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Abstract 

Rapid and successful clinical diagnosis and bacterial infection treatment depend on accurate identification and differ‑
entiation between different pathogenic bacterial species. A lot of efforts have been made to utilize modern tech‑
niques which avoid the laborious work and time‑consuming of conventional methods to fulfill this task. Among such 
techniques, laser‑induced breakdown spectroscopy (LIBS) can tell much about bacterial identity and functionality. In 
the present study, a sensitivity‑improved version of LIBS, i.e. nano‑enhanced LIBS (NELIBS), has been used to discrimi‑
nate between two different bacteria (Pseudomonas aeruginosa and Proteus mirabilis) belonging to different taxonomic 
orders. Biogenic silver nanoparticles (AgNPs) are sprinkled onto the samples’ surface to have better discrimination 
capability of the technique. The obtained spectroscopic results of the NELIBS approach revealed superior differen‑
tiation between the two bacterial species compared to the results of the conventional LIBS. Identification of each 
bacterial species has been achieved in light of the presence of spectral lines of certain elements. On the other hand, 
the discrimination was successful by comparing the intensity of the spectral lines in the spectra of the two bacteria. In 
addition, an artificial neural network (ANN) model has been created to assess the variation between the two data sets, 
affecting the differentiation process. The results revealed that NELIBS provides higher sensitivity and more intense 
spectral lines with increased detectable elements. The ANN results showed that the accuracy rates are 88% and 92% 
for LIBS and NELIBS, respectively. In the present work, it has been demonstrated that NELIBS combined with ANN suc‑
cessfully differentiated between both bacteria rapidly with high precision compared to conventional microbiological 
discrimination techniques and with minimum sample preparation.
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Introduction
As early as 460 B.C., Hippocrates reported a strong asso-
ciation between food consumed and human illness (Hutt 
and Hutt II 1984). Foodborne illness is usually due to the 
ingestion of a pathogen (food infection) or the toxin of a 
toxigenic microbe (food intoxication) with food. Nowa-
days, detecting, identifying, and quantifying disease-
causing bacteria is very important to the consumer and 
the whole food industry. Outbreaks of food/water-borne 
illnesses frequently occur, especially with the emergence 
of drug-resistant bacterial pathogens. More than 200 dif-
ferent foodborne diseases have been identified (Mead 
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et al. 1999). Therefore, there is a global need among food 
consumers, producers, processors, and researchers to 
develop fast, accurate, and easy-to-use bacterial detec-
tion methods.

Conventional detection of bacteria is mainly based on 
cultivation procedures using enrichment broths followed 
by isolating colonies on selective media, biochemical 
identification, and confirmation of pathogenicity. Accord-
ingly, many efforts have been committed to identifying a 
reliable, fast detection and identification technique for 
microbiological samples like bacteria. Spectrochemi-
cal analytical methods are sensitive to the microorgan-
isms’ membrane composition and could tell much about 
the bacterial identity and functionality. One of the first 
attempts to use spectroscopic analysis was made by 
Morel et  al. in 2003 (Morel et  al. 2003). He concluded 
that laser-induced breakdown spectroscopy (LIBS) could 
yield informative spectra to differentiate between six bac-
teria and two pollens in pellet form. LIBS is a spark sen-
sor technology in which a few tens of short laser pulses 
(nanosecond, picosecond, or femtosecond) are focused 
onto a target (solid, liquid, or gas). In the case of solid tar-
gets, as a result of focusing such a tremendous amount of 
energy on a tiny volume, the material dielectricity breaks 
down, forming a transient plasma plume. Such a laser-
induced plasma plume consists of ions and electrons at 
extremely high temperatures (6000–60,000 K). As the hot 
plasma plume cools down, it gets rid of the previously 
absorbed energy in the form of emitted light photons 
at different wavelengths. The spectroscopic analysis of 
such emitted light provides a spectrum composed of the 
characteristic spectral lines of the elements in the plasma 
plume and, consequently, in the analyzed target mate-
rial. LIBS fundamentals and applications are detailed in 
numerous books and published review papers (Cremers 
and Radziemski 2013; Legnaioli et  al. 2020; Noll 2012; 
Singh and Thakur 2007).

LIBS’s applications in diverse life science fields, e.g. 
health (Gaudiuso et  al. 2019), veterinary (Abdel-Salam 
et  al. 2017), biology (Abdel-Salam et  al. 2019), food 
(Abdel-Salam et  al. 2018; Hamdy et  al. 2022), microbi-
ology (Diedrich et  al. 2007), etc. were highly appealing. 
Notably, the technique attracted many researchers to 
characterize and classify bacteria based on their elemen-
tal and/or molecular composition. The first attempt to 
use LIBS to identify bacteria based only on their atomic 
constituents was in 2003 (Morel et al. 2003). After that, 
LIBS has been utilized by many researchers extensively 
for bacterial pathogens identification and characteriza-
tion (Lewis et  al. 2011; Manzoor et  al. 2014; Mohaidat 
et al. 2012). LIBS has advantages in this field of research 
compared to other conventional techniques; it needs lit-
tle to no sample preparation, is fast, has the possibility of 

in  situ and remote analysis, and is cost-effective. How-
ever, the technique is inferior in sensitivity compared to 
other well-established spectrochemical analytical ones. 
Therefore, experimental modifications have been pro-
posed to overcome such drawbacks. To mention some, 
e.g. changing the ambient conditions, double-pulse 
LIBS (DP-LIBS) (Babushok et  al. 2006), and combin-
ing LIBS + LIF (laser-induced fluorescence) (Telle et  al. 
2001).

One of the essential cons of LIBS is its low sensitivity 
compared to other well-established spectrochemical ana-
lytical techniques. In 2009, (Ohta et al. 2009) suggested a 
simple method to beat such deficiency of LIBS with mini-
mum cost and complication in the equipment. They sug-
gested utilizing surface plasmon resonance to improve 
LIBS performance in detection sensitivity. In 2013, De 
Giacomo et  al. deposited metallic nanoparticles (NPs) 
on the sample’s surface and then focused the laser on it. 
Adopting this approach, they enhanced the LIBS spectral 
lines’ signal-to-noise ratio (SNR) of 1–2 orders of magni-
tude. Such an improved method has been referred to as 
Nanoparticle-Enhanced LIBS (NELIBS), successfully uti-
lized in many other publications (Balaji et al. 2008; Chen 
and Fu et  al. 2018; Koral et  al. 2018; De Giacomo et  al. 
2013, 2014, 2016a,b; Koral et  al. 2016; Poggialini et  al. 
2018). Biosynthesized NPs were advantageous because 
of their low cost compared to the commercially available 
or chemically made ones; therefore, many researchers 
utilized such green synthesized NPs (Abdel-Salam et  al. 
2018; Poggialini et al. 2018; Krishnaraj et al. 2010).

The laser-induced plasma plume in the case of NELIBS 
has a higher temperature and prolonged lifetime. Hence, 
the emitted spectral lines will be more intense, with 
effectively improved SNR leading to the possibility of 
detecting faint spectral lines that are barely detectable in 
the case of conventional LIBS.

Introducing chemometric tools has recently allowed 
better manipulation and analysis of spectral data in clas-
sifying, identifying, and detecting biological materials 
(Granato et  al. 2018). For example, it was reported by 
Multari et  al. that LIBS combined with the appropri-
ate chemometric models was influential in differentiat-
ing between two types of bacteria (Multari et  al. 2010). 
Likewise, Marcos-Martinez et  al. reached over 95% dis-
crimination accuracy using LIBS combined with neural 
networks (N.N.s) to identify Pseudomonas aeruginosa, 
Escherichia coli, and Salmonella Typhimurium (Marcos-
Martinez et al. 2011).

The current study presents a detailed investigation 
of using NELIBS compared to LIBS for differentiation 
between two economically important bacteria belonging 
to two-unlike taxonomic ranks. In addition, an artificial 
neural network (ANN) analysis of the spectroscopic data 
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was utilized to compare the sensitivity of the techniques 
to bacterial variation.

Materials and methods
Bacterial samples
This study used two Gram-negative bacterial strains 
belonging to the taxonomic class Gammaproteobacte-
ria. The first bacterial sample was an authenticated strain 
obtained from the American Type Culture Collection 
(ATCC), Pseudomonas aeruginosa (ATCC 9027), which 
belongs to the order Pseudomonadales. The second bac-
terial sample, Proteus mirabilis (D31) from the order 
Enterobacteriales is a local isolate; it was isolated from 
chicken meat tenderloins bought from local markets in 
Al-Haram district, Giza governorate, Egypt. First, the 
isolate was identified using conventional microbiologi-
cal methods. Then it was confirmed by Matrix-assisted 
laser desorption/ionization-time of flight mass spec-
trometry (MALDI-TOF/MS) with score values > (19) 
(using Bruker Biotyper  3.1  software) and molecular 
analysis of 16SrRNA gene sequence. The final sequence 
was submitted to the GenBank database under accession 
number OK178865. Furthermore, it was deposited in 
the Culture Collection Ain Shams University (CCASU) 
(http:// www. wfcc. info/ ccinfo/ detail) under the number 
(CCASU-2023-43).

Both bacterial strains were stored and maintained at 
4  °C on Luria–Bertani (L.B.; Conda SA, Madrid, Spain) 
agar slants and in glycerol (20%, v/v) at − 80 °C. In addi-
tion, bacteria were recovered on L.B. broth medium 
overnight at 37 °C and then subcultured on tryptone soya 
agar (TSA; Conda SA, Madrid, Spain) plates to obtain 
single colonies.

A single colony from each bacterial culture was sus-
pended in 200 µL deionized sterile water, adjusted to 0.5 
MacFarland. The 0.5 McFarland bacterial suspension 
is a standardized method to adjust bacterial cell density 
to ~ 1.5 ×  108  CFU/mL. It was controlled by measuring 
the optical density of the bacterial suspension to obtain 
O.D. = 0.09 and counting the bacteria by the CFU method 
for LIBS measurements. After that, 100 µL of the bacte-
rial suspension was put onto a pure Si wafer’s polished 
surface as a one-cm diameter droplet to allow numerous 
laser shots for the same sample. Finally, samples were left 
to dry in an oven for 5 min at 50 ℃ to evaporate the water 
and form a dry layer of bacterial suspension attached to 
the solid surface for easier sample manipulation.

Biogenic silver nanoparticles
The silver nanoparticles used in this study were biosyn-
thesized using the extract of Streptomyces catenulae 
(Kamel et  al. 2016). The biosynthesis of silver nanopar-
ticles was performed as follows; Streptomyces catenulae 

strain 24 was incubated on starch casein agar medium 
(Thermo Fisher, USA) for five days at 28 ℃ pH 7.0. First, 
the actinobacterial culture was centrifugated, and an 
equal volume of the cell-free supernatant was mixed with 
1% silver nitrate (v/v) in a dark glass bottle. Then the mix-
ture was incubated at 30 ℃ for 24 h on an orbital shaker 
at dark conditions. After the biosynthesis, the silver NPs 
were centrifuged at 10,000  rpm for 15  min and washed 
thrice with deionized water. After separation, the formed 
nanoparticles were lyophilized, and the nanoparticles 
were weighed per 100 mL of deionized water. The nano-
particles (NPs) size ranged between 10 and 20  nm (see 
the TEM micrograph in Additional file 1: Fig. S1) with a 
mass concentration of 50  µg/L suspended in deionized 
filtered water. In the case of NELIBS, 100 µL of the NPs 
was deposited onto the surface of the dried-up bacterial 
film to cover its whole area. Then, samples were placed 
in an oven for 5 min at 50 ℃ to evaporate the water and 
form a coating layer of NPs onto the bacterial sample’s 
surface.

LIBS instrumentation
Figure 1 depicts a schematic diagram for the experimen-
tal LIBS setup used in the present work. The LIBS meas-
urements were conducted using a Q-switched Nd: YAG 
laser (Brio, Quantel, France). The laser beam was opti-
mized at a pulse duration of 5 ns, 20-Hz repetition rate, a 
wavelength λ = 1064 nm, and pulse energy of 40 mJ mon-
itored by a Joulemeter (SciTech, model AC5001, Boulder, 
CO, USA). A quartz planoconvex lens with a focal length 
of 5 cm was used to focus the laser beam onto the sample 
surface. The sample was fixed on an X–Y–Z micromet-
ric translational stage that allowed movement along the 
sample area and controlled the focal distance to confirm 
breakdown onto the sample surface. The photons of the 
emitted plasma were collected by an optical collimator 
coupled to a silica fiber with a core diameter of 600 µm 
and fed to an echelle spectrometer (Mechelle 7500, Mul-
tichannel, Sweden). An ICCD camera (DiCAM PRO, 
PCO-Computer optics, Germany) was coupled to the 
spectrometer to detect the dispersed light.

Data acquisition
Thirty LIBS spectra were collected from various spots on 
each sample. Each spectrum represents the accumula-
tion of 3 laser shots taken at different positions (1 laser 
pulse per location). Spectra were collected at a delay time 
of 1500 ns after firing the laser pulse and a gate width of 
3000 ns. Each data set was averaged to represent an indi-
vidual spectrum for each sample. The spectral lines of 
interest were identified using LIBS +  + software (Corsi 
et  al. 2001). The spectral lines were selected based on 
the signal-to-noise ratio (Calculated as the peak signal 

http://www.wfcc.info/ccinfo/detail


Page 4 of 12Arabi et al. AMB Express           (2023) 13:61 

divided by the average of the surrounding background 
signal), the absence of overlapping, and the National 
Institute of Standards and Technology (NIST) spectral 
database confirmation of the spectral line wavelength. 
The best-resolved lines defined which elements could be 
used in the analysis. Spectral data manipulation and anal-
ysis were performed using OriginPro, Version 9 (Origin 
Lab Corporation, Northampton, MA, USA.) and Prism 
software, Version 5.01 (GraphPad Prism software, Inc.).

The artificial neural network (ANN)
Artificial neural networks (ANN) are common compu-
tational methods that classify input groups according to 
target classes. The present study used the feed-forward 
network to classify the obtained LIBS spectra (the net-
work’s input) with and without the nanoparticles based 
on Matlab R2018b software. A typical feed-forward net-
work consists of a series of layers where the first layer 
connects to the network input, and each subsequent layer 
has a connection from the previous layer (Hamdy et  al. 
2022). At the same time, the final layer produces the net-
work’s output. Using the scaled conjugate gradient (SCG) 
method, a common and efficient network training func-
tion named “trainscg” was selected to update the weight 
and bias values (Babani et  al. 2016). Although the SCG 
algorithm is based on conjugate directions, it does not 
perform a line search at each iteration (which makes the 
system computationally expensive). Consequently, this 
approach was developed to eliminate the time-consum-
ing queue search (Møller 1993).

The implemented ANN model was implemented using 
ten neurons in the hidden layer. The input data sets 
have been randomly divided into 70%, 15%, and 15% for 

training, validation, and testing; such a ratio is appropri-
ate for the relatively small dimensional datasets (Rácz 
et al. 2021). The construction of the ANN model is shown 
in Fig. 2.

Based on trial and error, the number of neurons in 
the hidden layer of an ANN is selected. However, input 
nodes influence the number of neurons used in a particu-
lar scenario (Sheela and Deepa 2013; Stathakis 2009). In 
the current work, various neurons were considered in the 
ANN investigations to ensure optimum results. However, 
using the number of neurons in the hidden layer > 10 
makes the ANN classification critical because the spec-
tral inputs are too many to exclude the risk of overfitting. 
Therefore, ten neurons in the hidden layer were selected 
in our implementation. The entire set of spectra pixels 
(i.e., spectral lines) have been loaded into the proposed 
ANN model. There were 28231 input variables corre-
sponding to wavelength ranges of 250 nm to 650 nm. 30 
LIBS spectra for each type of bacteria with and without 
nanoparticles were used to construct the network.

Results
LIBS versus NELIBS in bacteria discrimination
LIBS and NELIBS spectral signatures of both Pseu-
domonas aeruginosa and Proteus mirabilis were 

Fig. 1 The schematic diagram of the experimental setup

Fig. 2 The Implemented Neural Network Model
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obtained from 200 to 700 nm. As seen in Fig. 3. Numer-
ous spectral lines show up in the sample spectra, e.g., 
Na, Mg, Mn, Fe, Mo, Sr, K, and Cl. Moreover, spectral 
lines of some trace elements appeared, though faint, 
such as Ni, Zn, Al, Cu, Ba, Li, and V. Besides, C.N. 

molecular bands show up in the sample spectra. The 
displayed spectra represent the averages of 30 LIBS 
and NELIBS spectra for both bacterial samples. Spec-
tra were normalized to the intensity of the C 247.85 
spectral line to minimize the effect of background 

Fig. 3 Average spectra for a Proteus mirabils LIBS, b Proteus mirabilis NELIBS, c Pseudomonas aeruginosa LIBS, d Pseudomonas aeruginosa NELIBS with 
the most significant element lines identified
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noise. Figure  4 shows a pronounced signal intensity 
enhancement represented by five Ca spectral lines for 
the NELIBS spectra compared to LIBS that show up in 
both samples.

Figure  5 shows some trace elements’ spectral lines 
that were detectable only by NELIBS. Namely, e.g. 
Li-670 nm for both Pseudomonas aeruginosa and Pro-
teus mirabilis and Cu-458.69  nm for Pseudomonas 
aeruginosa.

The spectral lines intensity varies among the two 
bacterial species in the LIBS and NELIBS spectra. The 
average of the line’s intensity of six elements, Mg, Ca, 
Mn, Fe, Zn, and Sr, in 20 spectra for both LIBS and 
NELIBS, have been selected to demonstrate the spec-
tral lines enhancement factor (ratio of NELIBS/LIBS 
for the intensity of the spectral lines). The bar graph in 
Fig. 6 shows that the enhancement factor differs for the 
chosen elements and is systematically higher for Pseu-
domonas aeruginosa than Proteus mirabilis. The matrix 
effect, i.e. the difference in the elemental composition 
proportions of each bacterial species, may affect such 
variation in the spectral line’s enhancement factor 
between the two bacterial species.

Presence and absence of some elements’ spectral lines 
in NELIBS spectra
The superiority of NELIBS compared to LIBS has been 
demonstrated for the spectral discrimination between 
the two bacterial species under study. Adopting NELIBS, 
the spectral lines of some elements, e.g. I, Ni, and Mg, 
could not or are barely detectable in the spectrum of one 
of the two species. On the other hand, these lines show 
up clearly in the spectrum of the other species, see Fig. 7.

Artificial neural network (ANN) results
The constructed ANN was implemented twice, the first 
for raw samples (without nanoparticles) and the other 
after adding nanoparticles to the samples under examina-
tion. The accuracy rate of the constructed ANN models 
is presented in Table 1. As depicted in the table, without 
using NPs, the abstained accuracy rates were 94%, 79%, 
65%, and 88% for training, validation, testing, and all 
data sets, respectively. While using the NPs, the accuracy 
rate increased to 92% for all data sets. According to the 
obtained confusion matrix, other evaluation indicators, 
including precision, recall, and F1-Score, are also pro-
vided in the table.

Fig. 4 Upper: typical LIBS and NELIBS spectra of Proteus mirabilis (a) and Pseudomonas aeruginosa (b). Lower: zoomed section for each
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A sample of the error histogram obtained from the 
implemented ANN models is presented in Fig. 8.

The error presents the difference between the desired 
and the real output produced by the network. The 

“Instances” in the figure refer to the number of training, 
validation, and test sets samples. It is clear from the fig-
ure that the fitting data errors are distributed near the 
zero-error region when using nanoparticles (Fig. 8b), ver-
ifying better performance upon adding NPs to the sam-
ples. Networks are run several times to obtain the best 
performance. The performance plot with minimum mean 
square errors (MSE) is presented in Fig. 9.

The performance plot represents that the number of 
iterations increasing MSE becomes minimum. The plot 
also evaluates that validation and testing data set errors 
have almost similar characteristics, and the best perfor-
mance of the model occurred at the selected number of 
iterations (epochs). The regression plot of the correlation 
coefficient (R) is presented in Fig.  10, showing the rela-
tionship between the outputs and targets for the ANN 
model.

Discussion
Efforts are still developing to study microbial metabolism 
and physiology in the context of elemental composition. 
Major elements participate in the metabolic processes 
of microbial systems. Therefore, elements identified in 
this experiment by their specific spectral lines can’t all be 
related to the spectral fingerprint of a bacterial cell. Since 
C, H, N, O, P, and S elements are essential to forming the 

Fig. 5 A comparison between LIBS and NELIBS of Li‑670.7 nm, Cu 
458.69 nm spectral lines for Pseudomonas aeruginosa, and Li‑670.7 nm 
spectral line for Proteus mirabilis 

Fig. 6 The intensity enhancement factor (NELIBS/LIBS) for selected 
spectral lines for both bacterial species. The error bars represent the 
standard deviation of the experimental data

Fig. 7 The iodine, magnesium, and nickel spectral lines in the NELIBS 
spectra of the Pseudomonas aeruginosa and Proteus mirabilis 
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macromolecules of living cells, the proportion of such 
elements within the cell is conserved across all micro-
organisms. However, other elements are required to 
stabilize these molecules and maintain a habitable envi-
ronment. In addition, certain inorganic elements and 
ions are relevant for the homeostasis of life. Therefore, 

some elements, such as Ca, Na, K, Cl, Mg, Fe, and Mn, 
are expected to fluctuate moderately, as they are relevant 
to bacterial homeostasis. Others, such as Zn, fluctu-
ate significantly (Novoselov et  al. 2013). Sodium, Potas-
sium, Magnesium, and Calcium are considered the major 
elemental inorganic cations in a bacterial cell, as they 

Table 1 ANN Implantations results with and without adding nanoparticles to the examined samples

Samples Number of 
neurons

Accuracy rate Precision Recall F1 score

Training (%) Validation (%) Test (%) All (%)

Without nanoparticles 10 94 79 65 88 0.88 0.90 0.88

With nanoparticles 10 95 90 80 92 0.92 0.93 0.92

a b

Fig. 8 Error histogram plot of training, validation, and testing for one of the ANN executions a) using LIBS, b using NELIBS

Fig. 9 Mean Squared Error (MSE) graph of the trained ANN model (i.e. performance plot with best mean square error) a using LIBS, b using NELIBS
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are critical to many cellular functions. The abundance 
of these elements varies modestly among different bac-
terial cells. Magnesium is the most abundant element in 
many bacterial cells. It is essential in coordinating phos-
phoryl oxygen atoms, as a cofactor for multiple enzymes, 
and helps maintain the pH (Compton and Mindell 2010). 
Potassium plays a vital role in cell membrane transport 
(Doyle et al. 1998). Calcium is less abundant than mag-
nesium; it serves as a cofactor for certain enzymes and 
a component of endospores (Burke and Slinker 1982). 
Also, it could coordinate with E.F. proteins and form 
a class of calcium-binding proteins that have essential 
physiological roles in some bacterial cells (Michiels et al. 
2002). Sodium ions can participate in  Na+/H+ antiporters 

preventing over-alkalinization of cytoplasm in stress con-
ditions (Doyle et al. 1998).

Other elements like  Fe3+ and  Mn4+ act as final electron 
acceptors during respiration by some  microorganisms34. 
Strontium can substitute calcium and magnesium in 
some processes like spore formation, polysaccharides, 
flagellum biosynthesis (Robinson et al. 1992), and enzyme 
activation (Goodwin et  al. 1996). Zinc and transition 
metals like Vanadium, Manganese, Cobalt, Nickel, Cop-
per, and Molybdenum comprise only 1–2% of the total 
microbial cell mass. Still, they are essential for cells func-
tioning as catalytic centers for enzyme catalysts. Cobalt 
and Molybdenum present as trace elements are usually 
incorporated into vitamins and enzymes. For example, 

Fig. 10 Regression plots during training, testing, and validation of ANN in Matlab showing the R values a without nanoparticles (LIBS) and b with 
nanoparticles (NELIBS)
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Cobalt is associated with vitamin B12 and Molybdenum 
in the bacterial nitrogenase enzyme. Chloride is a signifi-
cant anion and a central halogen atom in many microbes 
that play a crucial role in osmoregulation and energy 
metabolism, especially for halophiles (Roeßler and Mül-
ler 2002).

It is noted that all bacteria spectra are mostly simi-
lar since all bacteria mostly contain the same elements, 
as seen in Fig.  3. However, the identification of bacte-
rial samples and discrimination between them can be 
achieved based on the presence and absence of some ele-
ments’ spectral lines (Fig. 7). In addition, the relative sig-
nal intensity of detectable elements spectral lines in other 
bacteria could also be utilized for bacteria discrimination 
(Fig. 6). The matrix effect may affect the variations in the 
intensity of some detected elements’ spectral lines, where 
the presence of some elements alters the emission behav-
ior of another (Cremers and Radziemski 2013; Noll 2012; 
Singh and Thakur 2007). The existence and absence of 
certain elements in different bacteria depend on several 
factors. Mainly the strain-specific metabolic processes, 
the interaction with the surrounding media on which 
the bacteria are grown, and various elemental contribu-
tions to the metabolic cycle of the organism. Lithium 
 (Li+), for example, is toxic to numerous microbial organ-
isms. However, in some cases, it substitutes  Na+ in the 
co-transport of amino acids and some sugars (Chen et al. 
1985) and drives the flagellar motor in some bacteria 
(Liu et  al. 1990). Likewise, iodine can be incorporated 
into metabolites by bacteria. Even though iodine is well 
known to have essential roles in killing bacteria, many 
bacteria can accumulate iodine through different mecha-
nisms (Yeager et al. 2017).

The potential improvement of Laser-induced break-
down sensitivity using silver nanoparticles is a huge step 
towards the rapid and accurate diagnostic detection and 
classification of bacteria in different settings with almost 
no sample preparation needed.

The reasons behind NELIBS enhancement have been 
explained in detail by Dell’Aglio et al. 2018, who showed 
the main differences between nano-enhanced LIBS and 
conventional LIBS are the different ablation and exci-
tation processes that affect the characteristics of the 
laser-produced plasma. The field enhancement in LIBS 
produced by the nanoparticles deposited onto a semicon-
ducting surface, silicon in the present case, is due to sur-
face plasmon resonance (SPR). This may take place when 
the laser photons are in resonance with the local surface 
plasmon (LSP) or due to the effect of the high laser irra-
diance (>  1 GW./cm2) on the NPs. In the case of reso-
nance with local surface plasmons, nanoparticle surface 
electron oscillation promotes the electromagnetic field 
leading to intense topical heating on the sample surface. 

On the other hand, in the case of a high laser irradi-
ance, the nanoparticles break down, and the induced 
plasma energy is transferred to some of the samples in 
the vicinity of such nanoparticles (Abdel-Salam et  al. 
2018). However, the laser wavelength used in the present 
measurements (1064 nm) was not in resonance with the 
absorption peak (420 nm) of the used NPs (Abdel-Salam 
et al. 2018). Hence, the laser’s direct interaction with the 
NPs enhances LIBS intensity. Given the different plasma 
production mechanisms in LIBS and NELIBS, adopting 
other optimization procedures for the detection systems 
in the two techniques may be adequate. Nevertheless, 
there was not much difference between the detection 
optimized values (the delay time  td and gate width ΔT) 
for LIBS and NELIBS measurements. Therefore, the 
spectra collected adopting both techniques in the pre-
sent work were measured at the same values for  td and 
ΔT. However, the factor of signal enhancement (ratio of 
NELIBS/LIBS for the intensity of the spectral lines) var-
ied between both bacterial samples due to the matrix 
effect, i.e., the difference in the elemental composition 
proportions of each bacterial species.

In conclusion, the higher potential of NELIBS com-
pared to the conventional LIBS in the discrimination 
between two bacterial strains with different taxonomic 
orders has been demonstrated. Furthermore, the results 
showed that biogenic AgNPs enhanced the spectro-
scopic sensitivity of NELIBS and facilitated the detec-
tion of various trace elements in both bacterial species. 
Furthermore, the spectral lines intensity enhancement 
factor, i.e. NELIBS/LIBS, revealed the effectiveness of 
using the NELIBS technique. Therefore, the discrimina-
tion between the two bacterial species has been achieved 
given the intensity difference of the spectral lines of some 
elements in both bacteria samples. Moreover, the pres-
ence of the spectral lines of certain elements in the spec-
trum of only one species of the two bacteria could also be 
used as a marker or a fingerprint characterizing such bac-
terial species. Moreover, the ANN model was created to 
evaluate the difference between the two bacterial species’ 
data sets, providing 88% and 92% differentiation accuracy 
for all data sets using LIBS and NELIBS, respectively. 
Compared to conventional microbiological discrimina-
tion techniques, this work demonstrated that different 
bacterial pathogens could be identified and classified 
at high precision using NELIBS with its pros. Namely, 
NELIBS is simple, needs no or minimum sample prepara-
tion, and is cost-effective.
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