficacy of X. szentirmaii CFCM diluted to 2 and 10% (v/v), while also assessing possible malign side 
effects on amphibians. Results of the in vitro experiment documented highly effective growth inhibition by CFCMs 
of both Xenorhabdus species. The in vivo experiment showed that treatment with CFCM of X. szentirmaii applied 
at a dilution of 10% resulted in infection intensities reduced by ca. 73% compared to controls and to juvenile 
toads treated with CFCM applied at a dilution of 2%. At the same time, we detected no negative side effects of 
treatment with CFCM on toad survival and development. Our results clearly support the idea that metabolites of X. 
szentirmaii, and perhaps of several other Xenorhabdus species as well, may prove highly useful for the treatment of 
Bd infected amphibians.

Key points
1. First report of high anti-Bd efficacy of Xenorhabdus metabolites in vitro.
2. Metabolites of X. szentirmaii can be applied effectively on live toads.
3. Application of X. szentirmaii metabolites on live toads was safe.
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Introduction
Amphibians have suffered rapid biodiversity loss over 
the last decades and became one of the most threatened 
vertebrate groups (Monastersky 2014). The main causes 
of this decline are climate change, pollution, habitat loss, 
and emerging infectious diseases (Wake and Vreden-
burg 2008; Hof et al. 2011; Campbell Grant et al. 2016). 
Chytridiomycosis is the most serious emerging disease 
affecting amphibians caused by the chytrid fungi Batra-
chochytrium dendrobatidis (Bd) and Batrachochytrium 
salamandrivorans (Bsal). This disease has already led 
to the decline or extinction of several hundred spe-
cies and continues to cause mass mortality events on 
five continents (Scheele et al. 2019). Because Bsal has 
only been discovered recently (Martel et al. 2013) and 
its distribution range is confined to date to the north-
west of continental Europe (Spitzen-van der Sluijs et al. 
2016; González et al. 2019), here we concentrate on the 
better known and globally distributed Bd. The fungus 
infects keratinous epidermal layers of the skin (Berger et 
al. 1998). The symptoms of the disease are therefore the 
intensive sloughing or skin shedding, reddening on legs 
and ventral surfaces even ulcerations or skin lesions. The 
structural damage of the skin can impair skin-breathing 
and osmoregulation, provoking shifts in electrolyte bal-
ance and finally leading to cardiac asystolic death in 
metamorphosed amphibians (Voyles et al. 2009). Since 
its global appearance, several countermeasures against 
chytridiomycosis have been proposed (Johnson et al. 
2003; Woodhams et al. 2003; Harris et al. 2006; Wood-
ward et al. 2014; Hettyey et al. 2019) but finding a widely 
applicable mitigation method has remained one of the 
most challenging goals of animal conservation (Garner et 
al. 2016; Scheele et al. 2019).

Amphibians have a broad repertoire for defence against 
pathogens via thermoregulatory behaviour (behavioural 
fever; Sherman et al. 1998; Richards-Zawacki 2010; Mur-
phy et al. 2011) and their highly developed adaptive and 
innate immune systems (Carey et al. 1999; Grogan et 
al. 2018). Intrinsic factors of the adaptive immune sys-
tem, such as the major histocompatibility complex class 
II (MHCII) can play important roles in determining the 
susceptibility of the host to pathogens (Barribeau et al. 
2008; Bataille et al. 2015; Savage and Zamudio 2016). The 
innate immune system consists of cells with the func-
tion of absorbing and presenting antigens to the adap-
tive immune system. The complement system (humoral 
part of the innate immune system) leads the chemotaxis 
of phagocytes and aids the penetration of prokaryote and 
fungal cell membranes (Carey et al. 1999; Speth et al. 
2008). However, the first line of defence against invad-
ing pathogens are the skin-secreted defensive chemicals 
such as antimicrobial peptides, steroids, alkaloids, and 
biogenic amines (Daly 1995; Macfoy et al. 2005; Gomes 

et al. 2007; Tempone et al. 2007; König et al. 2015), and 
mutualistic skin bacteria, that can prevent infections or 
disease propagation (Belden and Harris 2007; Krynak 
et al. 2016). Nonetheless, while their natural defence 
mechanisms are normally effective against pathogens and 
parasites, emerging infectious diseases caused by intro-
duced pathogens can have devastating effects on amphib-
ian populations, especially when they act in concert with 
other stress factors (Koprivnikar 2010; Campbell Grant et 
al. 2016).

Bioaugmentation, which is the restoration or enrich-
ment of the microbiota to provide additional defences 
against pathogens, has been found to be useful in agri-
culture (Patterson and Burkholder 2003; Gentry et al. 
2004), aquaculture (Olsson et al. 1992), and in the con-
servation of corals (Teplitski and Ritchie 2009). Addi-
tion or supplementation of mutualistic skin bacteria 
could be a promising method to mitigate the impact of 
chytridiomycosis as well (Harris et al. 2009; Bletz et al. 
2013; Rebollar et al. 2020). As described in natural habi-
tats, the presence of certain microbial taxa (e.g., species 
of Janthinobacterium, Lysobacter, Pseudomonas genera) 
may enhance population resistance to chytridiomycosis 
in some amphibian species (Woodhams et al. 2007; Lam 
et al. 2010; Walke et al. 2011; Rebollar et al. 2016a). Bac-
terial secondary metabolites produced by these microbes 
associated with the amphibian skin inhibited Bd growth 
effectively in vitro (Woodhams et al. 2007; Brucker et al. 
2008a, b; Myers et al. 2012). Furthermore, the presence of 
some of the above mentioned bacterial taxa also reduced 
infection intensities and enhanced the survival of animals 
in vivo (Becker et al. 2009; Muletz et al. 2012). However, 
other studies delivered mixed results reporting moderate, 
or no effect of bioaugmentation (Woodhams et al. 2012; 
Küng et al. 2014; Rebollar et al. 2016b). Research on bio-
augmentation against chytridiomycosis mainly focused 
on the establishment of certain bacteria producing anti-
fungal compounds or entire bacterial communities on 
the amphibian skin (Rebollar et al. 2020). However, this 
approach also has several limitations. The introduction of 
new bacteria can induce disadvantageous changes in the 
hosts’ microbiome, they can trigger immune responses in 
hosts, and environmental conditions varying across time 
and space can differentially affect microbial community 
structure and function, and the effectiveness of defence 
against pathogens (Daskin et al. 2014; Robak and Rich-
ards-Zawacki 2018; Woodhams et al. 2018; Rebollar et al. 
2020). Additionally, the presence of Bd can also change 
the structure of the skin microbial community, possibly 
by suppressing the growth of the beneficial bacteria (Jani 
and Briggs 2014; Woodhams et al. 2018). Furthermore, 
the introduction of bacteria to ecosystems where they 
have not been present before can be hazardous (Simberl-
off et al. 2013).
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Utilizing bacterial metabolites directly against Bd 
instead of trying to establish live cultures on amphibian 
hosts has also been tested (Bell et al. 2013; Madison et 
al. 2017). Without the need for the establishment of live 
cultures on amphibian skin, this approach may be applied 
more easily and safely than bioaugmentation. Treatment 
can be safely controlled and better standardized because 
the amount of antifungal metabolites can be adjusted so 
as not to be harmful to amphibians. Finally, the scope of 
the search for antifungal metabolites with broad-spec-
trum inhibition capabilities can be widened to cover 
novel microbial sources, even of non-amphibian origin.

The idea of using wide-spectrum antimicrobials pro-
duced by the entomopathogenic nematode-bacterium 
(EPN-EPB) symbiotic complexes (Akhurst 1982) was first 
suggested by Bode (2009). Entomopathogenic nematode 
species belonging to the Steinernema and Heterorhab-
ditis genera are parasites of soil-dwelling insects. Their 
infective dauer juveniles (IJ, Kaya 1978), carry cells of 
species-specific obligate entomopathogenic bacterial 
(EPB) symbionts. Right after the IJ enters the insect body 
cavity, it releases the EPBs into the hemocoel, where the 
bacteria start to propagate and synthesize efficient insec-
ticide toxins and various secondary metabolites which 
suppress the host’s immune response, and accelerate its 
death. The symbiotic bacteria also produce antimicrobial 
metabolites which protect the cadaver against microbial 
food competitors (Forst et al. 1997) keeping pathobiome 
conditions (Ogier et al. 2020) favourable for the EPN-
EPB symbiotic complex in the cadaver and ambient soil. 
Xenorhabdus szentirmaii and X. budapestensis (Lengyel 
et al. 2005), the natural symbionts of the EPN species 
Steinernema rarum (de Doucet 1986) and S. bicornutum 
(Tallósi et al. 1995) respectively, seem to be the two most 
potent EPB strains against bacterial, fungal, and proto-
zoan pathogens of plants, livestock, and even humans 
(Furgani et al. 2008; Böszörményi et al. 2009; Vozik et al. 
2015; Wenski et al. 2020; Fodor et al. 2022). Of the anti-
microbial peptides (AMPs) produced by these Xenorhab-
dus species, fabclavine (Fuchs et al. 2012, 2014) and its 
metabolic derivatives (Wenski et al. 2019, 2020; Watzel 
et al. 2021) exhibit exceptional antimicrobial potential 
against different targets (Cimen et al. 2021). This molec-
ular arsenal in combination with the cheap and easy-
to-handle cultivation under laboratory conditions, as 
well as the accessibility for genetic manipulations make 
Xenorhabdus species and their metabolites great candi-
dates for the fight against diseases of amphibians, includ-
ing chytridiomycosis.

In this study, we aimed to assess experimentally 
whether Xenorhabdus szentirmaii and X. budapestensis 
metabolites may be effective against Bd. We extracted 
cell-free culture media (CFCM) from their liquid cul-
tures and assessed Bd growth inhibition capabilities in 

vitro as the practical first step towards finding the range 
of quantity required for the suppression of Bd. We also 
tested for possible toxic effects and treatment efficacy of 
X. szentirmaii CFCM in vivo on juvenile common toads 
(Bufo bufo) experimentally infected with Bd. Since the 
integrity of the skin microbiome is crucial for amphib-
ian health and mitigation methods should not disrupt 
the microbial community present on the amphibian skin 
(Rebollar et al. 2020), we also observed possible changes 
in skin microbial community structure caused by treat-
ments. Treatment with CFCM instead of inoculation 
with living bacterial cells allows to avoid the abovemen-
tioned problems arising from interactions with the host’s 
immune system and from the environment-dependence 
of the establishment and metabolite production of probi-
otic bacteria (Rebollar et al. 2020). Thus, the application 
of antifungal metabolites may minimise undesirable side-
effects on the targeted as well as on non-target species 
and on ecosystem processes (Bletz et al. 2013).

Methods
Culturing of Xenorhabdus
We tested two previously described antimicrobial pep-
tide (AMP)-producing EPB strains: Xenorhabdus buda-
pestensis nov. DSM-16342T from Central Europe, and X. 
szentirmaii nov. DSM-16338T of South American origin, 
described in the Department of Genetics of Eötvös Uni-
versity Hungary and deposited in DSMZ, Braunschweig, 
Germany by Katalin Lengyel and her colleagues (Lengyel 
et al. 2005).

For culturing Xenorhabdus, we prepared Mueller–Hin-
ton liquid medium (Mueller and Hinton 1941) by dissolv-
ing 21 g powder (obtained from Sigma-Aldrich, St. Louis, 
USA) in 1000 ml of distilled water and sterilized it by 
autoclaving at 121 °C for 15 min before use. We alterna-
tively cultured Xenorhabdus species on Luria broth agar 
(LBA) plates flooded with Luria broth (LB) (10 g casein 
peptone, 5 g yeast extract, 10 g sodium chloride, and 17 g 
agar [LB and LBA, respectively] dissolved in 1000 ml 
distilled water) as described by Ausubel and colleagues 
(1999). Indicator plates (LBTA) were supplemented 
with bromothymol blue and 2,3,5-Triphenyltetrazo-
lium chloride, and were used to distinguish AMP pro-
ducing (phase I) and non-producing (phase II) variants 
(Leclerc and Boemare 1991). Fresh single phase I colonies 
derived from frozen bacterial stocks were used for each 
experiment as previously described (Furgani et al. 2008; 
Böszörményi et al. 2009; Vozik et al. 2015). Microbio-
logical media were obtained from Biolab Zrt. (Budapest, 
Hungary).

We cultured EPBs in liquid TGhLY medium (mTGhLY; 
8 g tryptone, 2 g gelatine-hydrolysate, 4 g lactose, and 5 g 
yeast extract in 1000 ml distilled water) with a 7-day old 
single colony grown on LBA. With the addition of yeast 
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extract, we established this method to provide optimal 
growth conditions in the same media for both the EPB 
strains and Bd. In all other respects, this media is equiva-
lent to the TGhL media used for the culturing of Bd (see 
below). Each Xenorhabdus culture in this study started 
with 5–10 ml of (either LB or Mueller-Hinton) liquid 
medium inoculated with a single colony of the respec-
tive bacterium picked from an LBTA indicator plate 
and incubated overnight at 28 °C in a water bath shaker 
(Lab-Line Orbital Shaker Water Bath, Marshall Scientific, 
USA). Each late-log phase inoculum was then added to 
200 ml mTGhLY into 400 ml tissue culture flasks to cre-
ate scale-up cultures.

Preparation of cell-free culture media (CFCMs)
We incubated scale-up cultures of both Xenorhabdus 
species for 7 days at 25 °C on an orbital shaker platform 
(Gallencamp, UK) and centrifuged cultures at 6000 rpm 
for 20  min at 4  °C in 400 ml tubes using a JLA-10.500 
type rotor (Avanti centrifuge J-26 XPI, Beckman Coulter, 
Indianapolis, USA). With these preparation conditions, 
production of antibiotic metabolites in Xenorhabdus 
cultures reaches a stationary phase in 5–6 days, contain-
ing the same amount of metabolites (Furgani et al. 2008; 
Böszörményi et al. 2009; Vozik et al. 2015). The superna-
tant was filtered through a sterile 0.22 μm nylon filter and 
centrifuged again at the same speed. We considered the 
resulting supernatant to be a cell-free culture medium 
(CFCM) of the antibiotic-producing Xenorhabdus strains 
and used it for bioassays. To confirm that CFCM-s were 
indeed cell-free, we diluted at least two replicates of 
each with sterile 2× LB, incubated them along with the 
experimental samples, and checked for bacterial growth 
on LBA plates. We stored CFCMs at 4 °C in glass bottles 
until further use.

Maintaining and culturing of Bd
For all experiments, we used the global pandemic lineage 
(GPL) of Bd. The isolate (Hung_2014) originated from a 
Bombina variegata collected in 2014 by J. Vörös (Natu-
ral History Museum, Budapest, Hungary) in the Bakony 
Mountains, Hungary, and isolated by M.C. Fisher and 
colleagues (Imperial College London, London, UK). We 
maintained cultures in TGhL medium (mTGhL; 8 g tryp-
tone, 2 g gelatine-hydrolysate, and 4 g lactose in 1000 ml 
distilled water) in 25 cm2 cell culture flasks at 4  °C and 
passaged them every three months into sterile mTGhL.

One week before the start of in vitro tests, we placed 
2–2 ml of Bd stock cultures onto mTGhL agar plates 
(containing 1% agar w/v) in sterile plastic Petri dishes 
(90  mm diameter; Biolab Zrt) and incubated them at 
20  °C for 7 days. Then we flooded the plates with 2 ml 
1% tryptone medium (10  g tryptone in 1000 ml dis-
tilled water). After 30 min we collected the liquid media 

containing the zoospores and rinsed the plates with 
another 500 µl of 1% tryptone medium which we added 
to the previously obtained media. We estimated zoospore 
concentrations in the harvested media (also contain-
ing some zoosporangia) using a Bürker chamber at ×400 
magnification and adjusted to 107 zoospores (zsp)/ml in 
1% tryptone medium.

One week before performing experimental infections 
in the in vivo experiment, we inoculated 100 ml mTGhLY 
with 2 ml of Bd stock culture in a 175 cm2 cell culture 
flask and incubated it for seven days at 21 °C. We assessed 
the concentration of intact zoospores using a Bürker 
chamber at ×400 magnification and diluted the zoospore 
suspension with mTGhLY to a final concentration of 106 
zsp/ml and subsequently used this for the inoculation of 
amphibian individuals.

In vitro experiment
We tested the Bd growth inhibition capability of both 
Xenorhabdus CFCMs using optical density measure-
ment, which is a semiquantitative test that provides more 
reliable results than agar diffusion tests (Bell et al. 2013). 
We prepared a 10-step twofold serial dilution starting 
with CFCM solution diluted with mTGhLY to 50% (v/v) 
on two flat bottom 96 well microplates (Orange Scien-
tific, Braine-l’Alleud, Belgium) in a final volume of 50 µl. 
Then we added 50 µl zoospore suspension in 1% tryptone 
at a concentration of 107 zsp/ml to the CFCM-containing 
wells (resulting in a final concentration of 5 × 106 zsp/ml). 
Each plate also included three positive and three negative 
control wells containing 50 µl sterile mTGhLY and 50 µl 
intact or heat-killed (80 °C for 30 min) zoospore suspen-
sion in 1% tryptone. We incubated plates at 20  °C for 7 
days in closed plastic boxes (30 × 15 × 10 cm). To prevent 
desiccation, we lined boxes with wet paper towels. After 
7 days of incubation, we measured the optical density at 
492  nm (OD492) using a Multiskan MS 352 microplate 
reader (Thermo Fisher Scientific, Waltham, USA).

In vivo experiment
In March 2021 we set up 48 mesocosms by filling plas-
tic boxes (85 × 57 × 51 cm) placed outdoors with 130 l of 
aged tap water and supplementing them with 50 g beech 
leaves for spatial complexity, and one litre of pond water 
containing bacterio-, phyto- and zooplankton. Four 
weeks later we added another 6  dl pond water to each 
mesocosm to boost zooplankton density and thereby 
reduce algal bloom. In April, we collected 200 eggs from 
each of four freshly laid egg strings of B. bufo from three 
localities near Budapest (Békás-tó: 47.5763° N, 18.869° 
E; Ilona-tó: 47.7135° N, 19.0402° E; Jávor-tó: 47.7138° N, 
19.0196° E). We transported eggs to the Experimental 
Station Juliannamajor of the Plant Protection Institute, 
Centre for Agricultural Research located on the outskirts 
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of Budapest (47.5479° N, 18.9349° E). We placed eggs 
of each clutch separately (families hereafter) into plas-
tic boxes (32 × 22 × 16  cm) holding 0.7  l of reconstituted 
soft water (RSW; USEPA 2002) at a constant tempera-
ture of 16  °C and a light : dark cycle adjusted weekly to 
the conditions outside. Nine days after hatching, when 
all larvae reached development stage 25 (Gosner 1960), 
we released 50 individuals into each outdoor mesocosm 
(four mesocosms per family). The self-sustaining envi-
ronments provided food and other nutrients for tadpoles 
without the need for any intervention until metamorpho-
sis. For a schematic representation of the course of the 
experiment please see Fig S1.

Upon metamorphosis, when tadpoles reached develop-
ment stage 42 (emergence of forelimbs), we monitored 
mesocosms daily and placed metamorphosing indi-
viduals into transparent plastic boxes (52 × 35 × 25  cm) 
containing 1.5  l of mesocosm water and covered with 
perforated lids. We tilted these boxes to provide a dry 
surface as well. When metamorphosis was complete 
(development stage 46; complete tail resorption), we hap-
hazardly chose 25 toadlets from each family that meta-
morphosed on the same day and moved them into one 
rearing container per family (60 × 40 × 30 cm). These plas-
tic containers were lined with 6 l of wet wooden soil, cov-
ered with a mixture of wet moss and leaf litter at a height 
of 6–8 cm. We covered containers with a perforated lid 
and placed them outdoors in an area shaded by trees. We 
watered containers weekly using RSW and fed juvenile 
toads ad libitum with springtails (Folsomia sp.) and small 
(2–3 mm) crickets (Acheta sp.) sprinkled with a 3:1 mix-
ture of Reptiland 76,280 (Trixie Heimtierbedarf GmbH & 
Co. KG, Tarp, Germany) and Promotor 43 (Laboratorios 
Calier S.A., Barcelona, Spain) containing vitamins, min-
erals, and amino acids.

Fifty days after metamorphosis, we weighed the ani-
mals to the nearest mg (Ohaus Pioneer PA-213; Ohaus 
Europe Gmb, Nanikon, Switzerland), chose 8 medium-
sized individuals from each family (Ntotal = 12 families × 8 
replicate specimens = 96 individuals), and experimentally 
infected half of them. We performed experimental infec-
tions by placing the juvenile toads for five hours individu-
ally into sterile Petri dishes (diameter: 90 mm) containing 

19 ml RSW and 1 ml liquid Bd culture in mTGhLY result-
ing in a final concentration of 50,000 zsp/ml (contain-
ing both zoospores and zoosporangia). The other half of 
the animals were sham-treated with the same amount of 
sterile mTGhLY. Individuals that were not selected for the 
experiment were released at their site of origin. Subse-
quently, we placed juvenile toads individually in covered 
opaque 2-L plastic boxes lined with wet paper towels 
as a substrate and a piece of egg carton as a shelter and 
reared them in the laboratory at 20.3 ± 0.3 °C (mean ± SD) 
and a light : dark cycle adjusted weekly to outdoor condi-
tions. We arranged boxes on a shelf system in random-
ized spatial blocks, each containing all treatments from 
each infection status of a same family. We fed the juvenile 
amphibians with small crickets as described above.

One week after infection, we assessed the status of 
the skin microbiota of 12 experimentally infected indi-
viduals (‘positive control’ group) by swabbing the belly 
and hind legs (ten times each) using dry rayon-tipped 
swabs (MW100, Medical Wire & Equipment, UK). Swabs 
were stored at -20  °C until DNA isolation. Thereafter, 
we weighed these individuals (± 1  mg; Ohaus Pioneer 
PA-213), euthanized them using the “cooling then freez-
ing” method (Shine et al. 2015) and finally preserved 
them in 96% ethanol at -20  °C until further processing. 
Subsequently, we exposed seven groups of 12 individu-
als of the remaining juvenile toads to seven treatments 
as described in Table 1. We decided to use X. szentirmaii 
CFCM diluted to 2 and 10% (v/v) based on a pilot experi-
ment, aiming to apply treatments that are not yet harmful 
to amphibians but are still likely to be effective against Bd 
(for details see Supplementary text 1; Table S1). We per-
formed these treatments by replacing juvenile toads from 
rearing boxes to sterile Petri dishes (55 mm diameter, Fig 
S2) and exposing them for three hours to either RSW, 
mTGhLY or CFCM solutions (for details see Table 1). We 
treated animals on four consecutive days. During the first 
treatment, we changed paper lining and shelter in the 
rearing boxes. On the last day of treatments, we swabbed, 
weighed, and preserved individuals as described above 
(Fig S1). Contaminated water and equipment were disin-
fected overnight with VirkonS (Johnson et al. 2003) and 

Table 1 Details of the seven treatments applied on juvenile common toads
Bd-infection Treatment Exposure design Treatment name N
no only RSW 7 ml RSW RSW control 12

no only mTGhLY 6.3 ml RSW + 0.7 ml mTGhLY broth control 12

no CFCM diluted to 2% (v/v) 6.3 ml RSW + 0.7 ml CFCM diluted to 20% (v/v) a low CFCM 12

no CFCM diluted to 10% (v/v) 6.3 ml RSW + 0.7 ml pure CFCM high CFCM 12

yes only mTGhLY 6.3 ml RSW + 0.7 ml mTGhLY Bd + broth control 12

yes CFCM diluted to 2% (v/v) 6.3 ml RSW + 0.7 ml CFCM diluted to20% (v/v) a Bd + low CFCM 12

yes CFCM diluted to 10% (v/v) 6.3 ml RSW + 0.7 ml pure CFCM Bd + high CFCM 12
aCFCM was diluted with mTGhLY
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was disposed of following institutional guidelines on the 
treatment of dangerous waste.

Assessment of infection intensity
We homogenized toe clips from the hind limbs of the pre-
served individuals, extracted DNA from samples using 
PrepMan Ultra Sample Preparation Reagent (Thermo 
Fisher Scientific, Waltham, Massachusetts, USA) accord-
ing to previous recommendations (Boyle et al. 2004), and 
stored extracted DNA at -20°C until further analyses. 
We assessed infection intensity using real-time quantita-
tive polymerase chain reaction (qPCR) following a stan-
dard amplification methodology targeting the ITS-1/5.8S 
rDNA region (ITS1-3 primer: 5’- CCTTGATATAATA-
CAGTGTGCCATATGTC − 3’; 5.8  S primer: 5’- AGC-
CAAGAGATCCGTTGTCAAA − 3’; Boyle et al. 2004) on 
a BioRad CFX96 Touch Real-Time PCR System (BioRad 
Laboratories, Hercules, USA). To avoid PCR inhibition 
by ingredients of PrepMan, we diluted samples ten-fold 
with double-distilled water. We ran samples in duplicate, 
and in case of equivocal results, we repeated reactions in 
duplicate. If this again returned an equivocal result, we 
considered the sample to be Bd positive (Kriger et al. 
2006). Genomic equivalent (GE) values were estimated 
from standard curves based on five dilutions of a stan-
dard (1000, 100, 10, 1, and 0.1 zoospore GE; provided by 
J. Bosch; Museo Nacional de Ciencias Naturales, Madrid, 
Spain). To assess whether cross-contamination occurred, 
we investigated one-third of individuals in each one of 
the uninfected treatment groups.

Analysis of the skin microbiome
We randomly chose three samples from each treatment 
group, except for the ‘RSW control’ and the ‘low CFCM’ 
treatment groups, from which we chose five samples for 
the skin microbiome analyses. We analysed the bacterial 
community applying Illumina sequencing. DNA was iso-
lated from the swabs using DNeasy® PowerSoil® Pro Kit 
(Qiagen) according to the manufacturer’s protocol and 
isolates were stored at -20°C until further use. For PCR 
amplification we used 16S rDNA specific primers: 341F 
forward primer with CS1 Illumina adapter sequence and 
805R reverse primer with CS2 Illumina adapter sequence, 
and Phusion® DNA polymerase enzyme. We performed 
the PCR amplification three times on each sample. The 
final reaction volume was set to 20 µl. For a 1 µl tem-
plate we measured 19 µl PCR mix, which contained 4 
µl dNTP mix, 4 µl Phusion® HF Buffer, 0.2 µl CS1 341F 
forward primer (5’- CCTACGGGAGGCAGCAG − 3’), 
0.2 µl CS2 805R reverse primer (5’- GACTACHVGGG-
TATCTAATCC − 3’), 0.4 µl bovine serum albumin (BSA), 
0.2  µl Phusion® DNA polymerase and 10  µl PCR-grade 
water. In each PCR run, we included a positive (random 
sample that previously worked with the same primers) 

and a negative control. We applied the following heat 
profile: initial denaturation at 98  °C for 5  min followed 
by 25 cycles of denaturation at 95 °C for 30 s, annealing 
at 55 °C for 30 s and extension at 72 °C for 2 min. After 
the 25th cycle samples were kept at 72 °C for 10 min and 
then cooled to 4 °C. After each amplification, we checked 
the amplification success by visualizing PCR products 
on a 1% (w/v) agarose gel dissolved in TBE buffer (Fig 
S3). We ran samples in triplicates and pooled them after 
each amplification to reduce the influence of random 
bias that may occur in single reactions. We measured the 
DNA content of the pooled samples using a Qubit 2.0 
Fluorometer (Invitrogen, Life Technologies, CA, USA). 
Finally, samples were sequenced on an Illumina MiSeq 
platform at the Research Technology Supply Facility 
(RTSF), Michigan State University (East Lansing, Michi-
gan, USA).

Statistical analyses
We ran all statistical analyses in R (version 4.0.5.). In 
case of the in vivo experiment, ‘RSW control’ and ‘posi-
tive control’ groups were only included in the analyses 
on the skin microbiota. We analysed the data of the in 
vitro Bd growth inhibitory potential by the two bacte-
rial species separately using general linear models (LM) 
allowing the variances to differ among CFCM dilutions 
with the ‘varIdent’ function of the ‘nlme’ package. Mod-
els included OD492 as the dependent variable, and CFCM 
dilution and plate ID as categorical fixed factors. We 
compared each CFCM dilution step to the negative con-
trol by calculating pre-planned linear contrasts (Ruxton 
and Beauchamp 2008), while correcting the significance 
threshold for multiple testing using the false discovery 
rate (FDR) method (Pike 2011). We considered the means 
of two groups to differ when the relevant 84% confidence 
intervals (CIs) did not overlap (Payton et al. 2003; Julious 
2004). We also identified the minimal inhibitory dilution 
(MID), which is the smallest dilution which still com-
pletely inhibits the growth of the test organism, i.e. the 
lowest dilution that’s 84% CIs still overlapped with the 
negative control.

Survival of juvenile toads was not analysed statistically, 
since only one death occurred (in the ‘Bd + broth control’ 
treatment). We averaged GE values obtained from qPCR 
runs for each sample and analysed resulting estimates of 
infection intensity in treatment groups that were experi-
mentally exposed to Bd using generalized linear mixed 
models (GLMM) with negative binomial distribution and 
a log link function using the ‘glmmTMB’ package (Brooks 
et al. 2017). The model included CFCM dilution (0, 2, or 
10%) as a categorical fixed factor and family nested in 
population as random factors.

We analysed body mass data using linear mixed mod-
els (LMM) with the ‘lme’ function of the ‘nlme’ package 
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(Pinheiro et al. 2020). Since graphical model diagnostics 
indicated heterogeneous variances, we allowed the vari-
ances to differ among treatment groups with the ‘varI-
dent’ function of the ‘nlme’ package. We ran the initial 
model with infection status at the end of the experiment 
(yes or no) and CFCM dilution as categorical fixed fac-
tors and their interaction, the body mass of individuals 
measured at the start of the experiment as a numeric 
covariate, and family nested in population as random fac-
tors. We tested the effect of infection within each treat-
ment group by calculating pre-planned linear contrasts 
(Ruxton and Beauchamp 2008), and corrected the sig-
nificance threshold for multiple testing using the FDR 
method (Pike 2011).

During the experiment, we documented intensive 
skin shedding in infected individuals. To analyse the 
occurrence of shedding, we applied a generalized linear 
modelling procedure (GLM) with binomial distribution 
and logit link function containing infection status and 
CFCM dilution as categorical fixed factors. All tests were 
two-tailed, and we checked model fits in the case of all 
dependent variables by visual inspection of diagnostic 
plots. In all models containing interactions, we applied 
a backward stepwise removal procedure removing terms 
when P > 0.05 (Grafen and Hails 2002) to avoid problems 
potentially arising from the inclusion of non-signifi-
cant terms (Engqvist 2005). We obtained statistics for 
removed variables by re-entering them one by one into 
the final model.

We processed raw sequencing data of the skin microbi-
ome using the software Seed (version 2.1.1.; Větrovský et 
al. 2018). First, we joined forward and reverse sequences, 
then excluded poor quality sequences (mean quality value 
lower than 30) and sequences that contained ambiguous 
bases. We removed forward and reverse primers from the 
sequences. Singleton and short sequences (less than 360 
nucleotides) were also excluded. We grouped sequences 
with at least 97% similarity into operational taxonomic 
units (OTUs) and removed chimeric sequences using 
Vsearch. We identified the representative sequences 
of the OTUs using the Basic Local Alignment Search 
Tool (BLAST) based on the ARB-SILVA database ver-
sion 138 (Quast et al. 2013). We searched for archaeal, 
eukaryotic, and chloroplast sequences in our data and 
excluded them from the analysis. We set the number 
of sequences per sample to be the same as the number 
of sequences in the sample which contained the low-
est number of sequences by random sampling. Then we 
assembled the OTU table which contains the number of 
OTUs per sample and calculated Chao1 diversity indices 
since this index is particularly useful for data sets skewed 
toward the low-abundance classes, as is likely to be the 
case with microbes (Hughes et al. 2001). To test whether 
Bd-infection or CFCM treatment and their interaction 

had a significant effect on the bacterial community liv-
ing on the skin of the individuals we performed two-way 
permutational multivariate analysis of variance (PER-
MANOVA) based on Bray-Curtis similarity indices and 
non-metric multidimensional scaling (NMDS) analysis 
implemented in the software Past (version 4.05.). In the 
analyses on microbial species richness, we included the 
‘positive control’ but excluded it from the PERMANOVA 
and NMDS analyses. To visualise the most abundant gen-
era in treatment groups we used the R package ‘ampvis2’ 
(Andersen et al. 2018).

Results
In vitro experiment
The CFCM of both Xenorhabdus species significantly 
inhibited Bd growth (X. szentirmaii, LM: F11, 78= 386.74, 
P < 0.001; X. budapestensis, F11,79 = 751.36, P < 0.001) at 
all dilutions as neither of the respective 84% CIs of their 
mean OD492 values overlapped with the 84% CI of the 
positive control’s mean OD492 (Fig.  1). The MID of X. 
szentirmaii CFCM was 1.56% and that of X. budapesten-
sis CFCM was 0.78% (Fig. 1; for results of pairwise com-
parisons see Table S2 and S3).

In vivo experiment
Survival was not affected over the course of the experi-
ment by either treatment since all but one individual 
survived until the end of the study. We did not observe 
cross-contamination since all tested individuals from 
uninfected treatment groups remained Bd negative. Bd 
prevalence was 100% in all experimentally infected treat-
ment groups. Infection intensity was 2417 ± 1539 GE 
(mean ± SD) per individual in the ‘positive control’ (treat-
ment names refer for Table  1) right before the start of 
the CFCM treatments. Among CFCM treated infected 
groups, the ‘high CFCM’ (10% v/v) treatment resulted 
in significantly lower infection intensity compared to 
the ‘Bd + broth control’ treatment (Bd + broth control: 
3666 ± 3468 GE [mean ± SD]; high CFCM: 984 ± 1201 GE 
[mean ± SD]; GLMM: z = -2.98, P = 0.003), however the 
‘low CFCM’ (2% v/v) treatment did not affect infection 
intensity (z = 0.53, P = 0.59; Fig. 2). More concentrated X. 
szentirmaii CFCM (above 25% v/v) can be lethal for toads 
(Table S1).

Body mass of the juvenile toads measured after treat-
ments was negatively affected by Bd exposure (LMM: 
F1,57 = 12.32, P < 0.001), but treatment with CFCM had no 
significant effect on it, either alone (F2,55 = 0.92, P = 0.40) 
or in interaction with exposure to Bd (F2,53 = 0.17, 
P = 0.85; Fig. 3). Body mass measured at the termination 
of the experiment positively correlated with initial body 
mass measured at the start of the experiment (B = 0.8, 
SE = 0.13, F1,57 = 39.52, P < 0.001). Pairwise compari-
sons revealed that body mass of Bd-exposed individuals 
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Fig. 1 Bd-growth inhibition by serial dilutions of X. budapestensis (a) and X. szentirmaii (b) CFCM determined by measuring optical density at 492 nm 
(OD492; mean ± 84% CI). The negative control is represented by ‘-‘, the positive control by ‘+’. Dashed lines depict the 84% CI of the controls. Minimal inhibi-
tory dilution (MID) indicates the lowest dilution with complete growth inhibition (84% CI still overlapping with that of the negative control)
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in the ‘broth control’ and ‘low CFCM’ was significantly 
lower compared to their non-infected counterparts 
(‘Bd + broth control’: t ratio = 2.25, df = 53, P = 0.028; ‘low 
CFCM’: t ratio = 2.82, df = 53, P = 0.007). However, body 
mass of individuals in the ‘high CFCM’ group did not 
differ between infected and non-infected individuals (t 
ratio = 1.34, df = 53, P = 0.188).

We documented a significantly higher frequency of 
skin shedding among Bd-exposed individuals compared 
to controls (GLM: χ2 = 26.3, df = 1, P < 0.001), while expo-
sure to CFCM did not significantly influence the propen-
sity of animals to shed their skin (χ2 = 1.3, df = 2, P = 0.51; 
Fig. 4).

Chao1 diversity indices reflecting species richness 
varied significantly among treatment groups (2-way 
ANOVA: F4,27 = 9.08, P < 0.001), where samples from the 
‘positive control’ exhibited higher diversity of bacterial 
taxa than samples from any other treatment group, while 
the other treatment groups did not differ among each 
other (Table S4, Fig.  5a). Bd-infection had a marginally 
significant effect on the community structure of the skin 
microbiota (PERMANOVA: F1,23 = 1.73, P = 0.07), while 
the effect of CFCM treatment was non-significant both 
alone (F6,17 = 0.15, P = 0.57) and in interaction with Bd-
infection (F3,17 = 0.35, P = 0.94). NMDS analysis (stress 

value: 0.27) did not reveal any systematic pattern, ordina-
tion appeared to be arbitrary (Fig. 5b). Visual inspection 
of the relative abundance of the most abundant bacterial 
genera in the skin microbiota of the juvenile toads based 
on 16  S rDNA amplicon sequencing or focussing only 
on the three most abundant bacterial genera (Flavobac-
terium, Pseudomonas, and Delftia) also did not reveal 
striking differences among treatments (Fig. 5c).

Discussion
The present study is the first to demonstrate Bd growth 
inhibition by EPB metabolites. In the in vitro experi-
ment both the X. szentirmaii and the X. budapestensis 
CFCM were highly effective in inhibiting Bd growth, 
and this effectiveness was confirmed using the X. szen-
tirmaii CFCM in the in vivo experiment. At the same 
time, measurable adverse effects of the treatment on 
juvenile common toads did not surface either in terms of 
lowered survival, lowered body mass or perturbed skin 
microbiome.

We found that dilutions of both Xenorhabdus CFCMs 
(as low as 1.56 and 0.78%) fully halted Bd growth in vitro, 
while CFCM diluted to 0.1% still showed some level of 
inhibition. This antimicrobial activity of X. szentirmaii 
CFCM against Bd is much higher compared to former 

Fig. 2 Infection load in Bd-exposed juvenile toads after treatment with sterile mTGhLY (0%), 2% or 10% CFCM of X. szentirmaii. Bold lines show medians, 
boxes show the interquartile range (IQR), bars represent ranges, dots indicate outliers (deviating from the boundary of IQR by more than 1.5 × IQR)
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studies that described MID values of 40 and 10% against 
bacterial pathogens of humans (Ozkan et al. 2019) and 
plants (Vozik et al. 2015). Consequently, and because 
EPB CFCMs are already effectively used against several 
bacterial and fungal pathogens, the application of X. 
szentirmaii CFCM has great potential in the fight against 
chytridiomycosis.

The most important finding of this study is that the 
‘high CFCM’ treatment (10% dilution) had a striking 
effect on Bd infection load in experimentally infected 
juvenile toads. Although the ‘low CFCM’ treatment (2% 
dilution) did not lower infection intensity in the in vivo 
experiment, treatment with the 10% dilution of X. szentir-
maii CFCM reduced infection load by 73%. Thus, a com-
plete clearance of the infection was not reached, which 
would prevent the re-growth of the pathogen within indi-
viduals and its further spread to other hosts. Nonetheless, 
the observed high level of infection intensity suppression 
is also very promising because a complete clearance of 
infection is not essential for the prevention of mortali-
ties: former studies reported no clinical signs of infection 
and no mortalities at low levels of infection (Vredenburg 
et al. 2010; Cheng et al. 2011). Furthermore, amphibian 
populations can coexist with Bd and maintain large pop-
ulation sizes if infection intensities remain low (Rowley 

and Alford 2013). Finally, co-existence with enzootic Bd 
may allow for adaptation to the disease via the spread 
of alleles providing increased resistance or tolerance on 
the level of populations (Bataille et al. 2015; Savage and 
Zamudio 2016; Voyles et al. 2018) and via immunization 
on the level of individuals (Ramsey et al. 2010; McMahon 
et al. 2014). To enhance efficiency, CFCM may be applied 
for extended times or on a larger number of consecutive 
days, but this would also increase the chances or severity 
of negative side-effects (see below).

The in vitro MID value of X. szentirmaii CFCM was 
1.56% but the ‘low CFCM’ treatment (2%) proved to be 
ineffective against Bd in the in vivo experiment. These 
seemingly contradictive results may be partly explained 
by differences in the duration of exposure, which was 
continuous for one week in the in vitro experiment 
versus only three hours on four consecutive days in 
the in vivo experiment. The experimental microenvi-
ronment differed a lot as well: Bd cells were directly 
exposed to CFCM in the homogeneous mTGhLY in the 
in vitro experiment, while in the in vivo experiment Bd 
thalli were to some extent protected inside the keratin-
ized epithelial cells of the amphibian skin. Hence, our 
study stresses that although in vitro experiments can 
provide valuable baseline data, in vivo experiments are 

Fig. 3 Body mass of juvenile toads at the end of the experiment in various treatment combinations. Bold lines show medians, boxes show the interquar-
tile range (IQR), bars represent ranges, dots indicate outliers (deviating from the boundary of the IQR by more than 1.5 × IQR)
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indispensable when testing the effectiveness of new 
methods of disease mitigation.

The CFCMs we used likely contain more than one anti-
fungal agent, but it was not our aim to determine their 
chemical identity and concentration. In this study only 
the supernatant of the bacterial cultures was used, in 
which exoenzymes such as chitinases can be also present. 
Since autoclaved Xenorhabdus CFCMs exerted similar 
antimicrobial and antifungal effects as the native ones in 
other experiments involving various pathogens (but not 
Bd; Fodor et al. 2022, 2023), the activity of the CFCM is 
most likely effected by thermostable secondary metabo-
lites and not by exoenzymes. Fabclavines are highly effec-
tive and thermostable antifungal compounds which are 
known to be present in Xenorhabdus CFCM (Cimen et 
al. 2021), but whether these were the compounds which 
were active against Bd remains to be verified. How the 
antifungal activity of the EPB CFCMs and their constitu-
ents relates to that of metabolites produced by bacteria 
associated with amphibian skin (Brucker et al. 2008a, 
b; Myers et al. 2012; Woodhams et al. 2018) remains 
unknown because we investigated the activity of all 
metabolites produced by EPBs in their entirety, while the 
studies using skin bacteria focussed on individual antimi-
crobial metabolites. Future studies may verify the anti-Bd 

activity of fabclavines by exposing Bd or Bd-infected ani-
mals to CFCM, to fabclavine only, or to CFCM from a 
fabclavine production deficient Xenorhabdus mutant.

Although the survival of toads can sharply decrease 
upon infection with Bd (Garner et al. 2009; Bielby et al. 
2015; but also see Ujszegi et al. 2021), we found that sur-
vival of juvenile toads was not affected by infection with 
Bd, perhaps because the Bd isolate we used co-occurs 
with the sampled toad population (also see Kásler et al. 
2022). We documented a significant reduction in body 
mass after eleven days of Bd exposure. Other studies have 
also shown that exposure to Bd can lead to a decrease in 
body mass (Parris and Cornelius 2004; Blaustein et al. 
2005; Hanlon et al. 2015; Kásler et al. 2022), one of the 
best predictors of fitness in juvenile amphibians (Sem-
litsch et al. 1988; Altwegg and Reyer 2003). In the pres-
ent study, we also documented that shedding was more 
frequent in the Bd-infected treatment groups than in the 
non-infected groups. This is in accordance with earlier 
observations from Berger et al. (2005), Voyles et al. (2009) 
and Martel et al. (2011). Excessive skin shedding most 
likely serves as a defence mechanism aiming to remove 
the infected outer epithelial cell layers (Becker and Harris 
2010; Meyer et al. 2012). Finally, PERMANOVA detected 
a marginally significant effect of Bd-infection (assuming 

Fig. 4 Frequency of skin shedding in various treatment combinations
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a p-value threshold of 0.05) on the skin bacterial com-
munity due to Bd-infection itself, while Chao1 indices 
did not differ between infected and uninfected juvenile 
toads, which is in accordance with results of an earlier 
study (Jani and Briggs 2014).

We expected to detect some harmful effects of CFCM 
treatment, because EPBs produce toxins that harm the 
insect that is colonised by the host EPNs and contribute 
to its death (Forst et al. 1997). However, we did not find 
this. Treatment with 10% X. szentirmaii CFCM did not 
cause any surplus mortality nor did it affect body mass 
adversely. Moreover, the negative effect of Bd exposure 

on body mass was abolished by the ‘high CFCM’ treat-
ment. CFCM treatment did not affect the frequency of 
skin shedding in non-infected groups, but it also did not 
prevent infection-induced skin shedding in the infected 
groups. Finally, the lack of an effect of CFCM treatment 
on the skin microbiota we found on the juvenile toads 
was surprising because of its wide-spectrum antimicro-
bial activity, including several bacterial taxa. Possibly, the 
dilutions we applied were too high to affect microbial 
growth under in vivo conditions in a complex microbial 
community. Alternatively, changes may not have surfaced 
right after the treatment and may have appeared later. 

Fig. 5 Result on skin microbiota analyses. a: Chao1 bacterial diversity indices of the samples of different treatment groups based on 16 S rDNA amplicon 
sequencing. Bold lines show medians, boxes show the interquartile range (IQR), bars represent ranges, dots are the original data points. RSW = ‘RSW 
control’, Pos = ‘positive control’. b: Similarity of bacterial community composition based on 16 S rDNA amplicon sequencing using NMDS ordination with 
Bray-Curtis distances. c: Most abundant bacterial genera in the skin microbiota of the juvenile toads based on 16 S rDNA amplicon sequencing listed by 
treatment groups. Shading indicates read abundance
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However, decrease of microbial diversity in all groups 
compared to the ‘positive control’ group suggests that 
detectable differences in microbial communities manifest 
very rapidly (Fig.  5a). Alternatively, the limited sample 
sizes may have prevented the detection of subtle differ-
ences. However, striking immediate effects of CFCM 
treatment on skin microbiota were clearly absent, and 
several microbial taxa with anti-Bd properties remained 
on the juvenile toads’ skin after the CFCM treatments 
(Supplementary text 2). In sum, X. szentirmaii CFCM 
diluted to 10% does not appear to harm juvenile common 
toads. Nonetheless, it remains to be determined whether 
more concentrated dilutions of EPB CFCM cause harm-
ful effects and to what extent amphibian species and life-
stages differ in their susceptibility to CFCM treatment.

We propose that the application of antifungal metab-
olites without the need for the establishment of probi-
otic bacteria on the skin of amphibians may be a good 
solution that would bridge the problems arising from 
bioaugmentation or the application of conventional anti-
fungals such as itraconazole or amphotericin B (Garner 
et al., 2009; Holden et al. 2014). Antifungal metabolites 
of Xenorhabdus bacteria are highly potent candidates 
because they are easy to cultivate, cheap to produce, 
highly effective and exceptionally stable even at high tem-
peratures (Fodor et al. 2022). These results of our pio-
neering study are the first to suggest that EPB CFCMs 
can be applied effectively and safely to treat Bd-infected 
amphibians at least under laboratory conditions, where 
re-application can be performed easily. Currently, 180 
endangered amphibian species subsist only thanks to 
captive breeding programs (Kueneman et al. 2022), and 
amphibians are increasingly maintained in captivity 
for research, hobby, public display, and food produc-
tion (Hadfield and Whitaker 2005; Densmore and Green 
2007). These activities require an easily applicable, non-
invasive, chemical-free, and relatively cheap mitigation 
method to halt chytridiomycosis outbreaks and prevent 
the reintroduction of infected individuals into natural 
habitats. Our results suggest that the antifungal metabo-
lites of Xenorhabdus bacteria may prove suitable for this 
task. At the same time, however, this approach also has 
some limitations, which have to be thoroughly tested 
and considered before application. Metabolites must be 
re-applied either until complete clearance or until an 
effective immune response is mounted by the host. Fur-
thermore, as CFCM contains a culture medium, it can 
promote the growth of other bacteria (especially in case 
of prolonged CFCM exposure), which are not sensitive 
to the contained metabolites and some of these may be 
facultative or obligate pathogens. Finally, even subtle 
changes in the skin microbiome may influence the fit-
ness of amphibian hosts. Consequently, to provide the 
necessary knowledge base, studies will need to identify 

the antifungal components present in the EPB CFCM 
and assess their concentration, as well as optimize the 
method of application to maximize effectiveness. Fur-
thermore, testing for potential malign long-term effects 
of treatment with CFCM, and investigating its applicabil-
ity to other amphibian species and pathogens would also 
be important. Ultimately, CFCM treatment may prove 
to be an effective and safe approach to the mitigation of 
chytridiomycosis and perhaps other diseases of amphib-
ians and other vertebrates as well.

In summary, we demonstrated for the first time that 
metabolites produced by entomopathogenic bacteria 
of the genus Xenorhabdus can halt Bd growth in vitro 
already at very low concentrations. We also documented 
that these metabolites can be safely applied to amphib-
ian juveniles and that the treatment resulted in drasti-
cally lowered infection intensities. Hence, our results 
support the idea that Xenorhabdus metabolites may very 
well be used in the mitigation of chytridiomycosis in 
live amphibians. Future studies on this system will likely 
prove fruitful and will contribute to exploiting the sur-
prising effectiveness of EPB metabolites against this dev-
astating amphibian disease.
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