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of their efficiency, rapidity and simplicity (Rishi et al. 
2004). To date, numerous PCR-based methods have been 
developed and widely applied to acquire unknown flank-
ing sequences (Kotik 2009; Kim et al. 2021a, b). These 
PCR methods differ largely in experimental processes 
but can be classified into three categories according to 
their underlying principles: (i) inverse PCR (Ochman 
et al. 1988; Benkel and Fong 1996; Uchiyama and Wata-
nabe 2006); (ii) terminal modification-dependent PCR 
(Tsuchiya et al. 2009; Ashrafmansouri et al. 2020); and 
(iii) randomly primed PCR (Liu and Whittier 1995; Tan 
et al. 2005; Wang et al. 2013; Zhang et al. 2018).

Inverse PCR requires the endonuclease digestion of 
genomic DNA and the subsequent self-cyclization of the 
digested DNA. It thus produces cyclized DNA in which 
unidentified upstream and downstream regions are situ-
ated adjacent to each other, with the known DNA being 

Introduction
Genome walking refers to a sequence-dependent strategy 
used to access unknown sequences flanking known DNA 
regions. The genomic DNA library-based walking tech-
nique is unpopular owing to the heavy workload and high 
cost. PCR-based approaches have been favored because 
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Abstract
Various PCR-based genome-walking methods have been developed to acquire unknown flanking DNA sequences. 
However, the specificity and efficacy levels, and the operational processes, of the available methods are 
unsatisfactory. This work proposes a novel walking approach, termed differential annealing-mediated racket PCR 
(DAR-PCR). The key to DAR-PCR is the use of primer-mediated intra-strand annealing (ISA). An ISA primer consists 
of a 5’ root homologous to the known sequence and a heterologous 3’ bud. In the single low-stringency cycle, 
the ISA primer anneals to a site on an unknown region and extends towards the sequence-specific primer (SSP) 
1 site, thereby forming a target single-stranded DNA bound by the SSP1 complement and the ISA primer. In the 
subsequent more stringent cycles, its complementary strand is accumulated, owing to the differential annealing 
between the moderate-stringency ISA primer and the high-stringency SSP1. The accumulation of this strand 
provides an opportunity for ISA mediated by the ISA primer root. A loop-back extension subsequent to ISA occurs, 
creating a racket-like DNA with the known region positioned at both ends of the unknown sequence. This DNA is 
exponentially amplified during the secondary PCR driven by an SSP pair inner to SSP1. DAR-PCR was validated as 
an efficient walking method by determining unknown flanking sequences in Lactobacillus brevis and Oryza sativa.
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placed on both ends of this unknown hybrid (Triglia et 
al. 1988; Wang et al. 2021). This cyclized DNA serves as 
a template for PCR using two sequence-specific prim-
ers (SSPs) having opposite orientations. The two prim-
ers extend outward from the known region of this special 
template to amplify unknown flanking segments. Inverse 
PCR features high specificity because the primers used 
are completely sequence-specific (Tsaftaris et al. 2010; 
Trinh et al. 2014). However, the efficiency of inverse PCR 
is relatively low. In addition, extra operations prior to 
PCR amplification make this method complex (Uchiyama 
and Watanabe 2006).

Terminal modification-dependent PCR requires the 
endonuclease digestion of the genome, followed by the 
ligation of the digested DNA fragments to a synthetic oli-
gonucleotide (Siebert et al. 1995; Ishihara et al. 2017). A 
ligated target product is enriched by two to three rounds 
of PCRs performed using the oligonucleotide primer suc-
cessively paired with nested SSPs (Tsuchiya et al. 2009; 
Reddy et al. 2012). Clearly, the elimination of the non-
specific background arising from the oligonucleotide 
primer is an issue in this strategy (Alquezar-Planas et al. 
2020). Although improvements in the oligonucleotide, 
such as the dephosphorylation of the 5’ end or amina-
tion of the 3’ end, have been made to enhance specific-
ity, non-specific amplification has not yet been effectively 
overcome (Tsuchiya et al. 2009; Bae and Sohn 2010; 
Ashrafmansouri et al. 2020).

Randomly primed PCR is a pretreatment-free DNA-
walking approach (Jia et al. 2017). A single low-strin-
gency cycle allows the walking primer to arbitrarily 
anneal to genomic DNA and prime DNA polymerization. 
As a result, a pool of DNA fragments are produced (Li 
et al. 2015; Chang et al. 2018). The target DNA becomes 
major product after two to three rounds of PCRs are 
conducted using the walking primer successively paired 
with nested SSPs (Zhou et al. 2012). Thermal asymmet-
ric interlaced PCR (Liu and Whittier 1995), universal 
fast walking (Myrick and Gelbart 2002) and its variants 
(Park 2005; Wang et al. 2007), and partially overlapping 
primer-based PCR (Li et al. 2015) and its improved ver-
sions (Chang et al. 2018; Wang et al. 2022), are types of 
randomly primed PCR. Nevertheless, for thermal asym-
metric interlaced PCR, non-target DNAs arising from 
the walking primer are inevitable, as one in three cycles 
must be of low stringency. The other randomly primed 
PCRs involve complicated operations or require several 
walking primers (Thirulogachandar et al. 2011; Tan et al. 
2019).

In this work, we describe differential annealing-medi-
ated racket PCR (DAR-PCR), an efficient tool for genome 
walking. This method relies on intra-strand annealing 
(ISA) at an ISA locus and a subsequent loop-back exten-
sion along the known region. As a result, a racket-like 

DNA is synthesized with the known region being incor-
porated on each side of the unknown DNA. This racket-
like DNA serves as template in the subsequent nested 
PCR. For a proof-of-concept, DAR-PCR was successfully 
employed to determine the sequences of the unknown 
regions flanking the Lactobacillus brevis CD0817 gluta-
mate decarboxylase gene (gadA) and Oryza sativa hygro-
mycin gene (hyg).

Materials and methods
Extraction of genomic DNAs
Genomic DNA of L. brevis CD0817 (= CCTCCM2018462) 
was extracted using the Bacterial Genomic DNA Isola-
tion Kit (Tiangen Biotech Co., Ltd, Beijing, China) in 
accordance with the manufacturer’s instructions. Oryza 
sativa genomic DNA was kindly provided by the Peng 
laboratory at Nanchang University (Nanchang, China).

Oligonucleotides
An ISA primer contains a sequence-specific 5’ root 
appended to a random 3’ bud. The root is fixed and 
responsible for ISA. The bud consists of very few (here, 
0 to 2) nucleotides heterologous to the known sequence. 
Therefore, one ISA root can be used in many ISA prim-
ers. All the ISA primers are 15–20 bp and have a moder-
ate melting temperature (Tm) of 45–55℃. The SSPs were 
derived from the gadA locus (CP032931.1) and hyg gene 
(KF206149.1), and have a high Tm values of 60–65℃. The 
software Oligo 7 (Molecular Biology Insights, Inc., USA) 
was used to evaluate primer Tm and potential primer-
dimer or hairpin formation. Any primer or primer pair 
should not form an obvious dimer or hairpin (Table 1).

PCR system and thermal cycling
The DAR-PCR consists of two rounds of nested PCR 
reactions. Genomic DNA was used as the template of the 
primary PCR using SSP1 and an ISA primer. The 50-µL 
primary PCR mixture included 0.4 mM of each dNTP, 
0.2 µM of each primer, genomic DNA (10–100 ng for 
the microbe and 100–1,000 ng for Oryza sativa), 1× LA 
PCR buffer II (Mg2+ plus) and 2.5 U of TaKaRa LA Taq. 
In total, 1 µL of primary PCR product was used as the 
template in the 50-µL secondary PCR reaction, along 
with two inner SSPs instead of the primary PCR primers. 
The other components of secondary PCR were identical 
to those of the primary PCR.

The primary PCR included the following four stages: 
(i) five slightly high-stringency (60℃) cycles (SHSC); 
(ii) one low-stringency (25℃) cycle (LSC); (iii) 15 mod-
erate-stringency (55℃) cycles (MSC); and (iv) 25 high-
stringency (65℃) cycles (HSC). Secondary PCR was 
composed of 35 SHSCs. The detailed thermal cycling 
parameters are presented in Table 2.
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DNA sequencing and analysis
PCR products were electrophoresed on 1% agarose 
gels and stained with ethidium bromide to obtain vis-
ible DNA bands. The clear DNA bands were recovered 
using an Agarose Gel DNA Purification Kit Version 2.0 
(TaKaRa, Beijing, China) and were entrusted to Sangon 
Biotech Co., Ltd. (Shanghai, China) for sequencing.

Results
Outline of DAR-PCR
The principle and process of DAR-PCR are shown in 
Fig. 1. The key to this method is the design and applica-
tion of the ISA primer. As described in the Materials and 
Methods section, an ISA primer contains a sequence-
specific root with a mismatched bud attached at the 3’ 
end. For primary PCR, the initial five SHSCs (60℃) only 
allow SSP1 (Tm 60–65℃) to bind its complementary 
site within the known sequence and elongate towards 
the unknown region, thereby exclusively increasing 
the copies of the target single-stranded DNA (ssDNA). 
The following one LSC (25℃) permits the ISA primer 
(Tm 45–55℃) to arbitrarily anneal to some position 
on the unknown flank and to prime DNA polymeriza-
tion towards the known region, producing a molecule 
enclosed by the ISA primer and SSP1. This new mole-
cule is exponentially amplified in the following 15 MSCs 
(55℃). The strand of this new molecule, with SSP1 at 
the 5’ end and the ISA complement at the 3’ end, is 

Table 1  Primers used in this study
Primary PCR Secondary PCR
ISA primer SSP1 Inner SSP pair 

(SSP2/SSP3)
gad-ISA1 TGAAAACTAACCG-

GCTTAC
gad-1: TC-
CATACCCT-
CATCTC-
CATTTCCAT

gad-2: AACTAT-
CACCCCACAAC-
GTCATCTC
gad-3: AC-
CGTTCATAGGC-
GAAATTGTTTGT

gad-ISA2 TAAACCTGCGTA-
AAAACT

gad-ISA3 AACCGGCTTTTTAAACT

hygU-ISA1 CGGGCGTACA-
CAAATCTC

hygU-1: 
GGCG-
TATAT-
GCTC-
CGCATTG-
GTCTT

hygU-2: CG-
GCAATTTCGAT-
GATGCAGCTTGG
hygU-3: GAC-
CGATGGCTGTG-
TAGAAGTACTC

hygU-ISA2 GCAATCGTCCGATCCCT

hygU-ISA3 AAATCGCCCGCAGAA

hygD-ISA1§ CTAAACTCCCCAATGTC hygD-1: 
GCCAT-
GTAGTG-
TATTGAC-
CGATTCC

hygD-2: 
CAGTTCG-
GTTTCAG-
GCAGGT
hygD-3: 
CATATCCAC-
GCCCTCCTACA

hygD-ISA1a§ CTAAACTCCCCAAT-
GTCT

hygD-ISA1b§ CTAAACTCCCCAAT-
GTCC

hygD-ISA1c§ CTAAACTCCCCAAT-
GTCTC

hygD-ISA1d§ CTAAACTCCCCAAT-
GTCCA

hygD-ISA2 AGTGCCGATAAA-
CATAA

Note: ISA roots are underlined. Buds are unmarked nucleotides located at the 
3’ ends of ISA roots. ISA primers paired with SSP1 in the same row were used 
in the primary PCR; corresponding secondary PCRs were performed using the 
inner SSP pair (SSP2/SSP3) in the same row. § indicates ISA primers derived from 
the same ISA root

Table 2  Thermal cycling parameters for the DAR-PCR method
Round of 
PCR

Stage Thermal conditions Cycle 
number

Primary 94 °C, 2 min

1 94 °C 30 s, 60 °C 30 s, 72 °C 2 min 5

2 94 °C 30 s, 25 °C 30 s, 72 °C 2 min 1

3 94 °C 30 s, 55 °C 30 s, 72 °C 2 min 15

4 94 °C 30 s, 65 °C 30 s, 72 °C 2 min 25

72 °C 5 min

1 µL of the product was directly used as template for secondary PCR

Secondary 94 °C, 2 min

1 94 °C 30 s, 60 °C 30 s, 72 °C 2 min 35

72 °C 5 min

Fig. 1  Schematic depiction of DAR-PCR. Primary PCR is performed using 
SSP1 and the ISA primer; and the secondary PCR is performed using SSP2 
and SSP3. The bud heterologous to the known DNA is indicated by the 
up-ended arrow. The solid lines denote known sequences; Dotted lines 
denote unknown sequences. SHSC: slightly high-stringency (60℃) cycle; 
LSC: low-stringency (25℃) cycle; MSC: moderate-stringency (55℃) cycle; 
HSC: high-stringency (65℃) cycle. The PCR primers are indicated by num-
bered arrows, and their locations in relation to the relevant strand of ge-
nomic DNA are shown on top of the diagram in Step 1
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preferentially amplified in the next 25 HSCs (65℃) owing 
to the differential annealing of SSP1 and the ISA primer. 
In addition, some of the strands undergo ISA at the ISA 
locus, and thereafter, a racket-like DNA is synthesized 
using the protruding 5’ part as the template. As a result, 
the known region between SSP1 and ISA is incorporated 
into each side of the unknown segment. The racket-like 
DNA can then be used as the template in the secondary 
PCR to identify the unknown region.

The secondary PCR, which is performed using two 
SSPs (SSP2 and SSP3) inner to SSP1, is a type of classi-
cal end-to-end PCR. The positional relationship of SSP2 
and SSP3 avoids the production of an overlap at the two 
ends of the final PCR product; consequently, exponen-
tial amplification is achieved. Additionally, any non-tar-
get product generated in the primary PCR is eliminated 
owing to the lack of a perfect binding-site for SSP2 or 
SSP3.

Validation of DAR-PCR
The feasibility of DAR-PCR was tested by probing 
unknown regions flanking the L. brevis CD0817 gadA 
gene and the Oryza sativa hyg gene. As illustrated in 
Fig. 2, more than one clear band appeared in all the sec-
ondary PCR reactions. Sequencing data demonstrated 
that all the dominant bands were target products, veri-
fying the high specificity of the current method (sup-
plementary materials Fig. S1-S3). The longest DNA 
fragments obtained in each walking experiment ranged 
from 1.5 to 5.0 kb (Fig. 2), indicating the high efficiency 
of DAR-PCR.

Discussion
PCR-based genome-walking strategies have been unsuc-
cessful owing to non-specific amplification attributed to 
walking primers (Tonooka and Fujishima 2009). In gen-
eral, improvements to the existing PCR-based techniques 
have been aimed at controlling the balance between 
specificity and efficiency (Myrick and Gelbart 2002; Kim 
et al. 2021a, b). For DAR-PCR, however, this is unneces-
sary because its secondary PCR involves only site-spe-
cific amplification. The current technique possesses high 
efficiency and specificity that are equal to those of classi-
cal end-to-end PCR.

Traditional panhandle PCR (Jones and Winistorfer 
1992), inverse PCR (Ochman et al. 1988; Benkel and Fong 
1996; Uchiyama and Watanabe 2006) and terminal mod-
ification-dependent PCR (Tsuchiya et al. 2009; Ashraf-
mansouri et al. 2020) involve pretreatments prior to the 
PCR reactions, such as endonuclease cleavage and DNA 
ligation, which reduce the walking efficiency and increase 
the cost and workload (Jeung et al. 2005). Therefore, the 
development of a truly PCR-based genome-walking tech-
nique is desired. Universal fast walking (Myrick and Gel-
bart 2002) and its variants (Park 2005; Wang et al. 2007) 
are completely PCR-based techniques. However, these 
techniques do not always result in positive outcomes 
because the exclusive single walking primer sometimes 
fails to bind to the DNA of interest. Moreover, the num-
ber of ssDNAs anticipated to form panhandle-like mol-
ecules is limited, which also reduces the success rates of 
these methods. In our method, more than one ISA root 
can be obtained from the known region between SSP2 
and SSP3 (Fig.  1), and any ISA root can result in many 
ISA primers by adding buds at the 3’ end. Thus, SSP1 can 
pair with various ISA primers, allowing a set of parallel 
PCR reactions to be conducted. We hypothesize that at 
least one ISA primer will successfully anneal to some site 
on the unknown DNA of interest at the low-stringency 
cycle, resulting in the guaranteed success of the method. 
In addition, an ISA primer should have a distinctive 
annealing site because of its unique 3’ bud. Thus, a rather 
long fragment may be produced if parallel PCR reactions 

Fig. 2  Walking upstream of gadA(U) and hyg (U), as well as downstream of 
hyg (D). The ISA primers listed under each gene were respectively paired 
with SSP1 during the primary PCR reactions; the corresponding secondary 
PCRs were then performed using SSP2 and SSP3 (as described in Table 1). 
Lane 1: primary PCR; lane 2: secondary PCR; white arrows indicate target 
bands; and M: DL5000 DNA marker
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are performed. These features ensure the high walking 
efficiency and success rate of DAR-PCR.

TAIL-PCR (Tan et al. 2019) and POP-PCR (Li et al. 
2015) are versatile genome-walking methods. The two 
methods dilute undesired products owing to the differen-
tial annealing between the walking primer and SSP. Thus, 
the two methods enrich target DNAs by having the effi-
ciency of the specific amplification surpass that of non-
specific amplification, which implies that non-specific 
amplification is not negligible. For specificity and effi-
ciency, DAR-PCR is superior to TAIL-PCR or POP-PCR 
because its secondary reaction is performed using a com-
pletely sequence-specific primer pair.

In some cases, multiple bands appeared in the gel 
(Fig.  2). This multi-band phenomenon is common in 
most PCR-based DNA-walking technologies, and it may 
be interpreted as the walking primer annealing to mul-
tiple sites on the unknown region of interest (Tan et al. 
2019; Liu and Chen 2007).

A new tool, DAR-PCR, has been established for the 
efficient determination of unknown DNA. This method 
dispenses with extra steps prior to PCR reactions and 
decreases the number of artifacts that occur in avail-
able genome-walking strategies. This method has many 
potential applications in molecular biology and related 
areas. DAR-PCR is a promising alternative to the existing 
DNA walking methods owing to its high specificity and 
efficiency, along with its simplicity.
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