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Housekeeping gene gyrA, a potential 
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Abstract 

Bacillus is a genus of microorganisms (bacteria) and contains many important commercial species used in indus‑
try, agriculture and healthcare. Many different Bacilli are relatively well understood at the single-cell level; however, 
molecular tools that determine the diversity and ecology of Bacillus community are limited, which limits our under‑
standing of how the Bacillus community works. In the present study, we investigated the potential of the housekeep‑
ing gene gyrA as a molecular marker for determining the diversity of Bacillus species. The amplification efficiency 
for Bacillus species diversity could be greatly improved by primer design. Therefore, we designed a novel primer 
pair gyrA3 that can detect at least 92 Bacillus species and related species. For B. amyloliquefaciens, B. pumilus, and B. 
megaterium, we observed that the high variability of the gyrA gene allows for more detailed clustering at the subspe‑
cies level that cannot be achieved by the 16S rRNA gene. Since gyrA provides better phylogenetic resolution than 16S 
rRNA and informs on the diversity of the Bacillus community, we propose that the gyrA gene may have broad applica‑
tion prospects in the study of Bacillus ecology.
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Introduction
Microbial communities in soil are known to be one of the 
largest reservoirs of biological diversity and have been 
extensively studied (Timmis and Ramos 2021). Current 
advances in high-throughput DNA sequencing of a por-
tion of the small subunit of ribosomal RNA (16S and 
18S rRNA) form the backbone of most studies of soil 
microbial ecology (Klindworth et al. 2013). For bacteria, 
the 16S rRNA gene is usually preferred, because it con-
tains both highly conserved and hypervariable regions 
(Peer et al. 1996), and especially because comprehensive 
reference databases have been compiled for compari-
son (McDonald et al. 2012; Quast et al. 2013; Cole et al. 

2014; Yoon et  al. 2017). However, 16S rRNA amplicon 
sequencing also has many shortcomings: first, 16S rRNA 
evolves slowly and is highly conserved, making it a poor 
marker for distinguishing between closely related strains. 
Second, chimera formation during PCR is high because 
16S rRNA variability is very low (Pinto and Raskin 2012; 
Sun et al. 2013). Third, the number of 16S rRNA copies in 
different species is highly variable, and single nucleotide 
polymorphisms (SNPs) at the single-cell level may result 
in an overestimation of diversity (Johnson et  al. 2019). 
Fourth, the similarity between species can be very high, 
making it difficult to delineate species in cluster analy-
sis, and different clustering levels lead to different results 
(Edgar 2013). Therefore, new complementary taxonomic 
markers for genetic and bioinformatic analysis need to 
be developed to study microbial diversity in more detail, 
especially at the subspecies level.

Bacillus is one of the most intensely studied bacterial 
genus comprising at least 200 species (Mandic-Mulec 
et al. 2015). It is a heterogeneous bacterial taxon that is 
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ubiquitous in various ecological niches and widely used 
in medicine, industry and agriculture. Although there 
have been many in-depth studies on Bacillus model 
species, community-level studies on Bacillus in soil 
and other habitats lag. Because sequences of 16S rRNA 
within Bacillus species are often similar, the definition 
and delineation of bacterial species based on the 16S 
rRNA comparison among related species in the genus 
Bacillus are unclear. Therefore, the identification and 
typing of Bacillus isolates based on the 16S rRNA gene 
alone cannot provide accurate results and it is important 
to explore and use other genes as molecular markers to 
assess the diversity of the Bacillus community (Mandic-
Mulec et al. 2015).

Housekeeping genes are potential candidates for 
assessing microbial diversity because they have been 
shown to elicit higher phylogenetic resolution than the 
16S rRNA gene, such as the rpoB gene, gyrA gene, and 
gyrB gene, etc. (Chun and Bae 2000; Kasai et  al. 2000; 
Yamamoto et  al. 2000; Hurtle et  al. 2004; Stefanic and 
Mandic-Mulec 2009; Stefanic et  al. 2012, 2015; Levican 
et al. 2013; Ménard et al. 2016). Typically, there are only 
one or two copies of housekeeping genes per genome, 
and the use of low-copy number genes compared to high-
copy number genes could lead to more accurate diver-
sity analysis by avoiding overestimation of diversity due 
to SNPs in different gene copies. Indeed, several studies 
have tested the rpoB gene and the gyrB gene as molecu-
lar markers to analyze the diversity of bacterial commu-
nities by amplicon sequencing. The results showed that 
housekeeping gene sequencing provided a more accurate 
description of bacterial community composition than 
16S rRNA sequencing under certain conditions (Vos 
et al. 2012; Poirier et al. 2018; Ogier et al. 2019).

The housekeeping gene gyrA, encoding DNA gyrase 
subunit A, is essential for DNA replication and is present 
in all bacteria (Cozzarelli 1980). Analyses of gyrA iden-
tity provided higher phylogenetic resolution than the 
16S rRNA gene for tested Bacillus isolates (Chun and 
Bae 2000; Ménard et  al. 2016). Specifically, partial gyrA 
gene sequences were used for phylogenetic analysis and 
species identification of seven Bacillus strains, including 
B. amyloliquefaciens, B. atrophaeus, B. licheniformis, B. 
mojavensis, B. subtilis, B. subtilis subsp. spizizenii, and 
B. vallismortis (Chun and Bae 2000). Moreover, the gyrA 
gene sequences provided a good marker for B. subtilis 
and B. amyloliquefaciens and showed better discrimina-
tory potential between these two closely related species 
than the rpoB gene (Chun and Bae 2000). The gyrA gene 
has been also successfully used to detect intraspecific 
diversity of B. subtilis isolates from soil microscale (Ste-
fanic and Mandic-Mulec 2009) and tomato rhizosphere 
isolates (Oslizlo et al. 2015). Overall, these works suggest 

that gyrA has a good potential to be used as a molecu-
lar marker for microbial ecology studies of the Bacillus 
genus and related species, however, to the best of our 
knowledge, the available primer pairs used in the studies 
indicated above, have not been used for amplicon-based 
community analyses of Bacillus species.

In this study, we first compared the rate of variation of 
the 16S rRNA and gyrA genes between 20 Bacillus spe-
cies and then designed a new primer pair that specifically 
target gyrA (gyrA3). We then evaluate their performance 
by using in silico PCR, testing their efficiency on Bacillus 
isolates and performing SNPs analysis of 16S rRNA and 
gyrA genes for selected species that were available in the 
NCBI database. Finally, verified gyrA3 primers to differ-
entiate species and strains of Bacillus mock community, 
and compared the obtained results with those targeting 
16S rRNA. Our results suggest that the gyrA gene is a 
useful molecular marker for the identification of Bacil-
lus isolates and describing the diversity of the Bacillus 
community.

Materials and methods
Strains and culture condition
The 127 strains (56 species) used in the study were strains 
of Bacillus (32 species) and related genera of Bacillus 
(Paenibacillus, Lysinibacillus, Aneurinibacillus, Virgiba-
cillus, Brevibacillus, Halobacillus and Fictibacillus; 24 
species), all strains were isolated from soil (Additional 
file 2: Table S1). All strains were grown at 30 °C in low-
salt Luria–Bertani medium (LB), containing 10  g tryp-
tone, 5 g yeast extract, and 3 g NaCl per litre.

Nucleotide diversity (Pi) analysis
For interspecies analysis, the whole sequences of the 16S 
rRNA and the gyrA genes of 20 Bacillus species (361 
genomes) were downloaded from the NCBI genome 
database (Additional file  2: Table  S2). For intraspecies 
analysis, 3 species were selected and whole sequences 
of 16S rRNA and gyrA gene were downloaded from the 
database: B. amyloliquefaciens (88 genomes), B. licheni-
formis (71 genomes) and B. pumilus (97 genomes) (Addi-
tional file 2: Table S2). The alignment of these sequences 
was conducted using the online alignment tool Kalign 
on EMBL (https://​www.​ebi.​ac.​uk/​Tools/​msa/). Subse-
quently, nucleotide diversity (Pi) was estimated with 
DnaSP 6 (v.6) using a window size of 100 bp and a step 
size of 10 bp (Rozas et al. 2017).

DNA extraction of strains, PCR and gel electrophoresis
Genomic DNA was extracted using the Omega Bacte-
rial DNA Kit D3350 (Omega, Bio-tek, Norcross, GA, 
USA), and the concentration and quality of DNA were 
determined using a NanoDrop 2000 spectrophotometer 

https://www.ebi.ac.uk/Tools/msa/
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(Wilmington, DE, USA). The reaction mixture for PCR 
amplification was prepared in 25  μL containing 1 μL of 
DNA, 2  μL of each primer (the primer pair gyrA1 were 
gyrA1-F: 5′-CAG​TCA​GGA​AAT​GCG​TAC​GTC​CTT​
-3′ (Roberts et al. 1994) and gyrA1-R: 5′- GTA​TCC​GTT​
GTG​CGT​CAG​AGT​AAC​-3′ (Ansaldi et  al. 2002), the 
primer pair gyrA2 were gyrA2-F: 5′-CAG​TCA​GGA​AAT​
GCG​TAC​GTC​CTT​-3′ (Roberts et  al. 1994) and gyrA2-
R: 5′-CAA​GGT​AAT​GCT​CCA​GGC​ATT​GCT​-3′ (Rob-
erts et  al. 1994), the primer pair gyrA3 were gyrA3-F: 
5′-GCDGCHGCNATG​CGT​TAYAC-3′ and gyrA3-R: 
5′-ACAAGMTCWGCKATT​TTT​TC-3′, the primers 
for the 16S rRNA gene were 27F: 5′-AGA​GTT​TGA​TCC​
TGG​CTC​AG-3ʹ and 1492R: 5′-GGT​TAC​CTT​GTT​ACG​
ACT​T-3ʹ), 12.5 μL Green Taq Mix (http://​www.​vazyme.​
com), and 7.5  μL deionized water. PCR has performed 
under the following conditions: Predenaturation at 94 °C 
for 5  min; denaturation at 94  °C for 30  s; annealing at 
50 °C for 30 s; elongation at 72 °C for 40 s (35 cycles); and 
elongation at 72 °C for 7 min.

In silico PCR
The gyrA sequence database contains 5062 full-length 
gyrA gene sequences (226 Bacillus species), which were 
downloaded from the NCBI database using the NCBI-
genome-download script (https://​github.​com/​kblin/​
ncbig​enome-​downl​oad/) (Additional file  2: Table  S3). 
First, the degenerate primer pair gyrA3 was converted 
to primers that do not contain degenerate bases, and the 
converted gyrA3 is listed in Additional file  2: Table  S4. 
Subsequently, the primer pairs gyrA1, gyrA2 and the con-
verted gyrA3 were aligned with the gyrA database using 
NCBI-blast + software (v.2.9.0). The match at 18 bases 
of both, the forward and reverse primer, was considered 
amplifiable by the primer pair.

Phylogenetic analysis
In this study, phylogenetic analysis of genes was per-
formed using MEGA (v.5.05) (Tamura et  al. 2011) for 
Neighbor-Joining and the reliability of clades was tested 
using 1000 bootstrap replicates. Furthermore, annotation 
and beautification of trees were performed using pro-
grams available at the iTol online site (https://​itol.​embl.​
de) (Letunic and Bork 2019).

SNPs analysis
A total of 600 available genomes of 4 different Bacillus 
species were obtained using the same method as in-sil-
ico PCR, including 116 genomes of B. amyloliquefaciens, 
140 genomes of B. pumilus, 117 genomes of B. megate-
rium and 226 genomes of B. anthracis (Additional file 2: 
Table  S5). The alignment of the 16S rRNA (base sites: 
330–810) and gyrA genes (base sites: 350–850) within 

each species was performed using the L-INS-I method 
of MAFFT (v7.487) (https://​mafft.​cbrc.​jp/​align​ment/​
softw​are/) (Katoh et al. 2002). The 2 gene sequences (16S 
rRNA, gyrA) on the same genome were selected as rep-
resentative sequences, and the base mismatch sites on 
other sequences were marked with color after compari-
son with the representative sequence.

Construction of the DNA‑based Bacillus mock community, 
amplicon sequencing and data analysis
For the Bacillus mock community, we selected 8 strains 
with known genome sequences. Genomic DNA from 8 
strains was extracted and its quality and quantity were 
determined. Eight genomic DNAs were pooled in equal 
amounts after being diluted to approximately the same 
concentrations. The hypervariable region V3-V4 of the 
16S rRNA gene was amplified with the universal prim-
ers 338F: 5′-CCT​ACG​GRRBGCASCAGKVRVGAAT-3’ 
and 806R: 5′-GGA​CTA​CNVGGG​TWT​CTA​ATC​C-3′. 
The gyrA gene from 8 strains of the mock commu-
nity was amplified with primer pairs gyrA3 (see above), 
gyrA4 (F: 5′-TAY​GCR​ATG​AGY​RTHATYGT-3’ and R: 
5′- TTBGTNGCCATHCCDACMGC-3ʹ), and gyrA5 
(F: 5′-GCDGCNGCVATG​CGT​TAYAC-3ʹ and R: 5′- 
CGNAGRTYBGTAATDCCDTC-3ʹ). Sequencing was 
performed on an Illumina Miseq PE300 instrument.

Raw data were processed using the Unoise3 algorithm 
(Edgar 2016) in the UPARSE pipeline (http://​drive5.​com/​
usear​ch/​manual/​uparse_​pipel​ine.​html) (Edgar 2013) to 
obtain the ZOTUs represent sequences and the ZOTUs 
table. The ZOTUs represent sequences were annotated 
using the sequences of 16S rRNA and gyrA gene of 
the eight strains (Additional file  2: Dataset S1, S2). The 
ZOTUs of the same strain were pooled into a single unit 
after annotation. Finally, we used box plots to show the 
community structure and the characteristics of the differ-
ent primer pairs during sequencing. The box plots were 
drawn using R (v.4.0.3) (R Core Team 2020).

Results
The gyrA gene of the Bacillus genus shows higher variation 
rates than 16S rRNA
The housekeeping gene gyrA is considered to be more 
variable than 16S rRNA and has been used as a molecular 
tool for the classification and identification of B. subtilis 
species (Chun and Bae 2000; Borshchevskaya et al. 2013). 
In the genus Bacillus, the nucleotide diversity (Pi) of 16S 
rRNA and the gyrA gene sequences were 0.039 and 0.491, 
respectively (Fig.  1A, B blue line). It indicated that the 
degree of interspecies variation was significantly higher 
for the gyrA gene than for the 16S rRNA gene.

In three Bacillus species, the intraspecific nucleo-
tide diversity (Pi) of 16S rRNA was again significantly 

http://www.vazyme.com
http://www.vazyme.com
https://github.com/kblin/ncbi-genome-download/
https://github.com/kblin/ncbi-genome-download/
https://itol.embl.de
https://itol.embl.de
https://mafft.cbrc.jp/alignment/software/
https://mafft.cbrc.jp/alignment/software/
http://drive5.com/usearch/manual/uparse_pipeline.html
http://drive5.com/usearch/manual/uparse_pipeline.html
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lower than the intraspecific nucleotide diversity of 
gyrA gene sequences in all three species: B. amylolique-
faciens (Pi16S = 0.0014; PigyrA = 0.0244), B. licheni-
formis (Pi16S = 0.00024; PigyrA = 0.0021) and B. pumilus 
(Pi16S = 0.00136; PigyrA = 0.0344) (Fig.  1A, B nonblue 
lines).

In conclusion, the Bacillus gyrA gene shows higher var-
iation rates than 16S rRNA, hence we propose that gyrA 
represents a promising molecular marker for analyses of 
Bacillus community diversity analyses and the diversity 
of Bacillus isolates.

First comparative tests of three primer pairs 
for the detection of Bacillus species
As indicated above Bacillus isolates have been already 
analyzed by primers targeting gyrA, however the speci-
ficity of these primers has not been investigated broadly 
(Roberts et  al. 1994; Ansaldi et  al. 2002). To satisfy the 
amplicon sequencing requirements, we designed a new 
primer pair (gyrA3) (Fig. 2A), and compared its amplifi-
cation potential in colony PCR and virtual PCR with the 
previously designed primers, referred to here as gyrA1 
and gyrA2 (Fig.  2A) (Roberts et  al. 1994; Ansaldi et  al. 
2002).

First, we selected seven strains of different Bacillus spe-
cies: L. fusiformis, P. polymyxa, B. pumilus, B. velezensis, 
B. megaterium, B. cereus and B. subtilis (Fig. 2B) to per-
form PCR amplification with primer pairs gyrA1, gyrA2 
and gyrA3. The PCR amplification results showed that 
gyrA1 detected only B. subtilis; gyrA2 detected B. subtilis, 
B. velezensis and L. fusiformis; whereas gyrA3 performed 
much better and detected all Bacillus species included in 
the analysis (Fig. 2B and Additional file 1: Fig. S1).

The in-silico PCR analysis was performed using the 
gyrA gene database containing 226 Bacillus species. The 

results showed that only 8 Bacillus species were ampli-
fied in-silico by gyrA1, 9 Bacillus species were amplified 
by gyrA2 (Fig.  2C and Additional file  1: Fig. S2), while 
55 Bacillus species were amplified by gyrA3 (Fig.  2C). 
The majority of sequences amplified by gyrA1 and gyrA2 
belonged to B. subtilis, whereas gyrA3 demonstrated 
broader diversity as evidenced by the amplification of 
seven species and in-silico PCR (Fig.  2B, C and Addi-
tional file 2: Table S6).

Specificity range of the gyrA3 primer pair by using PCR and in 
silico PCR
Because the gyrA3 primer pair performed better than the 
previously reported primers, we next combined analysis 
of the in-silico amplified gyrA genes with PCR analysis of 
Bacillus isolates from our laboratory culture collection. 
Virtual gyrA3 PCR amplicons from 55 different Bacillus 
species from the gyrA gene database were evenly distrib-
uted among the branches of the phylogenetic tree (Fig. 3 
orange and green).

Next, we used 127 strains of Bacillus (32 species) and 
related genera (Paenibacillus, Lysinibacillus, Aneuriniba-
cillus, Virgibacillus, Brevibacillus, Halobacillus, Fictiba-
cillus, 24 species) from our laboratory culture collection 
to amplify their gyrA genes with a gyrA3 primer pair 
(Additional file 2: Table S1). The results showed that 28 
Bacillus species and 16 Bacillus-related species could be 
amplified by the gyrA3 primers (Fig.  3 blue and green), 
while the remaining 4 Bacillus species and 8 Bacillus-
related species could not be amplified by the gyrA3 
primers. Of these Bacillus species, marked in green in 
the phylogenetic tree, 7 species were detectable by both 
methods (Fig.  3 green). In summary, the primer pair 
gyrA3 can potentially detect 76 Bacillus species and as 
many as 16 species from related genera (Fig. 3).
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The gyrA gene provides better intraspecific phylogenetic 
resolution than the 16S rRNA gene among certain species
Compared to 16S rRNA, the molecular evolution rate of 
gyrA gene sequences is faster (Timmis and Ramos 2021), 
so we hypothesized that gyrA might provide better phy-
logenetic resolution at the subspecies level. The single 
nucleotide polymorphisms (SNPs) analysis of the 16S 
rRNA (V3-V4 region) and the gyrA gene (gyrA3 ampli-
con region) was performed in four Bacillus species (B. 
amyloliquefaciens, B. pumilus, B. megaterium and B. 
anthracis). We did not include an analysis of the B. sub-
tilis genomes because templates for gyrA primers have 
already been developed and applied for analyses of this 
species (Roberts et al. 1994; Ansaldi et al. 2002; De Clerck 
et al. 2004; Stefanic and Mandic-Mulec 2009).

In B. amyloliquefaciens, the 480  bp long 16S rRNA 
region (V3-V4 region) contained 12 variable base 
sites (Fig.  4A and Additional file  1: Fig. S3A), which 
were detected in only 4 of 116 genomes of this species 
(Fig. 4A), and the SNPs frequency at variable sites within 
the 4 genomes ranged from 0.21%-1.46% (Additional 
file 1: Fig. S3C red column). In contrast, the 500-nucle-
otide gyrA region (positions 350–850) contained 59 
variable sites (Fig.  4B and Additional file  1: Fig. S3B). 

The variable sites were detected in 109 of 116 genomes 
(Fig. 4B), and the frequency of SNPs at the variable sites 
ranged from 0.4% to 6.4% (Additional file 1: Fig. S3C blue 
column).

In B. pumilus, alignment of the 16S rRNA V3-V4 
region revealed 21 variable base sites (Fig. 4C and Addi-
tional file  1: Fig. S4A), but again only in 11 out of 140 
genomes (Fig.  4C). The frequency of SNPs at variable 
sites ranged from 0.21% to 3.54% (Additional file 1: Fig. 
S4C red column). In contrast, in the gyrA gene, 130 of the 
base sites were variable (Fig. 4D and Additional file 1: Fig. 
S4B) and these were found in 87 of 140 genomes, with 
SNPs frequencies at variable sites ranging from 0.2% to 
15.8% (Additional file  1: Fig. S4C blue column). How-
ever, in B. pumilus nearly 50% of the genomes examined 
had 100% identity in the gyrA gene, indicating a high 
degree of relatedness between genomes that may require 
sequencing of additional marker genes for clonality veri-
fication and strain typing.

We also observed that the variation of the gyrA gene is 
quite different in different Bacillus species, which could 
be a bias of the NCBI database or property of certain spe-
cies. For example, B. megaterium showed lower diver-
sity with 3 bases of variation in the 16S rRNA alignment 
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region (V3-V4 region) (Additional file  1: Fig. S5A and 
Fig. S6A). Although 48 of 117 genomes showed polymor-
phism, the maximum SNPs frequency at variable sites 
of B. megaterium genomes was only 0.42% (Additional 
file  1: Fig. S6C red column). The gyrA gene was again 
more polymorphic with 58 bases of variation (Additional 
file 1: Fig. S5B, S6B) occurring in 99 of 117 genomes, with 
SNPs’ frequencies at variable sites ranging from 0.2% to 
2.8% (Additional file 1: Fig. S6C blue column).

The variation divergence between the 2 genes of 
B. anthracis was much lower than in the three Bacil-
lus species described above. Although we identified 13 
variable base sites in the 16S rRNA V3-V4 region and 
65 variable base sites in the gyrA gene region (Addi-
tional file 1: Fig. S5C, D and Additional file 1: Fig. S7A, 
B), the SNPs occurred in only 7 and 18 of 226 genomes, 
respectively. Moreover, the SNPs frequencies at vari-
able sites in 7 and 18 of B. anthracis genomes were also 
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low: 0.21%-1.04% and 0.2%-7.4%, respectively (Addi-
tional file 1: Fig. S7C).

Overall, our results showed that within Bacillus spe-
cies the frequency of SNPs in the gyrA gene was con-
sistently much higher than in the 16S rRNA (Fig. 4 and 
Additional file 1: Fig. S5). We therefore suggest that the 
gyrA gene provides better resolution than 16S rRNA for 
identification and typing of Bacillus isolates at the sub-
species level. This is particularly true for B. amylolique-
faciens, B. pumilus and B. megaterium but less so for B. 
anthracis (Table 1).

The resolution power of Bacillus mock community gyrA 
amplicon sequencing
Our results above suggest that the amplicon sequence 
of the primer pair gyrA3 could be used as a molecular 
marker for diversity analysis of Bacillus. Next, we aimed 
to design a mock community to test the efficacy of the 
primers gyrA3 and used the general 16S rRNA prim-
ers (V3-V4) as a positive control. For better compari-
son, we designed 2 additional primer pairs, gyrA4 and 
gyrA5, which are very close to the position of the gyrA3 
in the gyrA gene (Additional file 1: Fig. S8). We selected 

Fig. 4  Alignment of the 16S rRNA and gyrA sequences of B. amyloliquefaciens (116 genomes) and B. pumilus (140 genomes). Sequences were 
aligned using L-INS-I method of MAFFT (v7.487). The analysis involved positions along 16S rRNA from 330–810 and along gyrA from 350–850. On 
the left side of the graph GCF reference numbers of genomes were displayed, with reference sequence GCF_017815555.1 displayed at the top for 
B. amyloliquefaciens and GCF_014269965.1 for B. pumilus. The display of base site variation was drawn using MEGA (v.5.05). The colored line (red or 
blue) indicates a variation of specific base sites as compared to the reference sequence
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Table 1  Polymorphisms of the 16S rRNA and gyrA gene

Species Gene Gene 
length 
(bp)

Number of 
variable sites

Total number 
of genomes

Genomes number 
with variable bases

Range of 
genomes variable 
sites

Range of genomes 
variable sites (%)

B. amyloliquefaciens 16S 480 12 116 4 1–7 0.21–1.46

gyrA 500 59 109 2–32 0.4–6.4

B. pumilus 16S 480 21 140 11 1–17 0.21–3.54

gyrA 500 130 87 1–79 0.2–15.8

B. megaterium 16S 480 3 117 48 1–2 0.21–0.42

gyrA 500 58 99 1–14 0.2–2.8

B. anthracis 16S 480 13 226 7 1–5 0.21–1.04

gyrA 500 65 18 1–37 0.2–7.4
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Fig. 5  The results of amplicon sequencing for the mock community including eight Bacillus strains. A PCR amplification of eight Bacillus strains 
by gyrA gene primer pairs. The orange square indicates positive and white square unsuccessful amplification. The amplicon sequencing results of 
16S rRNA gene B and gyrA gene using primer pairs gyrA3 C, gyrA4 D, and gyrA5 E for the mock community. The relative abundance is represented 
by reads numbers for each unit as indicated on the X axis. The phylogenetic tree was contracted based on the complete gyrA genes (2469 bp) 
(Additional file 2: Dataset S2) by using the Neighbor-Joining method in MEGA 5.05 software. The reliability of clades was tested by the 1000 
bootstrap replications. The box plots were drawn by the ggplot2 R package (v.3.2.1)
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eight strains belonging to four species (B. altitudinis, B. 
licheniformis, B. velezensis and L. pakistanensis) and suc-
cessfully amplified their gyrA gene by gyrA3, gyrA4 and 
gyrA5 primer pairs in a routine PCR for selected strains 
(Fig. 5A).

Next, we constructed a mock community of eight 
strains to retest the resolution power of the three gyrA 
primer pairs and the 16S rRNA-specific primers. Our 
goal was to test whether the primer pair is suitable 
for determining the diversity of the mock community 
(Fig. 5). Sequencing of the 16S rRNA amplicons showed 
that 16S rRNA primers could distinguish only five units, 
as strains LY1 and LY18, LY37 and LY43, and LY39 and 
LY48 had identical V3-V4 nucleotide sequence (Fig. 5B). 
The gyrA primer pairs were capable of resolving 6 units, 
but gyrA4 and gyrA5 produced amplicons of variable 
abundance and preferentially amplified LY35 and LY2, 
respectively (Fig.  5C–E). In comparison, primers gyrA3 
also amplified six fragments but the relative abundance 
of these amplicons was more uniform (Additional file 2: 
Table S7) with the exception of LY2 strain (Fig. 5C). Our 
data suggest that gyrA3 has potential for Illumina ampli-
con sequencing of more complex Bacillus communities.

Discussion
It is believed that the diversity of microorganisms in 
nature is immense, so its detection remains a challenge 
(Widder et  al. 2016). Molecular tools (e.g., for specific 
amplification of marker genes) combined with high-
throughput sequencing are expected to open the door to 
the vast diversity of microorganisms (Klindworth et  al. 
2013). Here, we systematically investigated the potential 
of the gyrA gene as a marker gene for the taxonomic typ-
ing of Bacillus isolates and assessment of Bacillus com-
munity composition by amplicon sequencing. The novel 
gyrA3 primer pair is capable of detecting 76 Bacillus spe-
cies by virtual and colony PCR; hence, our results sug-
gest that the gyrA gene is a good phylogenetic marker for 
detecting intra- and interspecific diversity of the genus 
Bacillus.

Although 16S rRNA is widely used as a molecular 
marker for bacterial community analyses (Clarridge 
2004), its amplicon sequencing can only describe com-
munity diversity at the genus level (Gupta et  al. 2019). 
This is particularly true for Bacillus species, which exhibit 
very low interspecific variability (Vos et al. 2012). In con-
trast, faster evolution and consequently higher diversity 
of the gyrA gene (Timmis and Ramos 2021) suggests that 
this gene might provide higher phylogenetic resolution 
than the 16S rRNA gene within the genus Bacillus. In our 
study, the differential effect of the gyrA gene on Bacil-
lus interspecies and several Bacillus species was better 
than that of 16S rRNA (Fig. 1). Moreover, the results of 

comparative sequence analysis (16S rRNA V3-V4 region 
and the gyrA3 amplicon region of the gyrA gene) of the 
four species showed the wider range of SNPs in the gyrA 
genes than in the 16S rRNA (Fig. 4, Additional file 1: Fig. 
S5 and Table  1). Our results are consistent with find-
ings that housekeeping genes, including gyrA, evolve 
much faster than 16S rRNA genes and are suitable for 
the identification and typing of closely related species 
(Poirier et  al. 2018) and the intraspecific resolution of 
isolates, as previously shown for B. subtilis (Roberts et al. 
1994; Ansaldi et al. 2002). Because protein-coding genes 
involved in DNA processing have evolved differently than 
rRNA, protein translation is affected by the degenera-
tive codes, and nucleotide changes may propagate along 
genes without affecting amino acid sequence. Therefore, 
housekeeping genes encoding proteins are more pow-
erful than 16S rRNA in distinguishing between highly 
related strains (Navarro and Martínez-Murcia 2018).

To date, there have been only a few reports in which 
conserved genes (e.g., rpoB and gyrB) have been used as 
templates for amplicon sequencing of microbial com-
munities (Vos et al. 2012; Poirier et al. 2018; Ogier et al. 
2019). These reports show that sequencing of conserved 
protein-coding genes provides a more accurate descrip-
tion of bacterial community composition than 16S rRNA 
sequencing. Specifically, the rpoB gene has been used in 
addition to the 16S rRNA molecular marker for high-
throughput sequencing studies of species diversity in the 
Proteobacteria phylum (Vos et al. 2012).

Caution should be recommended when using single 
protein-coding genes as molecular markers, as they may 
exhibit different phylogenetic resolutions or may be sub-
jected to possible horizontal gene transfer or recombi-
nation processes (Navarro and Martínez-Murcia 2018). 
However, many previous studies have reported the appli-
cation of the gyrA gene in the identification and typing 
of Bacillus strains, so the gyrA gene should not have the 
above-mentioned concerns (Chun and Bae 2000; Hurtle 
et  al. 2004; Stefanic and Mandic-Mulec 2009; Stefanic 
et  al. 2012, 2015). And we identified here its resolution 
power for 76 Bacillus species (Fig.  3) and propose that 
the diversity of the Bacillus community can be more 
accurately assessed by combining 16S rRNA and gyrA 
amplicon sequencing.

As a molecular marker, the housekeeping gene gyrA 
also has some limitations, unlike ribosomal RNA, due 
to the high variability of protein-encoding housekeep-
ing gene sequences, the design of universal sequencing 
primers is not always achievable (Schleifer 2009). There-
fore, the inability of primer pair gyrA3 to amplify strains 
of the entire Bacillus genus is also expected, as has been 
previously described for the Escherichia genus (Johnning 
et  al. 2015). Besides, the choice of the amplified region 
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(ie, the design of the primers) affects the discrimina-
tion of the Bacillus species by the gyrA gene. The gyrA 
amplicon region we selected was well suited for resolv-
ing subspecies of B. amyloliquefaciens, B. pumilus, and 
B. megaterium. For B. anthracis, which is known for 
its low diversity (Lista et  al. 2006) intraspecific resolu-
tion was limited (Fig.  4 and Additional file  1: Fig. S5). 
Moreover, in the high-throughput amplicon sequencing 
of eight strains, the primer pair gyrA3 also showed dif-
ferent advantages from the primer pairs gyrA4 and gyrA5 
(Fig. 5). The primer pair gyrA3 also had its blind area in 
the detection, this could be due to the extremely high 
similarity of the gyrA genes in selected genomes, some 
of which have even identical gyrA sequences. However, 
the gyrA3 distinguished very well two strains with highly 
similar gyrA genes such as LY37 and LY43, which 16S 
rRNA did not (Fig.  5). Although primers for amplicon 
sequencing of the gyrA gene had certain limitations, such 
as not amplifying all selected targets or not reflecting the 
abundance of added DNA, this study has put forward the 
advantages that gyrA3 covers the broadest diversity of 
Bacillus species reported to date.

In summary, this study investigated the application of 
the gyrA gene as a molecular marker in Bacillus subspe-
cies typing and high-throughput sequencing of the Bacil-
lus mock community. The greater ability of gyrA-based 
analyses to distinguish Bacillus strains at the subspecies 
level should increase resolution and provide more relia-
ble results for the ecological studies of the genus Bacillus. 
We believe that the primer pair will have broad applica-
tions in Bacillus research.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13568-​022-​01477-9.

Additional file 1: Figure S1 The agarose gel electrophoresis of DNA 
amplification products of three gyrA gene primer pairs: gyrA1 (A), gyrA2 
(B) and gyrA3 (C). 1-7 indicates strains LY18, LY25, LY37, FZB42, SXL408, 
SXL277 and ACCC01043. Figure S2 The amplification ability of the primer 
pair gyrA1 and gyrA2 in Bacillus species by computer simulation. The eight 
Bacillus species were amplified by gyrA1 and nine Bacillus species were 
amplified by gyrA2. The phylogenetic trees were constructed based on 
gyrA gene (2403 bp). Figure S3 Polymorphisms in the 16S rRNA and gyrA 
gene’s regions of B. amyloliquefaciens (116 genomes). (A) The proportion 
of variation at different base sites along the 16S rRNA V3-V4 region. (B) 
The proportion of variation at the different base positions of the gyrA 
gene region. (C) The proportion of variants along 16S rRNA (red column) 
and gyrA gene (blue column) region in different genomes. Figure S4 
Polymorphisms in the 16S rRNA and gyrA gene’s region of B. pumilus (140 
genomes). (A) The proportion of variation at different base sites along the 
16S rRNA (B) and the gyrA gene. (C) The proportion of variable base sites 
in 16S rRNA (red column) and gyrA (blue column) sequences in different 
genomes. Figure S5 Alignment of the 16S rRNA and gyrA sequences of B. 
megaterium (117 genomes) and B. anthracis (226 genomes). Sequences 
were aligned using L-INS-I method of MAFFT (v7.487). The analysis 
involved positions along 16S rRNA from 330-810 and along gyrA from 
350-850. On the left side of the graph GCF reference numbers of genomes 
were displayed, with reference sequence GCF_002577645.1 displayed 

at the top for B. megaterium and GCF_000007845.1 for B. anthracis. The 
display of base site variation was drawn using MEGA (v.5.05). The colored 
line (red or blue) indicates a variation of specific base sites as compared to 
the reference sequence. Figure S6 Polymorphisms in the 16S rRNA and 
gyrA gene’s regions of B. megaterium (117 genomes). (A) The proportion 
of variation at different base sites along the 16S rRNA V3-V4 region. (B) 
The proportion of variation at the different base positions of the gyrA 
gene region. (C) The proportion of variants along 16S rRNA (red column) 
and gyrA gene (blue column) region in different genomes. Figure S7 
Polymorphisms in the 16S rRNA and gyrA gene’s region of B. anthracis (226 
genomes). (A) The proportion of variation at different base sites along 
the 16S rRNA gene (B) and the gyrA gene. (C) The proportion of variable 
base sites in 16S rRNA (red column) and gyrA (blue column) sequences in 
different genomes. Figure S8 Description of gyrA gene primer pairs for 
amplicon sequencing. (A) The position of gyrA amplicons was obtained by 
primer pairs gyrA3, gyrA4 and gyrA5. (B) PCR amplification of eight Bacillus 
strains by gyrA gene primer pairs. The orange square indicates positive 
and white square unsuccessful amplification. The phylogenetic tree was 
contracted based on the complete gyrA genes (2469 bp) (Supplemental 
Dataset S2) by using the Neighbor-Joining method in MEGA 5.05 software. 
The reliability of clades was tested by the 1000 bootstrap replications.

Additional file 2: TableS1 The information of 127 strains for colony PCR. 
TableS2 The genomes information for nucleotide variability analysis 
of gyrA gene and 16S rRNA gene in inter- and intraspecies Bacillus. 
TableS3 The gyrA gene database information of Bacillus for computer 
simulation. TableS4 The general primers converted from degenerate 
primer pair gyrA3. TableS5 The genomes information for SNP analysis 
of gyrA gene and 16S rRNA gene in four Bacillus species. TableS6 The 
information of sequences amplified by three gyrA gene primer pairs in 
computer simulation. TableS7 The analysis results of mock community 
amplicon sequencing. DatasetS1 The 16S rRNA gene sequences of the 
eight Bacillus strains for mock Bacillus community. DatasetS2 The gyrA 
gene sequences of the eight Bacillus strains for mock Bacillus community. 
DatasetS3 The 16S rRNA gene sequences of the seven Bacillus strains.
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