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Suitability of lectin binding studies 
for the characterization of redox‑active 
microbial environmental biofilms
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Abstract 

Aquatic environmental microbial biofilms grow in a broad range of redox environments from oxic to methano-
genic, and they often also establish internal redox gradients. In technical applications, biofilms are also subjected to 
controlled redox conditions. Studies on biofilms often make use of fluorescence microscopic imaging techniques 
together with lectin binding analysis to gain insights into structure, composition, and functions of the biofilms. Here 
we studied the direct influence of redox potentials on fluorescence lectin binding analyses (FLBA) for two commonly 
used lectin-fluorophore conjugates. An effect of the electrical potential on signal intensity was observed and found 
to be statistically significant. The signal intensity changes however, remained within the range of a few percent total. 
A significant drop in intensity was only observed for extremely oxidizing potentials, typically not found under envi-
ronmental conditions. Our results showed that the fluorophore itself and not the lectin binding to the respective gly-
coconjugate causes fluorescence changes. The two tested lectin-fluorophores are shown to be suitable for studying 
the distribution and composition of EPS in environmental biofilms or technical applications and under varying redox 
conditions.
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Introduction
In situ imaging techniques such as confocal laser scan-
ning microscopy (CLSM) allow analysis of biofilms 
in their natural state (Neu et  al. 2010). One common 
approach is fluorescence lectin-binding analysis (FLBA). 
It uses lectin-conjugated fluorophores to identify and 
to map the composition of microbial extracellular poly-
meric substances (EPS). Introduced to a biofilm sample, 
lectins can bind to their target mono- or oligosaccharide 
units present in polysaccharides and other glycosylated 
components, which makes them ideal to label the EPS of 
biofilms. Hence, FLBA allows for qualitative and quan-
titative analysis of the EPS matrix (Neu and Lawrence 

2016). In the past FLBA helped identify micro domains 
within biofilms (Lawrence et  al. 2007), as well as eluci-
dating the role of environmental parameters on biofilm 
development (Proia et  al. 2012), and interactions with 
environmental contaminants (Lawrence et al. 2001) and 
heavy metals (Lawrence et al. 2004; Yang et al. 2011).

Microbial activities in biofilms lead to physical and 
chemical gradients in space and time (pH, redox poten-
tial, and oxygen) (de Beer et al. 1994; Hunter and Beve-
ridge, 2005; Snider et al. 2012). Such gradients allow for a 
vast diversity of cell types to coexist and result in a high 
degree of heterogeneity on the spatial and temporal scale 
(Stewart and Franklin 2008). The formation of microen-
vironments can lead to bio- and geochemical reactions 
that seem thermodynamically infeasible when look-
ing at the bulk scale (Gieseke et al. 2006; Li and Bishop 
2004). Combining FLBA with additional sensors, such 
as for metals (Hao et al. 2016, 2013) or pH (Hegler et al. 
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2010; Hunter and Beveridge 2005) further increases our 
mechanistic understanding of such microenvironments. 
However, correlating the signals gained from FLBA to 
other sensors requires an environmental insensitivity of 
the lectin-fluorophore conjugates used. Fluorescein and 
its derivatives for example are known for their pH-sensi-
tive fluorescence (Lanz et al. 1997; Martin and Lindqvist 
1975; Sjöback et al. 1995). Thus, lectins are often conju-
gated with fluorophores of the Alexa family to stain EPS, 
as they exhibit a wide pH stability (Panchuk-Voloshina 
et al. 1999). However, potential dependent redox switch-
ing of organic fluorophores was observed as well (Lei 
et al. 2009; Salverda et al. 2010).

Environmental biofilms exhibit a wide range of redox 
potentials, ranging from methanogenic, sulfidic, iron, 
manganese, and nitrate reducing to completely oxic con-
ditions (Kappler et al. 2021), and often show micro zona-
tion (Li and Bishop 2004; Nguyen et al. 2012). However, it 
remains elusive whether or not FLBA is a robust and con-
servative approach under all these environmentally rele-
vant redox conditions. Combinations of FLBA with redox 
sensors, or with electrochemical methods are promising 
tools that allow for investigating reactions of microenvi-
ronments under changing redox conditions, or the role of 
EPS in controlling such redox microenvironments and, as 
a result, reaction mechanisms within a biofilm.

In this study, we investigate the suitability of two 
commonly used lectin-fluorophore conjugates for bio-
film studies under varying, controlled redox condi-
tions by using a combination of in  situ CLSM and 
electrochemistry.

We hypothesize that FLBA can be applied to redox-
active environmental biofilms to study the composition 
and distribution of EPS. Potential applications include 
the study of EPS functions for element cycling or the fate 
of toxic compounds.

Materials and methods
Sample preparation
Environmental, redox-active biofilm samples were col-
lected using sterile 50  ml sample tubes. The biofilms 
sampled were from iron rich creeks located at Mount 
Rudolfstein and Mount Nusshardt (Bavaria, Germany).

Wheat germ agglutinin Alexa Fluor™ 555 (WGA555) 
and Concanavalin A Alexa Fluor™ 488 (ConA488) conju-
gates (Thermo Fisher Scientific) were used respectively to 
label biofilm glycoconjugates.

Each biofilm sample was stained by adding 10  µl of 
Alexa Fluor™ conjugate stock solution (1  mg/ml) to 
100  µl of biofilm. Biofilms were incubated in the dark 
for 20 min before analysis, allowing for the quantitative 
binding of the fluorescence probes.

Two types of control samples were prepared. The 
respective fluorescence probe stock solution was either 
diluted in sterile filtered biofilm water or in sterile filtered 
biofilm water buffered with 0.1  M 2-(N-Morpholino)
ethanesulfonic acid hydrate (MES, ≥ 99.5%, Sigma 
Aldrich) to a final concentration of 0.025 mg/ml.

Multi label biofilm staining for the exemplary biofilm 
study was done according to (Hao et al. 2016) using (1) 
ConA488, SYTO 62 (Thermo Fisher Scientific), and 
a Fe2+-Sensor (Kumar et  al. 2011), and (2) ConA488, 
WGA555, and SYTO 40 (Thermo Fisher Scientific).

Cell for electrochemical CLSM analysis
For the electrochemical CLSM measurements, a custom-
made electrochemical measurement cell was used. A 
Frame was milled from Poly(methyl 2-methylpropenoate) 
with trenches for attaching electrodes. Gold wires were 
used as the working and counter electrodes (100  µm 
diameter, 99.998%, Alfa Aesar), which were secured in 
the trenches with glue (UltraGel, Pattex). The frame was 
sealed onto a microscope slide using silicone sealant 
(Dow Corning 3140). A pseudo reference electrode (Ag/
AgCl) was prepared by anodic silver chloride coating sil-
ver wires. A protocol adapted from (Smith and Steven-
son 2007) was used for this process. First, silver wires 
(250  µm diameter, 99.9985%, Alfa Aesar) were cleaned 
with ethanol. To get rid of the oxide layer the wires were 
dipped in 0.1 M HNO3 for 10 s. For anodic coating, the 
silver wires were immersed in 0.5 M HCl for 30 min with 
a voltage of 3.0  V applied between anode and cathode. 
The coated silver wires were washed with ultra-pure 
water (resistivity > 18.2 MΩ cm). For each experiment, a 
fresh electrode was prepared.

Before each use, the cell was cleaned electrochemi-
cally with 0.05  M H2SO4. After each use, the cell was 
filled with 30% hydrogen peroxide for 10 min to clean off 
organic residues and rinsed thoroughly with ultra-pure 
water.

Electrochemical CLSM
The cell was filled with sterile-filtered biofilm superna-
tant water (0.2 µm PES membrane filter, VWR). Stained 
biofilms were placed close to the working electrode.

Electrochemical CLSM measurements were carried out 
using an upright Leica TCS SPE equipped with a 20x/NA 
0.5 water immersion dipping lens (HCX APO L U-V-I 
UV, Leica Microsystems, Wetzlar, Germany). Measure-
ments were taken at regions (area of 75.625  µm2) close 
to the working electrode. The pinhole was set to 2 AU 
to increase the depth of field in order to counteract the 
influence of potential z-movement of the sample within 
the time of analysis.
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A time series experiment was setup where the applied 
potential was changed in 15 s intervals and an image was 
recorded at the end of each 15 s interval. Each potential 
step was repeated 3 times during the time series experi-
ment. Each cycle was divided in two parts. First, the 
reduction potential was gradually lowered in an environ-
mentally relevant range from + 0.2 to − 0.5 V. In order to 
repeat this cycle, an over potential was applied in three 
increments (from + 0.7 to + 1.1 V) to ensure re-oxidation 
of the redox-active compounds in the sample.

As a control, the fluorescence intensity of the biofilms 
was recorded in the same way at open circuit potential 
(OCP).

Data analysis
The time series image stacks were analyzed using Fiji 
(Schindelin et  al. 2012). Fluorescence intensity profiles 
over time were extracted by measuring the mean inten-
sity at each time point. For the biofilm datasets, regions 
of interest (ROIs) were chosen to select in focus areas 
of the biofilm, as well as to account for eventual lateral 
movement of the sample during the measurement. ROIs 
were generated by applying an automated threshold 

(IsoData) on the maximum intensity projection of the 
image stack, smoothed with a median filter (r = 5 pixels).

Measurements were affected by bleaching, which was 
corrected for by fitting and dividing by an exponential 
decay baseline for each profile.

A one-way ANOVA was conducted to compare the 
effect of applied potential on fluorescence intensity.

Results
The fluorescence intensity response of lectin-fluorophore 
conjugates to the applied potentials was studied in 3 dif-
ferent treatment conditions: (1) Biofilms, (2) filtered bio-
film water, and (3) filtered biofilm water, buffered with 
0.1 M MES.

The results are summarized in Fig.  1. In general, the 
fluorescence intensity of the lectin-fluorophore con-
jugates ConA488 and WGA555 changed with applied 
potentials for all treatments. These changes in intensity 
as a function of potential were small on an absolute scale, 
but statistically significant (Table  1) with p < 0.001 for 
all treatments. At OCP the fluorescence was stable over 
time (Fig. 1 A, E, I).

The relative changes in fluorescence are summarized 
in Table  2. During the reductive part of the potential 

Fig. 1  Electrochemical CLSM characterization of ConA488 and WGA555. Applied potential over time (A–D). Corresponding mean fluorescence 
intensity for ConA488 (E–H) and WGA555 (I–L). Columns from left to right show labeled biofilm without potential applied (A, E, I), labeled biofilm 
under potential control (B, F, J), fluorescence probe in filtered biofilm water (C, G, K), fluorescence probe in filtered biofilm water, buffered with 
0.1 M MES (D, H, L). Potential/V vs. Ag/AgCl wire
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cycle, the applied potential was lowered incrementally 
from + 0.2 to −  0.5  V. During this reducing sweep, the 
fluorescence intensity steadily increased by a few per-
cent with decreasing potential. For the following oxi-
dative part of the cycle (+ 0.7 to + 1.1  V), the intensity 
decreased with each increase in the potential. The mag-
nitude of intensity changes was higher in (2) and (3) as 
compared to (1) for both, ConA488 and WGA555.

When switching from the reduction to the oxidation 
sweep a hysteresis effect was observed for (1). A signifi-
cant drop in fluorescence intensity showed only after a 
lag phase of 30 s at a potential of + 1.1 V.

Figure 2 shows several examples of a redox-active envi-
ronmental biofilm, sampled from a Fe-rich creek, with a 
pH of 6.6 and O2 concentration of 1.4 mg/L (T = 12.5 ℃). 
The biofilm was stained by a combination of three dyes 
visualizing the DNA of microbial cells (blue), the EPS 
of the biofilm via FLBA (red) and the distribution of 

dissolved Fe2+ (green). The figure visualizes exemplarily 
the existence of microenvironments in the biofilm that 
are enclosed by the EPS and enriched in dissolved Fe2+ 
ions. Additional 3D representations of such biofilms 
stained with different dye combinations can be found in 
the Additional file 1 (Fig. S1).

Discussion
We hypothesize that FLBA is both robust and conserva-
tive under environmentally relevant redox conditions. By 
in-situ electrochemical confocal laser scanning micros-
copy, we clearly show that under environmentally rel-
evant redox conditions, the fluorescence intensity of the 
two tested lectin Alexa Fluor conjugates vary in the low 
percent range. These differences were significant on a 
p < 0.0001 level, reproducible and reversible after several 
electrochemical reoxidation cycles.

Our results on lectin Alexa Fluor conjugates are in 
contrast to previous studies wherein other organic fluo-
rophores showed much larger fluorescence intensity 
changes as a function of redox potential (Lei et al. 2009; 
Salverda et  al. 2010). The Alexa Fluor dyes used in our 
study appear to be far less sensitive to changes in poten-
tial. Furthermore, the large decrease in fluorescence 
intensity was only expected for very extreme, oxidizing 
redox conditions (i.e. + 1.1  V), which are typically not 
found in environmental biofilms.

For FLBA in combination with CLSM, the observed 
fluorescence intensity at certain biofilm locations cor-
respond to the amount of bound lectin at the respective 
location. A higher abundance of available binding sites 
within the biofilm EPS results in the binding of more 
lectin-fluorophore conjugates and, as a result, higher 
observed fluorescence intensity at this site and vice versa.

Table 1  Effect of potential on fluorescence intensity of ConA488 
and WGA555. Summary of ANOVA results for each experimental 
setup

Stained biofilm (1), fluorescence probe in filtered biofilm water (2), and 
fluorescence probe in filtered biofilm water, buffered with 0.1 M MES (3). 
Degrees of freedom in the numerator (DFn) and denominator (DFd), F-statistic 
(F) and P-Value (p)

Effect DFn DFd F p

ConA488

 (1) Potential 6 56 13.0 3.71e−09

 (2) 18.8 7.36e−12

 (3) 22.2 3.63e−13

WGA555

 (1) Potential 6 56 7.5 6.04e−06

 (2) 22.8 2.03e−13

 (3) 43.1 3.00e−19

Table 2  Mean fluorescence intensity change vs. intensity It0 (%) at different potentials (V) of dyes ConA488 and WGA555 under 
different conditions

Stained biofilm (1), fluorescence probe in filtered biofilm water (2), and fluorescence probe in filtered biofilm water, buffered with 0.1 M MES (3). Potentials are listed in 
sequence of appearance during cycling

ConA488 WGA555

Potential (1) (2) (3) (1) (2) (3)

Reduction sweep

 0.2 0.8 1.5 0 − 0.1 0.9 0.0

 0 0.8 1.5 0.7 0.6 2.8 2.2

 − 0.2 1.6 2.4 1.8 2.0 6.5 5.7

 − 0.5 2.7 4.6 3.9 2.2 9.5 11.5

Oxidizing sweep

 0.7 2.3 3.7 3.2 4.3 4.1 6.0

 0.9 2.0 1.2 0.0 3.7 0.8 0.3

 1.1 − 2.4 − 3.9 − 6.2 − 1.9 − 4.3 − 6.5
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Staining of the biofilm with the lectin conjugates 
ConA488 and WGA555 indicates the presence of α-D-
mannopyranosyl and α-d-glucopyranosyl (Goldstein 
et al. 1974), and N-acetylglucosamine and N-acetylgalac-
tosamine (Wright 1984), respectively. This agrees with 
a study on similar biofilms (Takeda et al. 2005) showing 
that the EPS of a comparable metal-rich aquatic biofilm 
contained glycine, cysteine, galactosamine, glucosamine, 
and uronic acids. These sugar residues contain polar 
functional groups such as hydroxyls and amines, which 
are essential for the binding specificity of the lectins (Lis 
and Sharon 1986). If these polar groups of the EPS were 
chemically altered by changing redox potentials, this 
would change the amount of lectin conjugate bound in 
the biofilm. As a result, the observed fluorescence inten-
sity of the bound lectin-fluorophores would be expected 
to strongly decrease. However, in our study the signal 
intensity remains unaffected by redox potentials within 
the range of a few percent.

Thus, the small fluorescence intensity changes [i.e. 4.6% 
at max in an environmentally relevant potential range 
(Zobell 1975) between − 0.5 and + 0.7 V] observed in our 
study could in principle be caused either by decreased/
increased binding of lectin-fluorophore conjugate to the 
respective mono- or oligosaccharide moieties, or by an 
oxidation/reduction of the fluorophore itself.

The comparison of our results on the effect on fluo-
rescence intensity of the lectin-fluorophore conjugates 
in aqueous solution (with and without pH buffer), and 
the same conjugates bound to the EPS structures clearly 
indicates that the intensity changes are caused by the 
fluorophore itself, and not the binding of the lectin to 

the target sites. The fluorescence intensity changes of 
the EPS-bound lectin Alexa Fluor conjugates were small 
compared to the dye-conjugates in the buffered or non-
buffered aqueous solutions (compare Fig. 1 and Table 2).

Therefore, FLBA with the two tested lectin Alexa Fluor 
conjugates was demonstrated to be a robust and conserv-
ative approach for studying the distribution and compo-
sition of EPS in environmental biofilms under various 
and under varying redox conditions.

The relevance of these findings are manifold. The 
stained biofilm shown in Fig.  2 visualizes exemplarily 
the potential of FLBA to gain mechanistic insights into 
the processes within and functions of environmen-
tal biofilms. FLBA was used to identify microbial pro-
cesses resulting in redox microzonation. Although it is 
not possible to quantitatively measure the redox poten-
tial at the µm scale, there is clear indirect evidence for 
heterogeneity and redox-microzonation at this scale. 
The enrichment of dissolved or weakly sorbed Fe2+ ions 
within the globular EPS structures, particularly around 
the microbial cells in the center of these structures 
indicates the presence of such reduced microzones, as 
it was expected that Fe2+ would be readily oxidized at 
the circumneutral pH of 6.6 within the biofilm under 
oxic or suboxic conditions. Simultaneously with the 
increase of the fluorescence signal of the Fe2+ sensitive 
probe towards the interior of the round EPS structures, 
we observed a strong decrease in the ConA488 signal, 
which was attribute to a change in composition of the 
EPS structures surrounding the microorganisms and 
not to the redox-potential on ConA488 itself. Through 
this project, we were able to identify transitions in the 

Fig. 2  Exemplary Staining of a redox-active environmental Biofilm containing iron oxidizing bacteria. Red: EPS (ConA488), green: Fe2+ (Fe2+-Sensor), 
blue: DNA (Syto 62). Scalebar 10 µm
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organochemical composition of EPS compounds under 
varying redox potentials within the microzonation of a 
biofilm. We clearly demonstrated that the differences 
in the fluorescence intensity of ConA488 between the 
inside and the outside of the Fe2+-rich microzones pre-
sented in Fig. 2, cannot be caused by effects of associ-
ated redox-zonation on ConA488, but must be caused 
by compositional variations within the EPS.

Our results are also relevant for various other stud-
ies of biofilm functions as for instance microbial “com-
munication” in biofilms. Bacteria within a biofilm 
were shown to communicate by transmitting electri-
cal impulses through potassium ion channels within 
the EPS matrix (Czerwińska-Główka and Krukiewicz 
2020).

Both, communication and electroactivity for metabo-
lism or nutrient acquisition requires electron transfer to 
and from the microorganisms. This can be achieved by 
small organic redox-active molecules, such as flavins and 
cytochromes on the cell-surface (Flemming 2011; Obst 
et  al. 2018; Xiao et  al. 2017), that act as electron shut-
tles (Hernandez and Newman 2001), conductive micro-
bial structures such as pili or even electrically conductive 
microbial lifeforms such as cable bacteria. The latter, for 
example, are capable of electron transport over long dis-
tances and directly couple processes across redox gradi-
ents spanning from the oxic to sulfidic zone (Bjerg et al. 
2018; Müller et al. 2016; Nielsen et al. 2010).

The approach of this study successfully acquired real-
time imaging of fluorescent-labelled EPS under vary-
ing redox conditions. It can be used for non-destructive 
in  situ biofilm studies on various properties of micro-
bial EPS that are relevant for processes such as element 
cycling or for the fate of nutrients or toxic compounds 
(e.g., metal sorption as a mechanism to immobilize pol-
lutants). The spatial distribution of the sorption of heavy 
metals by EPS was demonstrated previously by metal-
specific fluorescence probes (Hao et al. 2016). This pro-
cess was directly affected by changing redox conditions 
and the spatial heterogeneity in the organochemical 
composition of the EPS can now be studied efficiently by 
FLBA.

Therefore, the results of our study are not only rel-
evant for environmental biofilms but also for the fast 
emerging field of technical applications of biofilms, 
such as the use of Fe(II)-oxidizing biofilms as efficient 
filter materials for metal contaminated mine drain-
age (Hedrich and Johnson 2014; Janneck et  al. 2010). 
Other potential fields of relevance include the growth 
of biofilms on electrodes for future use in technical and 
industrial applications such as microbial fuel cells, an 
emerging technology (Kumar et  al. 2018) where FLBA 
could lead to a better understanding of electroactive 

biofilm formation and electrode interaction. However, 
for some applications, further aspects might have to be 
considered.

For example, Babauta et  al. (Babauta et  al. 2012) 
studied redox potential variations within a growing G. 
sulfurreducens biofilm on a larger spatial scale using 
microelectrodes. They elucidated that biofilms grown 
under electrode-respiring conditions show an increase 
in redox potential and decrease in pH with increasing 
distance from the electrode. In such biofilms, heteroge-
neities in EPS structure and composition are expected 
and may be related to local biofilm redox potentials. 
Beyond the local redox potential, the local pH in a 
biofilm may also affect either the lectin-EPS binding 
behavior or the fluorescence of the fluorophore itself. 
In our case, this is not critical as Alexa Fluor dyes are 
stable over a pH range of 4 to 9 (Panchuk-Voloshina 
et  al. 1999) and the ligand binding optima of WGA 
(Privat et  al. 1974) and ConA (Hassing and Goldstein 
1970) are in the pH range of 4 to 10 and 3 to 8, respec-
tively. However, pH should still generally be considered 
as an important parameter in the discussion and inter-
pretation of lectin binding in microbial biofilms and the 
influence of local pH changes so far remains elusive.

For the lectin-fluorophores used in this study, we 
demonstrated and discussed their usability over a wide 
range of redox potentials and pHs. One should note 
however, that this would not be universally applicable 
to all lectin Alexa Fluor combinations. For example, 
redox dependent photo switching was recently shown 
for Alexa Fluor 647 (Fan et al. 2019). The present study 
can act as a guideline in evaluating the suitability of 
other lectin-fluorophore conjugates for FLBA studies 
under varying and in various redox environments.

The approach of electrochemical CLSM in combina-
tion with FLBA that was developed for this study allows 
for non-destructive in  situ biofilm studies under con-
trolled redox conditions. FLBA using lectin Alexa Fluor 
conjugates has been demonstrated to be a robust and 
conservative technique to study biofilm composition 
under varying redox-conditions. Future environmental 
and technical applications may include studies on metal 
sorption as a mechanism to immobilize pollutants.
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