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Roughage biodegradation by natural 
co‑cultures of rumen fungi and methanogens 
from Qinghai yaks
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Abstract 

Anaerobic fungus–methanogen co-cultures from rumen liquids and faeces can degrade lignocellulose efficiently. In 
this study, 31 fungus–methanogen co-cultures were first obtained from the rumen of yaks grazing in Qinghai Prov-
ince, China, using the Hungate roll-tube technique. The fungi were identified according to morphological characteris-
tics and internal transcribed spacer (ITS) sequences. The methanogens associated with each fungus were identified by 
polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rRNA gene sequencing. They 
were five co-culture types: Neocallimastix frontalis + Methanobrevibacter ruminantium, Neocallimastix frontalis + Metha-
nobrevibacter gottschalkii, Orpinomyces joyonii + Methanobrevibacter ruminantium, Caecomyces communis + Metha-
nobrevibacter ruminantium, and Caecomyces communis + Methanobrevibacter millerae. Among the 31 co-cultures, 
during the 5-day incubation, the N. frontalis + M. gottschalkii co-culture YakQH5 degraded 59.0%–68.1% of the dry 
matter (DM) and 49.5%–59.7% of the neutral detergent fiber (NDF) of wheat straw, corn stalk, rice straw, oat straw 
and sorghum straw to produce CH4 (3.0–4.6 mmol/g DM) and acetate (7.3–8.6 mmol/g DM) as end-products. Ferulic 
acid (FA) released at 4.8 mg/g DM on corn stalk and p-coumaric acid (PCA) released at 11.7 mg/g DM on sorghum 
straw showed the highest values, with the following peak values of enzyme activities: xylanase at 12,910 mU/mL on 
wheat straw, ferulic acid esterase (FAE) at 10.5 mU/mL on corn stalk, and p-coumaric acid esterase (CAE) at 20.5 mU/
mL on sorghum straw. The N. frontalis + M. gottschalkii co-culture YakQH5 from Qinghai yaks represents a new efficient 
combination for lignocellulose biodegradation, performing better than previously reported fungus–methanogen co-
cultures from the digestive tract of ruminants.

Keywords:  Qinghai yak, Rumen, Fungus, Methanogen, Co-culture, Lignocellulose, Biodegradation

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Introduction
Abundant plant biomass is an underused feedstock 
for bioenergy production. Recently, anaerobic fungi 
have been reported to efficiently break down lignocel-
lulosic biomass (Young et al. 2018). Studies have shown 
that anaerobic fungi can produce different extracellular 

cell–wall-degrading enzymes, including cellulases, hemi-
cellulases, esterases, and multienzyme complexes called 
cellulosomes, to decompose lignocellulose materials to 
produce H2, formate, acetate, ethanol and CO2 (Gilmore 
et  al. 2020; Mi  et al. 2009, 2016). The activity of plant 
cell-wall-degrading enzymes secreted by the anaerobic 
fungi Neocallimastix patricciarum and Neocallimas-
tix frontalis is higher than that secreted by commercial 
Trichoderma reesei, Aspergillus oryzae, Aspergillus nidu-
lans and Penicillium pinophilum used in industry (Dijk-
erman et  al. 1997; Yang and Xie 2010; Cao et  al. 2013). 
Therefore, these fungi have wide application prospects 
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in bioenergy, the feed industry, biogas fermentation 
and other related fields. Anaerobic fungi are classified 
in the phylum Neocallimastigomycota, which contains 
one class, Neocallimastigomycetes, one order, Neocalli-
mastigales, one family, Neocallimasticaceae and 18 gen-
era based on flagellum numbers, growth patterns and 
rhizoid forms (Chang and Park 2020). The whole genome 
sequences of Anaeromyces robustus, Neocallimastix cali-
forniae, Pecoramyces ruminantium, Piromyces finnis and 
Piromyces sp. E2 are available in the Joint Genome Insti-
tute Database (Chang and Park 2020).

Anaerobic fungi use different carbon sources as sub-
strates for mixed acid fermentation, and the metabolites 
are mainly formate, acetate, lactate, ethanol, H2 and CO2 
(Li et al. 2016, 2021). Methanogens can use the metabo-
lites of anaerobic fungi, thus eliminating the feedback 
inhibition effect of the metabolites on growth to acceler-
ate anaerobic fungus reproduction, promote the produc-
tion of fungal ATP, and improve the activity and yield of 
enzymes (Wei et  al. 2016). Co-cultures of an anaerobic 
fungus with a methanogen significantly improved their 
ability to degrade lignocellulosic substrates and produced 
a large amount of CH4 and acetate as fermentation end-
products (Jin et  al. 2011), which provided a theoretical 
basis for applying anaerobic fungi in biogas fermentation 
engineering, along with high activity xylanase and acetate 
production.

Yak (Bos grunniens) is a rare herbivorous ruminant 
resource in the bovine genus that can adapt to high 
altitudes, cold, and anoxia (Long et  al. 2008; Song et  al. 
2021). Yaks thrive in harsh environments and graze on 
wild grasses as their main source of nutrition. A large 
number of unique, complex, and diverse microbial com-
munities in the yak rumen can synergistically degrade 
low-quality wild herbage and dry, withered cold-season 
grass to provide yaks with energy and nutrients, mak-
ing the yak rumen a natural anaerobic fermentation sys-
tem for efficiently degrading lignocellulose (Huang et al. 
2021a, b; Huang et al. 2021a, b). Globally, there are more 
than 14 million yaks, but China is the centre of origin, 
with the largest numbers mainly grazing on the Qinghai–
Tibetan Plateau at a 3000–6000 m elevation year round. 
There are approximately 4.9 million heads of yak in Qing-
hai Province, accounting for the largest share (38%) of the 
total number of yaks in China (Fan et al. 2021; Sun et al. 
2011).

China is known as the yak capital of the world. The 
number of yaks in Qinghai Province ranks first in China. 
To date, no reports have been published about fungus–
methanogen co-cultures from yaks grazing in Qinghai 
Province of China. There are a large number of differ-
ent types of yaks and vegetation in the six main produc-
tion areas of Qinghai Province. Different kinds of natural 

herbage eaten by grazing yaks lead to different micro-
bial floras in their rumens of yaks among different areas. 
Therefore, there are different combinations of natural 
anaerobic fungus–methanogen co-cultures present in the 
rumen of grazing yaks in different areas. These fungus–
methanogen co-cultures can efficiently degrade lignocel-
luloses. As there is an urgent need to effectively improve 
the utilization rate of many types of straws, studies focus-
ing on the yak rumen microbiota are needed. Previous 
studies have reported some fungus–methanogen co-cul-
tures from the rumen of yaks grazing in Tianzhu Tibetan 
Autonomous Prefecture in Gansu Province of China, 
with high fibrolytic enzyme activities (Wei et  al. 2015, 
2016, 2017). It is necessary to further systematically study 
fungus–methanogen co-cultures from the rumen of yaks 
in different areas. These microbial resources have not 
been fully exploited. We hypothesized that fungus–meth-
anogen co-cultures from the rumen of yaks grazing in 
Qinghai Province can efficiently degrade lignocelluloses 
with high fibrolytic enzyme activities. This study unprec-
edentedly focused on isolating fungus–methanogen co-
cultures from the rumen of Qinghai yaks, and further 
explored their capacity to degrade wheat straw, oat straw, 
corn stalk, rice straw and sorghum straw.

Materials and methods
Animal diet and fungus–methanogen co‑cultures isolation
Plateau yak is one of the most valued yak breeds in Qing-
hai Province, China, and has the genes and character-
istics of wild yaks. Xinghai County in Hainan Tibetan 
Autonomous Prefecture in Qinghai Province of China, 
at an altitude of 4100 m (34°48′–36°14′ N, 99°01′–100°21′ 
E), was chosen as the experimental site. In the spring 
(March), plateau yaks (n = 20, male, 4–5  years) grazing 
in a pasture in Xinghai County were randomly chosen 
to isolate single anaerobic fungi. The pasture type was 
alpine meadow with Festuca ovina L. as the main species. 
The use of animals and the procedure for rumen sam-
ple collection were approved by local farms in Hainan 
Tibetan Autonomous Prefecture of Qinghai Province and 
the Animal Ethics Committees of the Gansu Academy of 
Sciences (Gansu, China).

Fresh rumen liquid was collected from the rumen of 
each yak through a dedicated rumen content collec-
tor comprising a stainless steel stomach tube and a tiny 
vacuum pump. The rumen liquid samples were quickly 
inoculated into anaerobic tubes containing 9.0 mL basal 
anaerobic fungus medium and 100 mg air-dried chopped 
wheat straw, which were autoclaved at 121 °C for 20 min. 
After inoculation, 1600  IU/mL penicillin and 2000  IU/
mL streptomycin were added to kill bacteria, and then 
the culture was placed at 39 °C. The basal anaerobic fun-
gus medium comprised (per litre): yeast extract, 1.0  g; 
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tryptone, 1.0 g; NaHCO3, 7.0 g; resazurin (1.0 g/L), 1 mL; 
yak rumen fluid without cells centrifuged at 10,000×g 
for 15 min at 4 °C, 170 mL; Salt solution I, 165 mL; Salt 
solution II, 165 mL; l-cysteine hydrochloride, 1.7 g; and 
distilled water to 1000  mL. Salt solution I contained 
NaCl, 6.0  g/L; (NH4)2SO4, 3.0  g/L; KH2PO4, 3.0  g/L; 
CaCl2·2H2O, 0.4 g/L and MgSO4·2H2O, 0.6 g/L. Salt solu-
tion II contained 4.0 g/L K2HPO4.

After several subcultures, the single anaerobic fungi 
were isolated using the Hungate roll-tube technology. 
Bacterial contamination in each culture was checked by 
PCR with the primers 968f/1401r (Su et  al. 2008). The 
formation of CH4 was examined using headspace gas 
chromatography to ensure that methanogens were pre-
sent in each co-culture. By this method, we isolated sin-
gle anaerobic fungi and obtained fungus–methanogen 
co-cultures. The cultures were transferred every 4 days to 
anaerobic fungus medium with 1% (w/v) wheat straw at 
39 °C.

Identification of fungus–methanogen co‑cultures 
and phylogenetic analysis
The cultures incubated for 2 to 3  days in Hungate agar 
tubes were observed under a light microscope. The cul-
tures incubated in anaerobic fungus liquid medium with 
or without straw were observed under a phase contrast 
microscope (Leica, DMIL-PH1, Germany). The anaerobic 
fungi were first identified according to their morphologi-
cal features.

The cultures incubated in 0.1% glucose (w/v) liquid 
medium without straw at 39 °C for 4 days were collected 
by centrifugation at 10,000×g at 4  °C to extract total 
genomic DNA. The collected pellets were finely ground 
using liquid nitrogen. DNA extraction was performed 
using the Fast DNA SPIN Kit for soil (MP Biomedical, 
Solon, OH, United States) according to the manufac-
turer’s instructions. Cell lysis in this kit was performed 
with sodium phosphate buffer and MT buffer in Lysing 
Matrix E tubes using a Precellys 24 bead beater for 40 s at 
a speed of 6.0 m/s.

The ITS sequence of the anaerobic fungi was ampli-
fied with the forward primer GM1 (5′-TGT​ACA​CAC​
CGC​CCGTC-3′) and reverse primer GM2 (5′-CTG​CGT​
TCT​TCA​TCGAT-3′) as reported by Li and Heath. The 
diversity of methanogens in each co-culture was ana-
lysed by the polymerase chain reaction–denaturing gra-
dient gel electrophoresis (PCR–DGGE) method, with the 
primers 519f/915r GC according to Cheng et al. (2009). 
The 16S rDNA of methanogens was amplified to iden-
tify them using the primers Met86F (5′-GCT​CAG​TAA​
CAC​GTGG-3′) and Met1340R (5′-CGG​TGT​GTG​CAA​
GGAG-3′), and the amplification conditions of the Met 
primers were modified according to Wei et al. (Wei et al. 

2017). All sequences of PCR products were determined 
by Beijing Genomics Institute (BGI) and all sequences 
were submitted to the GenBank database.

The amplified products were all visualized and puri-
fied by 1% agarose gel electrophoresis. The sequences 
obtained were aligned by using ClustalX V1.83. A Basic 
Local Alignment Search Tool (BLAST) search was per-
formed with the obtained sequences to determine the 
homology with sequences already available in the Gen-
Bank database. The evolutionary relationships of the 
methanogens were plotted using the neighbour-joining 
method. Phylogenetic analyses and phylogenetic trees 
construction were conducted in MEGA 7.0.

Scanning electron microscopy
The fungus cultures grown in anaerobic medium con-
taining 100  mg chopped straw at 1% (w/v) at 39  °C for 
72  h were centrifuged at 1000×g for 5  min. The pre-
cipitate was rinsed three times with phosphate-buffered 
saline (PBS, pH 7.2). The samples for scanning electron 
microscopy (SEM) observation were prepared according 
to Wei et al. (2016).

Screening of co‑cultures
According to a number of previous studies, the lignocel-
lulose degradation capability of the fungus–methanogen 
co-cultures was positively correlated with gas produc-
tion (Jin et al. 2011; Wei et al. 2015; Getachew et al. 2004; 
Gasmi-Boubaker et  al. 2005; Sebata et  al. 2011). Thus, 
the fungus–methanogen co-culture with wheat straw as 
the substrate with the highest gas production during the 
5-day culture period was selected as the optimum co-cul-
ture, and its capacity for degrading five straws and their 
respective fermentation end-products were determined.

Experimental design and sampling
Wheat straw, oat straw, corn stalk, rice straw and sor-
ghum straw were used as substrates, respectively. All 
substrates were sun-dried, chopped and ground to 
pass through a 2 mm screen. The inocula were the fun-
gus–methanogen co-culture and its fungus pure culture 
obtained by adding chloramphenicol (50  μg/mL final 
concentration) to inhibit methanogens. Medium with-
out the inoculum was used as the control. Each substrate 
(1 g) was added to 123 anaerobic bottles, each containing 
90 mL basal medium. The 10-mL inoculum was added to 
basal medium sparged with highly purified CO2 (Li et al. 
2020a, b; Solomona et al. 2016; Henske et al. 2017; Fer-
raro et al. 2018; Hanafy et al. 2018; Joshi et al. 2018; Peng 
et  al. 2018) and supplemented with 1600  IU/mL peni-
cillin and 2000  IU/mL streptomycin. The cultures were 
incubated at 39  °C for 5 days. During the 5-day incuba-
tion, 3 bottles of the fungus–methanogen co-culture 
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were taken out daily to determine end-products, such 
as CH4 and acetate, as well as xylanase, carboxymethyl 
cellulase (CMCase), filter paper ase (FPase), ferulic acid 
esterase (FAE), acetyl esterase (AE), and p-coumaric acid 
esterase (CAE) activities, ferulic acid (FA), p-coumaric 
acid (PCA), vanillic acid (VA) and protocatechuic acid 
(PA) releases. And 3 bottles of the fungus pure culture 
were taken out daily to determine end-products. The 
pellets of the centrifuged cultures were collected for the 
analysis of in vitro dry matter digestibility (IVDMD) and 
neutral detergent fibre digestibility (NDFD) by the fun-
gus–methanogen co-culture on the five straws.

Enzyme profile assays
The cultures were centrifuged at 5000×g for 10  min at 
4  °C to obtain the supernatants to determine xylanase, 
CMCase, FPase, FAE, AE and CAE activity according 
to Wei (2016), Cao (2011) and the state standard of the 
People’s Republic of China (GB/T 23874-2009). One unit 
of enzyme activity was defined as the amount of enzyme 
that released 1.0 μmol xylose, glucose, FA, p-nitrophenol, 
or PCA per minute per millilitre at pH6.8 and 39 °C.

Fibre digestibility determination
According to AOAC (2005) Official Methods of Analysis 
(18th Association of Analytical Chemists, Washington 
DC, USA), the samples in each bottle were centrifuged 
and dried at 105 °C for 24 h to determine IVDMD. NDF 
contents were determined as described by Van Soest 
et al. Alpha amylase was not used, but sodium sulfite was 
added to each sample for the NDF assay. The calcula-
tion was as follows: IVDMD or NDFD (%) = [(initial DM 
or NDF of the feed taken for incubation − DM or NDF 
of the residue)/(initial DM or NDF of the feed taken for 
incubation)] × 100. The dried residue and NDF content of 
the dried residue in the uninoculated control were taken 
as the initial DM and NDF values, respectively.

Phenolic acid release measurement
The extraction methods of FA, PCA, VA and PA from 
the supernatants of cultures and high-performance liq-
uid chromatography (HPLC) analyses were performed 
according to the newly improved HPLC method reported 
by Wang et al. (2013).

Total gas production and CH4 measurement
The cumulative gas production during the 5-day incuba-
tion was measured by an AGRS-III automated trace gas 
recording system for real-time detection of anaerobic 
microbial growth. CH4 was measured by gas chromatog-
raphy (GC), with an HP-Innowax (19091N-133) capil-
lary column, high purity nitrogen as the carrier gas, and 
a hydrogen flame ionization detector. The determination 

conditions of CH4 were established as follows: total pres-
sure 130  kPa, total flow rate 30.2  mL/min, column flow 
rate 1.7 mL/min, linear velocity 39.8 cm/s, column tem-
perature 80 °C, gasification chamber temperature 100 °C, 
and detection chamber temperature 120 °C.

End‑product analysis
The cultures were centrifuged at 10,000×g for 10  min 
at 4  °C to obtain the supernatants. The formate and 
acetate concentrations in the supernatants were deter-
mined by HPLC (Water 2489, USA) on an instrument 
equipped with an Agilent SB-Aq chromatography col-
umn (26 mm × 250 mm, 5 μm, Agilent, USA), a 2489UA 
detector, a 7725i manual injector (Rheodyne, USA), and 
a UV2450 ultraviolet–visible spectrometer (Hitachi, 
Japan). The determination conditions were as follows: 
mobile phase 5 mmol/L KH2PO4-H3PO4 buffer solution 
(pH = 2.4), flow velocity 0.5  mL/min, detection wave-
length 214 nm, column temperature 25 °C, and injection 
volume 20 μL. The l-lactate and d-lactate concentrations 
in the supernatants were analysed using an l,d-lactate 
Assay Kit (Nanjing Jiancheng Institute of Biological Engi-
neering, Nanjing, China). The ethanol concentration was 
determined using gas chromatography according to the 
modified method of Boonchuay et al. (2021).

Statistical analysis
Data are shown as the mean ± standard deviation (SD) 
and were analysed using one-way analysis of variance 
(ANOVA) follwed by Tukey’s test with SPSS 18.0 soft-
ware (Microsoft). p < 0.05 was considered to indicate a 
statistically significant difference.

Results
Isolation and identification of fungus–methanogen 
co‑cultures from Qinghai yaks
The gas chromatography analysis showed that all iso-
lated fungus–methanogen co-cultures produced CH4, 
which confirmed the presence of methanogens in each 
co-culture. Bacterial specific-PCR amplification showed 
no detectable bacteria in any co-culture. In this study, 31 
fungus–methanogen co-cultures were obtained from the 
rumen of plateau yaks grazing in Hainan Tibetan Auton-
omous Prefecture in Qinghai Province, China (Table 1). 
Among the 31 co-cultures, there were 5 types: N. fron-
talis + M. ruminantium, N. frontalis + M. gottschalkii, 
O. joyonii + M. ruminantium, C. communis + M. rumi-
nantium, and C. communis + M. millerae. They were 
identified and named N. frontalis + M. ruminantium co-
culture YakQH1-YakQH4, N. frontalis + M. gottschalkii 
co-culture YakQH5-YakQH16, O. joyonii + M. ruminan-
tium co-culture YakQH17-YakQH23, C. communis + M. 
ruminantium co-culture YakQH24-YakQH26, and C. 
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communis + M. millerae co-culture YakQH27-YakQH31. 
Each anaerobic fungal strain was symbiotic with a 
methanogen species. The fungal isolates were named 
N. frontalis YakQH1-YakQH16, O. joyonii YakQH17-
YakQH23, and C. communis YakQH24-YakQH31, and 
the methanogen isolates were named M. ruminantium 
YakQH1-YakQH4, M. gottschalkii YakQH5-YakQH16, 
M. ruminantium YakQH17-YakQH23, M. ruminan-
tium YakQH24-YakQH26, and M. millerae YakQH27-
YakQH31 (Table 1).

The 31 fungi in the co-cultures were observed and 
identified using light microscopy, phase contrast 

microscopy, and SEM according to morphological 
characteristics and the number of zoospore flagella 
(Figs. 1, 2, 3). The fungal isolates N. frontalis YakQH1-
YakQH16, O. joyonii YakQH17-YakQH23, and C. 
communis YakQH24-YakQH31 showed the morpho-
logical features of N. frontalis, O. joyonii, and C. com-
munis, respectively. The ITS sequences of the 31 fungi 
in the co-cultures were deposited in GenBank under 
accession numbers MH482796-MH482826 (Table  1). 
Through sequence homology comparison with the 
NCBI database, among the 31 co-cultures, all fungal 
isolates had a similarity of 99%–100% with N. frontalis 

Table 1  Classification of the 31 fungus–methanogen co-cultures isolated from the rumen of Qinghai yaks

P, polycentric; M, monocentric; Ex, exogenous; En, endogenous; PF, ployflagellated; UF, uniflagellated; S, segmented; US, unsegmented; HB, highly branched; B, 
branched; G, globular

Co-cultures Fungus species GenBank 
accession no

Fungus morphological description

Thallus Growth 
nature

Zoospore 
flagellum

Mycelia Rhizoid Associated 
methanogen 
species

GenBank 
accession 
no

YakQH1 N. frontalis MH482796 M En PF US B M. ruminantium MH443285

YakQH2 N. frontalis MH482797 M Ex PF US B M. ruminantium MH443286

YakQH3 N. frontalis MH482798 M En PF US B M. ruminantium MH443287

YakQH4 N. frontalis MH482799 M En PF US B M. ruminantium MH443288

YakQH5 N. frontalis MH482800 M En PF US B M. gottschalkii MH443289

YakQH6 N. frontalis MH482801 M En PF US B M. gottschalkii MH443290

YakQH7 N. frontalis MH482802 M En PF US B M. gottschalkii MH443291

YakQH8 N. frontalis MH482803 M En PF US B M. gottschalkii MH443292

YakQH9 N. frontalis MH482804 M En PF US B M. gottschalkii MH443293

YakQH10 N. frontalis MH482805 M Ex PF US B M. gottschalkii MH443294

YakQH11 N. frontalis MH482806 M Ex PF US B M. gottschalkii MH443295

YakQH12 N. frontalis MH482807 M En PF US B M. gottschalkii MH443296

YakQH13 N. frontalis MH482808 M En PF US B M. gottschalkii MH443297

YakQH14 N. frontalis MH482809 M En PF US B M. gottschalkii MH443298

YakQH15 N. frontalis MH482810 M En PF US B M. gottschalkii MH443299

YakQH16 N. frontalis MH482811 M En PF US B M. gottschalkii MH443300

YakQH17 O. joyonii MH482812 P Ex PF S HB M. ruminantium MH443301

YakQH18 O. joyonii MH482813 P Ex PF S HB M. ruminantium MH443302

YakQH19 O. joyonii MH482814 P Ex PF US HB M. ruminantium MH443303

YakQH20 O. joyonii MH482815 P Ex PF S HB M. ruminantium MH443304

YakQH21 O. joyonii MH482816 P Ex PF S HB M. ruminantium MH443305

YakQH22 O. joyonii MH482817 P Ex PF US HB M. ruminantium MH443306

YakQH23 O. joyonii MH482818 P Ex PF US HB M. ruminantium MH443307

YakQH24 C. communis MH482819 M Ex UF – G M. ruminantium MH443308

YakQH25 C. communis MH482820 M Ex UF – G M. ruminantium MH443309

YakQH26 C. communis MH482821 M Ex UF – G M. ruminantium MH443310

YakQH27 C. communis MH482822 M Ex UF – G M. millerae MH443311

YakQH28 C. communis MH482823 M Ex UF – G M. millerae MH443312

YakQH29 C. communis MH482824 M Ex UF – G M. millerae MH443313

YakQH30 C. communis MH482825 M Ex UF – G M. millerae MH443314

YakQH31 C. communis MH482826 M Ex UF – G M. millerae MH443315
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strain Yak16, O. joyonii strain Yak1, and Caecomyces sp. 
AGRL-11 registered in GenBank.  

The DGGE results confirmed that one fungus was 
natively associated with only one methanogen in each 
co-culture. The 16S rRNA gene sequences of the 31 
methanogens in the co-cultures were deposited in Gen-
Bank under accession numbers MH443285-MH443315 
(Table  1). All methanogen isolates (YakQH1-YakQH31) 
in the 31 co-cultures belonged to Methanobrevibacter 
sp. based on the 16S rRNA gene sequences. Through 
sequence homology comparison with the NCBI database, 
among the 31 co-cultures, all methanogen isolates were 

found to have a similarity of 99%-100% with M. rumi-
nantium strain YakM2, M. gottschalkii strain PG, and M. 
millerae strain ZA-10 registered in GenBank.

Phylogenetic tree construction of methanogens
A phylogenetic tree of the 16S rRNA gene sequences of 
methanogen isolates YakQH1-YakQH31 was constructed. 
Methanomicrobium mobile BP was used as an outgroup. 
The results showed that the 31 strains of methanogens 
included 3 species: M. ruminantium, M. gottschalkii, and 
M. millerae (Fig. 4).

Fig. 1  Morphological diversity of anaerobic fungi isolates in Hungate agar roll-tubes. A The fungus N. frontalis YakQH5 with an endogenous 
sporangium and a network of rhizoids. B The fungus O. joyonii YakQH17 produced a rhizomycellium complex with an extensive network of hyphae, 
single or branched sporangiophores developed from the hyphae, and several globose sporangia full of zoospores were produced from the 
sporangiophores. C The fungus C. communis YakQH24 colony. Bars = 100 μm

Fig. 2  Growth stages of the fungus C. communis YakQH24 in liquid glucose culture medium under phase -contrast microscopy. A A live 
uniflagellate zoospore. Bars = 10 μm. B The fungus C. communis YakQH24 showed bulbous rhizoids after 24 h incubation. Bars = 10 μm. C The C. 
communis YakQH24 produced more bulbous rhizoids after 96 h incubation. Bars = 50 μm
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Screening of co‑cultures
Among the 31 fungus–methanogen co-cultures, the 12 
co-cultures of N. frontalis + M. gottschalkii grew most 
stably and rapidly and degraded wheat straw in anaero-
bic tubes to produce the highest total gas yields of 181–
230  mL/g DM during the 5-day incubation, obviously 
more than other co-cultures. Particularly, the N. fron-
talis + M. gottschalkii co-culture YakQH5 was the most 
remarkable and was thus selected to determine its abil-
ity to biodegrade five types of roughage as substrates. The 
preservation number of the N. frontalis + M. gottschalkii 
co-culture YakQH5 was No. 19299 in the China General 
Microbiological Culture Collection Center (CGMCC).

Enzyme profiles
During the 5-day incubation, in anaerobic bottles, the N. 
frontalis + M. gottschalkii co-culture YakQH5 degraded 
wheat straw, corn stalk, rice straw, oat straw and sor-
ghum straw and showed the highest activity values of 
12,910  mU/mL xylanase on wheat straw, 929  mU/mL 
CMCase and 1187 mU/mL FPase on rice straw, 10.5 mU/
mL FAE and 245 mU/mL AE on corn stalk, and 20.5 mU/
mL CAE on sorghum straw (Table 2).

Fibre digestibility
During the 5-day incubation, in anaerobic bottles, the N. 
frontalis + M. gottschalkii co-culture YakQH5 degraded 
60.5% of wheat straw, 67.2% of corn stalk, 68.1% of rice 
straw, 59.0% of oat straw, and 63.1% of sorghum straw 
(Fig. 5). Additionally, the co-culture YakQH5 had NDFD 
values of 49.5% on wheat straw, 59.7% on corn stalk, 

55.8% on rice straw, 51.0% on oat straw, and 53.1% on sor-
ghum straw (Fig. 5). The composition of the forages used 
as substrates before incubation was shown in Table 3.

Phenolic acid release
During the 5-day incubation, in anaerobic bottles, 
the N. frontalis + M. gottschalkii co-culture YakQH5 
degraded wheat straw, corn stalk, rice straw, oat straw, 
and sorghum straw to release FA 3.4–4.8 mg/g DM, PCA 
3.4–11.7  mg/g DM, VA 0.4–0.7  mg/g DM and PA 0.5–
0.9 mg/g DM, respectively. The peak values were as fol-
lows: FA 4.8 mg/g DM on corn stalk, PCA 11.7 mg/g DM 
on sorghum straw, VA 0.7  mg/g DM on rice straw, and 
PA 0.9 mg/g DM on wheat straw (Fig. 6).

Fermentation end‑products
During the 5-day incubation, in anaerobic bottles, the N. 
frontalis + M. gottschalkii co-culture YakQH5 degraded 
wheat straw, corn stalk, rice straw, oat straw and sor-
ghum straw to produce high total gas yields (the gas was 
mainly composed of CH4) of 315  mL/g DM, 261  mL/g 
DM, 300 mL/g DM, 290 mL/g DM, and 284 mL/g DM, 
respectively (Fig.  7). Meanwhile, the N. frontalis + M. 
gottschalkii co-culture YakQH5 degraded these ligno-
cellulosic materials to produce the highest end-product 
yields as follows: CH4 4.6  mmol/g DM on wheat straw 
and acetate 8.6 mmol/g DM on rice straw (Table 4). The 
fungus N. frontalis YakQH5 degraded these lignocel-
lulosic materials to produce maxima of H2 3.9  mmol/g 
DM on wheat straw, formate 2.5  mmol/g DM on sor-
ghum straw, acetate 5.5  mmol/g DM on rice straw, lac-
tate 2.5  mmol/g DM on sorghum straw, and ethanol 
45.8 mmol/g DM on wheat straw (Table 4).

Fig. 3  SEM of the anaerobic fungus N. frontalis YakQH5. A The mycelium of the N. frontalis YakQH5 penetrated into the thick-walled tissue of wheat 
straw after 24 h incubation. B The N. frontalis YakQH5 grew with an endogenous sporangium growth after 48 h incubation. C The dense hyphae of 
the N. frontalis YakQH5 fully penetrated into the wheat straw tissue to physically degrade lignocellulose after 96 h incubation. Bars = 20 μm
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Discussion
Diversity of the fungus–methanogen co‑cultures 
from the rumen of grazing yaks
In this study, 31 natural fungus–methanogen co-cul-
tures were first obtained from the rumen fluid of grazing 
yaks in spring in Qinghai Province, China, comprising 

5 combination types: N. frontalis + M. ruminantium, N. 
frontalis + M. gottschalkii, O. joyonii + M. ruminantium, 
C. communis + M. ruminantium, and C. communis + M. 
millerae. In 2015, we isolated 20 natural fungus–metha-
nogen co-cultures from the rumen fluid of grazing yaks 
in spring in a Wushaoling pasture of Tianzhu Tibetan 

Fig. 4  Phylogenetic tree of the 16S rRNA gene sequences of the methanogens isolates YakQH1–YakQH31 in the fungus–methanogen co-cultures. 
The topology of the tree was estimated by bootstraps based on 1000 replications. Bootstrap values more than 70% were shown on the major 
branch points. The scale bar corresponds to five changes per 100 positions. The 16S rRNA sequences determined in the present study and the 
closest relatives were marked in bold type. Methanomicrobium mobile BP (NR_044726) was used as an out group. GenBank accession numbers were 
given in brackets
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Autonomous Prefecture in Gansu Province, China, 
including 4 combination types: N. frontalis + M. rumi-
nantium, O. joyonii + M. ruminantium, O. joyonii + M. 
millerae, and Piromyces + M. ruminantium (Wei et  al. 
2015, 2016). Thus, there were many types of natural 
fungus–methanogen co-cultures in the rumen of graz-
ing yaks. Furthermore, when compared to the reported 
natural fungus-methanogen co-cultures isolated from 
the rumen or faeces of ruminants and non-ruminants by 
Bauchop et al. (1981), Jin et al. (2011), Leis et al. (2014), 

Sun et al. (2014), Li et al. (2016) and Li et al. (2021) and 
grazing yaks by Wei et  al. (2015, 2017), in this study, 3 
new types of natural anaerobic fungus–methanogen 
co-culture combinations were first obtained from the 
rumen of yaks, namely: N. frontalis + M. gottschalkii, C. 
communis + M. ruminantium, and C. communis + M. 
millerae. These three types of fungus-methanogen co-
cultures all included one fungus and one methano-
gen, and each methanogen coexisting with each fungus 
belonged to Methanobrevibacter sp., consistent with the 

Table 2  Fibrolytic enzyme of the N. frontalis + M. gottschalkii co-culture YakQH5 grown on the 5 sorts of substrates

CMCase, carboxymethyl cellulase; FPase, filter paper ase; FAE, ferulic acid esterase; AE, acetyl esterase; CAE, p-coumaric acid esterase; Day2-Day5: along the 5-day 
incubation; a, b, c, d indicate statistical difference (p < 0.05)

Item Wheat straw Corn stalk Rice straw Sorghum straw Oat straw

Xylanase (mU/mL)

Day2 4811 a 3572 c 2900 d 4520 b 3998 c

Day3 10,703 a 7812 c 5926 d 8995 b 5911 d

Day4 12,910 a 9501 bc 7673 c 11,046 b 8815 c

Day5 8361 c 10,598 a 8235 c 9985 ab 9467 b

Average 9196 a 7871 c 6183 c 8637 b 7048 c

CMCase (mU/mL)

Day2 190 c 173 c 381 a 150 c 270 b

Day3 285 c 301 c 570 a 220 c 460 b

Day4 378 c 396 c 892 a 386 c 592 b

Day5 450 d 501 c 929 a 439 d 721 b

Average 326 c 343 c 693 a 299 c 516 b

FPase (mU/mL)

Day2 260 b 189 c 367 a 210 b 217 b

Day3 331 d 396 c 651 a 298 c 486 b

Day4 469 d 493 c 970 a 425 d 573 b

Day5 531 c 558 c 1187 a 479 d 683 b

Average 398 c 263 d 795 a 353 cd 489 b

FAE (mU/mL)

Day2 2.0 a 2.5 a 1.9 b 0.9 c 1.7 b

Day3 5.5 b 6.4 a 4.9 c 3.1 d 3.8 cd

Day4 8.9 a 8.1 b 9.1 a 4.6 d 5.9 c

Day5 9.0 c 10.5 a 11.3 b 7.5 d 7.7 d

Average 6.5 a 6.9 a 6.8 a 4.0 c 4.8 b

AE (mU/mL)

Day2 59 d 85 b 80 b 67 c 99 a

Day3 98 d 145 ab 130 b 106 c 157 a

Day4 157 c 198 a 169 b 177 b 193 a

Day5 183 d 245 a 175 d 199 c 208 b

Average 125 c 168 a 139 b 111 d 113 d

CAE (mU/mL)

Day2 0.7 c 1.5 b 0.8 c 3.9 a 0.9 c

Day3 1.2 d 2.8 b 2.0 c 8.8 a 2.3 b

Day4 2.0 d 3.5 b 2.6 c 13.6 a 3.1 b

Day5 2.3 d 4.9 b 2.8 d 20.5 a 3.6 c

Average 1.6 d 3.2 b 2.1 c 11.7 a 2.5 c
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natural fungus–methanogen co-cultures isolated from 
the rumen or faeces of ruminants and non-ruminants 
previously reported by Jin et al. (2011), Leis et al. (2014), 
Sun et al. (2014), Li et al. (2016), Li et al. (2021) and Wei 
et al. (2015, 2017).

Our study revealed that different combinations of 
natural fungus–methanogen co-cultures in the rumen 
of grazing yaks in different regions, probably because of 
the different types of wild herbages eaten by the grazing 
yaks in different areas, and these different types of natu-
ral fungus–methanogen co-cultures differed in their abil-
ity to degrade lignocelluloses. This suggests that there 

are new and abundant microbial resources for efficiently 
degrading lignocelluloses in the rumen of yaks grazing on 
the Qinghai-Tibet Plateau, which have not yet been fully 
explored.

Roughage degradation by fungus–methanogen 
co‑cultures from the rumen of grazing yaks
During the 5-day incubation, the N. frontalis + M. 
gottschalkii co-culture YakQH5 degraded the 5 kinds of 
roughages and showed degradation potential, includ-
ing high lignocellulose-degrading enzyme activities, 
IVDMD 59.0%-68.1% (from oat straw to rice straw), 

Fig. 5  Fiber digestibility of the N. frontalis + M. gottschalkii co-culture YakQH5 grown on the 5 sorts of substrates. Left: In vitro dry matter digestibility 
(IVDMD); Right: Neural detergent fiber digestibility (NDFD). ws: wheat straw; cs: corn stalk; rs: rice straw; os: oat straw; ss: sorghum straw

Table 3  Composition of the forages used as substrates before incubation

DM, dry matter; NDF, neutral detergent fiber; ADF, acid detergent fiber; ADL, acid detergent lignin; FA, ferulic acid; PCA, p-coumaric acid; VA, vanillic acid; PA, 
protocatechuic acid; S.E.M, standard error of mean
a , b, c, d indicate statistical difference (p < 0.05)

Corn stalk Wheat straw Rice straw Oat straw Sorghum 
straw

S.E.M

Lignocellulose composition (g/kg DM)

DM 940 b 940 b 953 a 931 b 950 a 0.2

NDF 752 b 783 a 717 c 765 b 772 a 3.2

ADF 426 b 504 a 445 b 410 c 421 c 5.2

Cellulose 354 b 419 a 401 a 401 a 418 a 5.0

Hemicellulose 322 a 279 b 273 b 278 b 269 b 7.7

ADL 73 b 87 a 43 c 50 c 41 c 1.4

Phenolic acid (μg/g DM)

PA 63 b 96 a 84 a 90 a 60 c 3.6

VA 160 a 156 a 124 b 136 b 136 b 4.0

FA 7530 a 3757 c 6058 b 2500 c 5625 b 50.8

PCA 14,713 b 5039 c 7256 c 5105 c 26,507 a 36.9
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NDFD 49.5%-59.7% (from wheat straw to corn stalk) 
and large amounts of FA and PCA releases, which 
are described in Sect.  3. Accordingly, we found that 
the degradation degrees of roughages were different. 
Ranked in terms of highest to lowest decomposition, 
the substrates were rice straw, corn stalk, sorghum 
straw, wheat straw, and oat straw, while in terms of 
highest to lowest degradation, they were corn stalk, 
rice straw, sorghum straw, oat straw, and wheat straw. 
The N. frontalis + M. gottschalkii co-culture YakQH5 
degraded lignocelluloses by secreting main-chain 
degrading polysaccharide hydrolases (CMCase, FPase 
and xylanase) and side-chain degrading esterases (FAE, 
AE and CAE) with high activities, which could be key 
lignin-degrading enzymes in enhancing plant cell 
wall degradation. All these enzymes acted synergisti-
cally to effectively decompose lignocelluloses. The N. 

frontalis + M. gottschalkii YakQH5 degraded sorghum 
straw to release PCA 11.7  mg/g DM (70.1  μg/mL) as 
a result of the high PCA content in sorghum straw, 
consistent with the high activity of CAE when using 
sorghum stalk as a substrate, implying that the N. fron-
talis + M. gottschalkii YakQH5 from the rumen of Qing-
hai yaks can decompose lignin efficiently. Meanwhile, 
the N. frontalis + M. gottschalkii co-culture YakQH5 
degraded wheat straw, corn stalk, rice straw, oat straw 
and sorghum straw to release very small amounts of 
VA and PA. The yields of VA and PA releases appeared 
unrelated to their contents in the roughages. Further 
study is needed to clarify this finding.

Among the 31 fungus–methanogen co-cultures, the 
N. frontalis + M. gottschalkii co-culture YakQH5 was 
screened out with only wheat straw as substrate by 
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Fig. 6  Releases of phenolic acids by the N. frontalis + M. gottschalkii co-culture YakQH5 grown on the 5 sorts of substrates. ● cs: corn stalk; ■ ws: 
wheat straw; ▲ rs: rice straw; ▼ os: oat straw; * ss: sorghum straw
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measuring gas production. In this case, the lignocellu-
lose degradation and gas production are generally posi-
tive correlation.

The N. frontalis + M. gottschalkii co-culture YakQH5 
degraded different roughages as substrates, the order of 
the lowest to highest IVDMD was: oat straw, wheat straw, 
sorghum straw, corn stalk, and rice straw; the order of 
the lowest to highest NDFD was: wheat straw, oat straw, 
sorghum straw, rice straw and corn stalk; and the order 
of the lowest to highest gas production was: corn stalk, 
sorghum straw, oat straw, rice straw and wheat straw. 
When the 5 kinds of roughages with different lignocel-
lulose  contents were used as substrates, there was not 
always a linear correlation between IVDMD, NDFD and 
gas production. This phenomenon may have been related 
to the different compositions of the five roughages. The 
lignocellulose degradation mechanism of the anaerobic 
fungi needs to be  further  studied to reveal the reason 
behind this phenomenon.

In 2015 and 2017, we first reported the natural fungus–
methanogen co-culture N. frontalis + M. ruminantium 
Yaktz1 and Piromyces + M. ruminantium Yak-G18 that 
degraded straws with remarkable efficiency were iso-
lated from the rumen of yaks grazing in Tianzhu Tibetan 
Autonomous County in Gansu Province of China (Wei 
et  al. 2015, 2016, 2017). During the 7-day incubation, 
the N. frontalis + M. ruminantium co-culture Yaktz1 
degraded 61.7% of wheat straw, 68.8% of corn stalk, 
and 71.9% of rice straw, with NDFD values of 56.0% on 
wheat straw, 61.7% on corn stalk, and 55.6% on rice straw, 
while exhibiting the highest enzyme activity values as 

follows: xylanase 12,500  mU/mL on wheat straw; FPase 
430.3 mU/mL, FAE 11.4 mU/mL, AE 199.3 mU/mL and 
CAE 5.0 mU/mL on corn stalk, and FA release 24.1 μg/
mL and PCA release 50.3  μg/mL on corn stalk as the 
peak values. Across the 7-day incubation, the Piromy-
ces + M. ruminantium co-culture Yak-G18 degraded 
60.5% of wheat straw, 65.0% of corn stalk, 65.9% of rice 
straw, 66.0% of Chinese wildrye, and 75.0% of alfalfa, 
with NDFD values of 40.8%–47.5% on the five substrates, 
showing peak values of xylanase activity ranging from 
2750 to 5023  mU/mL (from alfalfa to Chinese wildrye), 
FPase ranging from 71.9 to 123.5 mU/mL(from rice straw 
to Chinese wildrye), and AE 66.3–118.1  mU/mL (from 
alfalfa to Chinese wildrye), releasing little FA and PCA. 
To date, 3 types of extremely effective fungus–methano-
gen co-cultures for straw degradation have been obtained 
from the rumen of yaks: the N. frontalis + M. ruminan-
tium co-culture Yaktz1, the Piromyces + M. ruminantium 
co-culture Yak-G18, and the N. frontalis + M. gottschalkii 
co-culture YakQH5. According to degradation capability, 
the N. frontalis + M. ruminantium co-culture Yaktz1 and 
N. frontalis + M. gottschalkii co-culture YakQH5 showed 
the most prominent ability to degrade straws. The N. 
frontalis + M. gottschalkii co-culture YakQH5 from Qing-
hai yaks decomposed wheat straw, corn stalk, rice straw, 
oat straw, and sorghum straw to produce higher xyla-
nase, FPase, and CAE activities than the N. frontalis + M. 
ruminantium co-culture Yaktz1 from Tianzhu yaks, other 
natural fungus-methanogen co-cultures (from rumen or 
faeces of ruminants and non-ruminants), and artificially 
mixed anaerobic fungus–methanogen co-cultures previ-
ously reported, with all kinds of roughages or fiter paper 
as substrates (Jin et  al. 2011; Teunissen et  al. 1992a, b; 
Wei et  al. 2015, 2016, 2017). Specifically, the N. fronta-
lis + M. gottschalkii co-culture YakQH5 showed FPase 
activity on corn stalk that was approximately 2.7 times 
higher than that of the N. frontalis + M. ruminantium co-
culture Yaktz1 on corn stalk. The xylanase produced by 
N. frontalis + M. gottschalkii YakQH5 has good prospects 
for industrial application. Concurrently, the N. fronta-
lis + M. gottschalkii co-culture YakQH5 could effectively 
degrade wheat straw, corn stalk and rice straw with 
IVDMD and NDFD values analogous to those of the N. 
frontalis + M. ruminantium co-culture Yaktz1 (Wei et al. 
2016) but obviously higher IVDMD values than for other 
fungus–methanogen co-cultures from the rumen or fae-
ces of ruminants and non-ruminants previously reported, 
with roughages as substrates (Jin et  al. 2011). Values 
of 33.6%–53.1% IVDMD for wheat straw, corn stalk, 
bagasse, distiller’s dried grains with solubles (DDGS), 
wheat bran and rice straw by the Piromyces + M. thaueri 
CW co-culture from the rumen of goats; 26.8%–57.0% 
IVDMD for wheat straw, corn stalk, bagasse, DDGS, 
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Fig. 7  Gas production by the N. frontalis + M. gottschalkii co-culture 
YakQH5 grown on the 5 sorts of substrates. ● cs: corn stalk; ■ ws: 
wheat straw; ▲ rs: rice straw; ▼ os: oat straw; * ss: sorghum straw
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Table 4  End-products produced by the N. frontalis + M. gottschalkii co-culture YakQH5 and the N. frontalis YakQH5 fungus grown on 
the 5 substrates

Day2-Day5: along the 5-day incubation; a, b, c, d indicate statistical difference (p < 0.05)

End-products Wheat straw Corn stalk Rice straw Oat straw Sorghum straw

N. frontalis + M. gottschalkii Co-culture YakQH5
CH4 (mmol/g DM)

Day2 1.5 a 1.0 b 1.7 a 0.9 b 1.2 b

Day3 2.8 a 2.6 a 3.0 a 2.1 b 2.3 b

Day4 3.8 a 3.9 a 3.5 a 2.5 b 2.9 b

Day5 4.6 a 4.2 a 3.9 ab 4.0 ab 3.0 b

Average 3.2 a 2.9 a 3.0 a 2.4 b 2.4 b

Acetate (mmol/g DM)

Day2 2.0 b 1.9 c 2.1 b 2.2 b 2.9 a

Day3 4.0 b 4.0 ab 4.6 a 3.7 b 5.0 a

Day4 6.2 b 6.0 b 7.1 a 5.9 c 6.5 b

Day5 8.0 b 7.3 c 8.6 a 7.3 c 8.2 b

Average 5.1 b 4.8 c 5.6 a 4.8 c 5.7 a

N. frontalis YakQH5 Fungus
H2 (mmol/g DM)

Day2 0.5 a 0.2 b 0.4 a 0.2 b 0.5 a

Day3 1.8 b 1.0 d 1.5 c 2.0 a 1.7 b

Day4 2.8 a 2.1 c 1.9 d 2.7 a 2.5 b

Day5 3.9 a 2.5 c 2.4 c 3.0 b 2.8 b

Average 2.0 1.5 1.6 2.0 1.8

Formate (mmol/g DM)

Day2 0.4 b 0.4 b 0.6 a 0.3 c 0.6 a

Day3 1.1 b 1.1 b 1.2 a 1.1 b 1.3 a

Day4 1.7 b 1.6 b 1.6 b 1.6 b 1.9 a

Day5 1.9 c 2.0 b 2.1b 1.9 c 2.5 a

Average 1.3 c 1.3 c 1.4 b 1.2 d 1.6 a

Acetate (mmol/g DM)

Day2 1.5 a 1.0 c 1.5 a 1.3 b 1.2 b

Day3 2.8 a 1.9 c 2.7 a 2.0 b 2.1 b

Day4 4.0 a 3.3 b 4.1 a 3.1 b 3.2 b

Day5 5.3 a 4.1 c 5.5 a 4.4 b 4.6 b

Average 3.4 a 2.6 b 3.5 a 2.7 b 2.8 b

Lactate (mmol/g DM)

Day2 0.6 c 0.8 a 0.5 d 0.5 d 0.7 b

Day3 1.3 b 1.5 a 1.2 b 1.2 b 1.2 b

Day4 1.9 b 2.4 a 1.8 b 1.6 c 1.7 c

Day5 2.1 b 2.4 a 1.9 c 1.9 c 2.5 a

Average 1.5 b 1.8 a 1.4 c 1.3 c 1.5 b

Ethanol (mmol/g DM)

Day2 10.5 a 8.0 b 6.3 c 9.5 b 7.0 c

Day3 30.3 a 23.7 b 19.1 c 29.7 a 25.0 b

Day4
Day5
Average

37.1 a

45.8 a

30.9 a

30.3 b

35.0 c

24.3 c

24.7 c

27.9 d

19.5 d

34.6 a

39.9 b

28.4 b

30.1 b

33.4 c

23.9 c
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wheat bran, and rice straw by the Piromyces + Methano-
brevibacter sp. Z8 co-culture from the rumen of goats; 
and 33.5%–48.3% IVDMD for rice straw by the Anaero-
myces + M. gottschalkii strain PG co-culture from faeces 
of mules, the Piromyces + M. gottschalkii strain PG co-
culture from faeces of mules, the Piromyces + Methano-
brevibacter sp. Z8 co-culture from faeces of camel, the 
Neocallimastix + Methanobrevibacter sp. Z8 co-culture 
from feces of camel, and the Piromyces + Methanobre-
vibacter sp. 1Y co-culture from feces of buffalo, all after 
a 5-day incubation. The N. frontalis + M. ruminantium 
co-culture Yaktz1 degraded wheat straw, corn stalk, and 
rice straw to release the maximum values of FA 24.1 μg/
mL and PCA 50.3  μg/mL on corn stalk, slightly lower 
than those of the N. frontalis + M. gottschalkii co-culture 
YakQH5 with corn stalk as substrate (Wei et al. 2016).

Our study showed that the N. frontalis + M. gottschalkii 
co-culture YakQH5 and the N. frontalis + M. ruminan-
tium co-culture Yaktz1 from the rumen of grazing yaks 
degraded roughages more effectively than previously 
reported fungus-methanogen co-cultures from the diges-
tive tract of herbivores, including ruminants and non-
ruminants, and even some current industrial strains. This 
study also highlighted that a new-type fungus–metha-
nogen combination, the N. frontalis + M. gottschalkii 
YakQH5, has been obtained from the rumen of Qing-
hai yaks, and it can superiorly degrade lignocellulosic 
materials. The N. frontalis + M. ruminantium co-culture 
Yaktz1 was isolated from yaks grazing in a Wushaoling 
pasture located in Tianzhu Tibetan Autonomous Pre-
fecture in Gansu Province of China, an alpine meadow 
pasture with Kobresia myosuroides (Villars) Foiri as the 
main species, while the N. frontalis + M. gottschalkii 
co-culture YakQH5 was isolated from yaks grazing in 
Xinghai County located in Hainan Tibetan Autonomous 
Prefecture in Qinghai Province of China, where the pas-
ture was alpine meadow with Festuca Ovina L. as the 
main species. It can be concluded that the combinations 
of fungus–methanogen co-cultures from the grazing yaks 
in different regions may vary, and these natural fungus–
methanogen co-cultures had different characteristics and 
abilities to degrade lignocelluloses. Further studies on the 
host specificity or substrate specificity of anaerobic fungi 
are needed.

Meanwhile, the N. frontalis + M. gottschalkii co-cul-
ture YakQH5 degraded wheat straw straw, corn stalk, rice 
straw, oat straw, and sorghum straw to produce the high-
est yields of CH4 4.6  mmol/g DM on wheat straw and 
acetate 8.6 mmol/g DM (55.7 mM) on rice straw. These 
are slightly higher yields than the CH4 and acetate yields 
produced by the N. frontalis + M. ruminantium co-cul-
ture Yaktz1 with wheat straw, corn stalk, and rice straw as 
substrates during the 7-day incubation; markedly higher 

than those produced by the Piromyces + M. ruminan-
tium co-culture Yak-G18 on wheat straw, corn stalk, rice 
straw, Chinese wildrye, and alfalfa during the 7-day incu-
bation; and higher than those produced by most of natu-
ral fungus–methanogen co-cultures from the rumen or 
faeces of ruminants and non-ruminants, and artificially 
mixed anaerobic fungus–methanogen co-cultures, with 
roughages, fiter paper, cellulose or glucose as substrates 
(Jin et  al. 2011; Teunissen et al. 1992a, b; Li et  al. 2016; 
Nakashimada et al. 2000; Wei et al. 2015, 2016, 2017).

After methanogen inhibition, the pure fungus N. fron-
talis YakQH5 degraded wheat straw, corn stalk, rice 
straw, oat straw and sorghum straw to produce the high-
est yields of H2 3.9 mmol/g DM and ethanol 45.8 mmol/g 
DM (260.1 mM) on wheat straw, formate 2.5 mmol/g DM 
(15.0  mM) on sorghum straw, and lactate 2.5  mmol/g 
DM (15.0  mM) on sorghum straw. The yields of these 
end-products were generally higher than those produced 
by anaerobic fungi from the digestive tract of common 
ruminants and non-ruminants. The most interesting 
finding was that its ethanol yield was more greater than 
that produced by all reported anaerobic fungi with many 
kinds of roughages as substrates, even exceeding those of 
some industrial strains that produced ethanol (Jin et  al. 
2011; Sirohi et al 2013; Nagpal et al. 2011; Paul et al. 2010; 
Teunissen et al. 1992a, b; Sijtsma and Tan 1993; Thareja 
et al. 2006; Wei et al. 2016, 2017; Saye et al. 2021). Thus, 
the fungus N. frontalis YakQH5 is promising for use in 
the development of ethanol production.

Prospects for the fungus–methanogen co‑cultures 
from the rumen of grazing yaks
Anaerobic fungi have been studied for more than 40 years 
and are considered to play a crucial role in degrading lig-
nocelluloses. Some methanogens can further enhance 
the anaerobic fungi’s ability to degrade lignocelluloses. 
Anaerobic fungus–methanogen co-cultures degrade lig-
nocellulosic materials to produce CH4, acetate and ligno-
cellulose degradation enzymes with high activities, even 
exceeding those of some industrial strains (Teunissen 
et al. 1993; Cheng et al. 2018; Mountfort and Asher 1989; 
Solomon et al. 2016; Yang and Xie 2010; Chang and Park 
2020). However, until now, anaerobic fungi have not been 
used for widespread industrial applications due to their 
strict anaerobic growth requirements, limited preserva-
tion methods, difficulty in scale-up, and genetic intracta-
bility. Recently, with the improvement of culture media, 
more species of anaerobic fungi have been discovered 
and a large number of their nucleotides and proteins have 
been sequenced (Chang et al. 2020; Hess et al. 2020).

In the present study, the 31 fungus–methano-
gen co-cultures were first obtained from the rumen 
of yaks grazing in Qinghai Province of China. These 



Page 15 of 17Wei et al. AMB Express          (2022) 12:123 	

co-cultures included 5 combination types. Among 
them, during the 5-day incubation, the new-type 
combination N. frontalis + M. gottschalkii co-culture 
YakQH5 degraded 59.0%–68.1% of the DM and 49.5%–
59.7% of the NDF of wheat straw, corn stalk, rice straw, 
oat straw and sorghum straw to produce CH4 (3.0–
4.6 mmol/g DM) and acetate (7.3–8.6 mmol/g DM) as 
end-products and released the most FA (4.8 mg/g DM) 
on corn stalk, PCA (11.7 mg/g DM) on sorghum straw. 
The peak values of enzyme activitie were as follows: 
xylanase 12,910 mU/mL on wheat straw, FAE 10.5 mU/
mL on corn stalk and CAE 20.5  mU/mL on sorghum 
straw. The N. frontalis + M. gottschalkii co-culture 
YakQH5 degraded roughages to produce higher xyla-
nase, CMCase, FAE, AE activities, IVDMD, NDFD, and 
more CH4 and acetate yields without any pretreatment, 
than reported for natural fungus–methanogen co-cul-
tures isolated from the digestive tract of ruminants and 
non-ruminants.  This study convincingly proved our 
original hypothesis that Yak-derived ruminal fungus–
methanogen co-cultures have evolved to possess high 
efficiency to degrade plant lignocellulose.

In follow-up studies, it will be useful strategy to further 
construct a large-scale continuous culture facility to pro-
duce natural complex lignocellulose-degrading enzymes, 
CH4 and acetate by the N. frontalis + M. gottschalkii 
co-culture YakQH5, or express its xylanase, CMCase, 
FEA, AE and CAE genes under aerobic conditions using 
molecular biology techniques to realize large-scale indus-
trial production and application. The study on combined 
multiple omics analysis including genomics, transcrip-
tomics, proteomics and metabolomics of the N. fronta-
lis + M. gottschalkii co-culture YakQH5 will help to reveal 
its lignocellulose degradation mechanism. The fermen-
tation process of the fungus–methanogen co-cultures 
is mainly carried out in the cytoplasm and hydrogeno-
somes, and the detailed fermentation mechanism also 
needs to be further studied and optimized. The fun-
gus–methanogen co-cultures can efficiently degrade and 
change lignocelluloses into CH4 and acetate, representing 
potential for biological energy production that cannot be 
ignored. Therefore, screening the dominant combination 
of fungus–methanogen co-cultures from grazing yaks 
for the production of high-quality cellulase,  hemicellu-
lase, esterase and CH4 will have broad application pros-
pects. Improving the preservation methods of anaerobic 
fungi with high activity will further promote their prac-
tical application in industrial and agricultural produc-
tion. In the future, the study of the fungus–methanogen 
co-cultures from the rumen of Qinghai yaks will poten-
tially be highly important to address feed shortages, agri-
cultural  wastes  utilization, environmental pollution and 
energy crises.
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