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Soil conditions on bacterial wilt disease 
affect bacterial and fungal assemblage 
in the rhizosphere
Xiaojiao Liu1,2†, Liehua Liu2†, Jie Gong2, Lixin Zhang2, Qipeng Jiang2, Kuo Huang2,3 and Wei Ding2*    

Abstract 

Natural soil has the ability to suppress the soil-borne pathogen to a certain extent, and the assemblage of soil micro-
biome plays a crucial role in maintaining such ability. Long-term monoculture accelerates the forms of soil microbi-
ome and leads to either disease conducive or suppressive soils. Here, we explored the impact of soil conditions on 
bacterial wilt disease (healthy or diseased) under long-term tobacco monoculture on the assemblage of bacterial and 
fungal communities in bulk and rhizosphere soils during the growth periods. With Illumina sequencing, we compared 
the bacterial and fungal composition of soil samples from tobacco bacterial wilt diseased fields and healthy fields in 
three growth periods. We found that Proteobacteria and Ascomycota were the most abundant phylum for bacteria 
and fungi, respectively. Factors of soil conditions and tobacco growth periods can significantly influence the microbial 
composition in bulk soil samples, while the factor of soil conditions mainly determined the microbial composition in 
rhizosphere soil samples. Next, rhizosphere samples were further analyzed with LEfSe to determine the discriminative 
taxa affected by the factor of soil conditions. For bacteria, the genus Ralstonia was found in the diseased soils, whereas 
the genus Flavobacterium was the only shared taxon in healthy soils; for fungi, the genus Chaetomium was the most 
significant taxon in healthy soils. Besides, network analysis confirmed that the topologies of networks of healthy soils 
were higher than that of diseased soils. Together, our results suggest that microbial assemblage in the rhizosphere will 
be largely affected by soil conditions especially after long-term monoculture.
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Introduction
Bacterial wilt, caused by Ralstonia solanacearum, is one 
typical soil-borne disease and can bring severe losses to 
agricultural crops (Genin and Denny 2012; Jiang et  al. 
2017). In addition, long-term monoculture is more likely 
to cause rapid accumulation of R. solanacearum in soil 
(Chen et al. 2020a). Until now, there is currently no effec-
tive chemical pesticide to manage this disease (Liu et al. 
2013). As an attractive alternative, antagonistic microbes 

were introduced as potential biocontrol agents (Guo et al. 
2014). A number of antagonism studies have dealt with 
the pairwise interactions between beneficial and patho-
genic microbes (reviewed by de Boer 2017). Unfortu-
nately, in real communities, the complexity of the soil 
environment may largely decrease their inefficiency of 
pathogen suppression (Mallon et al. 2015; de Boer 2017). 
However, the phenomenon of ‘disease-suppressive soils’ 
shows an ideal model by which plant protection can be 
triggered by soil microbes (reviewed by Wang and Li 
2019a). Hence, a better knowledge of understanding the 
positive functions from indigenous microbial communi-
ties in the soil is essential for a sustainable and effective 
bacterial wilt management strategy.
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Indigenous microbial communities in the soil forms 
complex networks and manipulates plant health (Ber-
endsen et al. 2012). Based on the composition of the resi-
dent microbial community, a biological barrier is formed, 
with microbes interacting with pathogens and defend-
ing against invasion by pathogens near the root surface 
(Raaijmakers et al. 2009; Fu et al. 2017). Therefore, assess-
ing the relationship between the soil community and 
crop morbidity is a critical step toward understanding 
potential impacts of these communities on plant health 
(Rosenzweig et al. 2012; Cha et al. 2016; Xiao et al. 2018). 
It has been revealed that species-rich biomes are more 
resistant than species-poor biomes to pathogen inva-
sions (Wei et al. 2015) and high incidence of soil-borne 
diseases could be due to the deterioration of the soil 
microecological environment (Gao et al. 2020). Addition-
ally, tobacco farmlands with high biodiversity were more 
resistant to pathogen infection (Wang et al. 2019).

Soil microbial community changes dramatically during 
plant growth (Lundberg et al. 2012; Xiong et al. 2015). It 
is important to understand the composition and interac-
tion of microbial communities during plant development 
(Chaparro et al. 2014). Evidence suggests that Arabidop-
sis at different developmental stages can culture specific 
rhizosphere microbiome members (Yuan et  al. 2015). 
Similarly, the rhizosphere microbiome characteristics of 
maize change with growth stage (Li et al. 2014). During 
infection by bacterial wilt, the composition of the micro-
bial communities in the rhizosphere of tomato at dif-
ferent growth stages is significantly different (Wei et  al. 
2018). Research has demonstrated that plant is a unique 
determinate of community structure in the rhizosphere 
at early stages, but that these differences in the microbi-
ome disappear as plant develops (Inceoğlu et al. 2011).

Here we report the results of the bacterial wilt dis-
eased and healthy soil microbial assemblages at different 
growth stages of tobacco. We included the soils collected 
from diseased fields, and the ones from healthy fields. 
Bulk soils were collected in March and rhizosphere soils 
were collected in July and September. We examined the 
soil biochemical properties and microbial composi-
tions. We investigated the influences of soil conditions 
and tobacco growth periods on the bacterial and fungal 
assemblage.

Materials and methods
Site description and sampling
The sampling sites were located in Chongqing, China. 
Detailed geographical information was listed in Addi-
tional file 1: Table S1. Soils were loamy and had a history 
of continuous tobacco cropping over 20 years. The vari-
ety of tobacco was Yunyan 87, which is a hybrid of Yun-
yan 2 (origin: China) and K326 (origin: USA) (Chen et al. 

2020b). Fertilizers and pesticides were applied under the 
same standards established by the Chongqing Tobacco 
Corporation. Bacterial wilt diseases caused by R. solan-
acearum severely affected the production in sites of Wul-
ing area in recent years, whereas there was no soil-borne 
disease in sites of Qinba area. In this study, soils from 
Wuling area were treated as bacterial-wilt diseased soils 
while soils from Qinba area were healthy soils.

Soil samples were collected in March, July and Sep-
tember 2017, which represented the period before 
transplanting tobacco seedling into the soil, the start 
of budding stage and during mature stage of tobacco, 
respectively. As there was no tobacco planting in March, 
bulk soil samples were collected at a depth of 10–20 cm; 
besides, rhizosphere soil samples were collected in July 
and September following the methods mentioned in our 
previous study (Liu et al. 2016). Soil samples were sieved 
(2 mm) and stored at − 80 °C for DNA extraction within 
one week. Additionally, in each March sample, one sub-
sample was previously prepared for analysis of soil physi-
cal and chemical properties.

Soil physical and chemical properties analyses
All soil physical–chemical properties were determined 
according to Bao (2010). Briefly, soil pH was measured 
with a glass electrode in deionized water suspensions 
(soil: water = 1:2.5, w/v). The soil organic matter (SOM) 
was assayed by the potassium dichromate method. Total 
nitrogen (TN) was estimated by the semi-micro Kjeldahl 
method. Available nitrogen (AvN), phosphorus (AvP) 
and potassium (AvK) were determined using the NaOH 
hydrolyzation diffusion method, the molybdenum blue 
colorimetric method and the flame photometer method, 
respectively. Exchangeable calcium (ExCa) and mag-
nesium (ExMg) were measured by the inductively cou-
pled plasma atomic emission spectrometer (ICP-AES) 
method.

Tobacco bacterial wilt disease investigation
Bacterial wilt symptoms of tobacco were apparently 
observed in the diseased fields (Wuling area) from June 
to October. In September of both 2016 and 2017, the end 
stage of bacterial wilt outbreak, around 40 plants in each 
sampling site were evaluated to calculate the disease inci-
dence according to (Qi et  al. 2020). Meanwhile, due to 
the healthy state of tobacco in the healthy fields (Qinba 
area), we only described the disease incidence of diseased 
fields.

DNA extraction and sequencing processing
Soil microbial DNA was extracted from 0.5  g of soil 
using a FastDNA Spin kit (MP Biomedicals, Santa Ana, 
CA, USA) following the manufacturer’s protocol. DNA 
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quality and concentration were evaluated by Nanodrop 
(NanoDrop ND-1000, Thermo Fisher, Wilmington, DE, 
USA). Amplification of the V4-region of the bacterial 16S 
rRNA gene was performed using primers 515F and 806R 
(Bergmann et al. 2011). Fungal ITS1 region was amplified 
using primers ITS1F and ITS2R (Bellemain et  al. 2010). 
The PCR reaction was carried out in triplicate Each sam-
ple was amplified under the following conditions: 94  °C 
for 5 min, followed by 35 cycles including 94 °C for 45 s, 
50 °C for 60 s and 72 °C for 90 s, then 72 °C for 10 min 
for bacteria; and 94  °C for 3  min, followed by 30 cycles 
including 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 30 s, 
then 72 °C for 10 min for fungi. The PCR products were 
mixed and purified by Agarose Gel DNA purification kit 
(TaKaRa, Dalian, China). The amplicons were equally 
combined to produce two separate PCR pools (keeping 
bacterial and fungal amplicons separate) that were sent 
to Majorbio Bio-pharm Technology Co., Ltd. (Shanghai, 
China) for 300-bp paired-end sequencing on an Illumina 
MiSeq platform in two separate runs. The raw reads were 
deposited into the NCBI short-reads archive database 
under accession number SRP270966.

Bioinformatics analysis
The Raw Illumina FASTQ files were demultiplexed, qual-
ity filtered, and analyzed using QIIME v1.7.0 (Quan-
titative Insights Into Microbial Ecology) (Caporaso 
et  al. 2010). Operational taxonomic units (OTUs) were 
grouped with a threshold of 97% pairwise identity by 
QIIME. Any sample that had fewer than 20 useable reads 
was discarded, resulting the unnormalized usable OTU 
table. Based on this table, a rarefied table was made by 
rarefying it to the minimum reads. Next, a frequency 
table was created normalized by transforming the data 
into relative abundance (Total Sum Scaling normaliza-
tion (Lundberg et al. 2012)).

Microbial α-diversity and β-diversity analysis were per-
formed using the free online platform of Majorbio Cloud 
Platform (www.​major​bio.​com). Indies of Sobs, Shannon, 
Ace and Chao1 were calculated as microbial α-diversity. 
The dissimilarity of the microbial communities was 
determined using principal coordinate analysis (PCoA) 
on Bray–Curtis distance. Permutational multivariate 
analyses of variance (PERMANOVA) using Bray–Curtis 

distances with 999 permutations was performed within 
each sample type to explore the percentage of variance 
explained by the factors of soil conditions and tobacco 
growth periods.

The LEfSe (Linear Discriminate Analysis (LDA) Effect 
Size) (Segata et  al. 2011) algorithm was performed on 
the website (http://​hutte​nhower.​sph.​harva​rd.​edu/​galaxy). 
A factorial Kruskal–Wallis sum-rank test (α = 0.05) was 
used to identify taxa with significant differential abun-
dances between categories (using all-against-all com-
parisons) for the sequencing data collected in both July 
and September. The value of LDA was used to estimate 
the effect size of each differentially abundant feature. 
Taxa with logarithmic LDA value over 4.00 were selected 
to perform histogram figures. The number and relative 
abundance of shared taxa in healthy soils were further 
shown in Venn diagram and histogram.

Network analyses were performed using the molecu-
lar ecological network analyses (MENA) pipeline (http://​
ieg4.​rccc.​ou.​edu/​mena) with default settings and rec-
ommended similarity thresholds (Deng et al. 2012). The 
co-occurrence networks were visualized in Gephi (Ver. 
0.9.2) (Bastian et al. 2009). OTUs with relative abundance 
over 0.1% in rhizosphere samples of July and September 
were used for network construction.

Statistical analysis
All statistical analyses were performed in SPSS Statis-
tics 17.0 software program (SPSS Inc., USA). Significant 
differences in physical and chemical properties of soil 
samples and alpha diversity indices of soil microbial com-
munity across sampling region were determined by inde-
pendent-sample t test.

Results
Bulk soil properties and tobacco bacterial wilt disease 
incidence
Differences of physical and chemical properties of bulk 
soil collected in March between diseased and healthy 
soils were shown in Table  1. Interestingly, although 
there were many differences in the chemical properties 
(AvN, AvK etc.), none of them reached the significance 
(p > 0.05).

Table 1  Physical and chemical properties of soil samples (mean ± SE, N = 9)

Fields pH SOM
(g kg−1)

TN
(g kg−1)

AvN
(mg kg−1)

AvP
(mg kg−1)

AvK
(mg kg−1)

ExCa
(g kg−1)

ExMg
(g kg−1)

Healthy 5.52 ± 0.08 22.65 ± 2.36 1.50 ± 0.11 105.84 ± 9.43 40.33 ± 5.17 387.78 ± 52.09 1.65 ± 0.18 0.20 ± 0.03

Diseased 5.72 ± 0.17 22.42 ± 0.89 1.54 ± 0.07 123.11 ± 6.13 39.37 ± 7.60 495.00 ± 62.26 1.60 ± 0.16 0.17 ± 0.03

http://www.majorbio.com
http://huttenhower.sph.harvard.edu/galaxy
http://ieg4.rccc.ou.edu/mena
http://ieg4.rccc.ou.edu/mena
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Disease incidences of tobacco bacterial wilt in diseased 
soils were recorded in July of both 2016 and 2017. There 
were over 50% of tobacco plants showing typical bacte-
rial-wilt symptoms in all the sampling sites (Table 2).

Soil microbial community α‑diversity
For bacteria, a total of 27,609 raw sequence reads was 
obtained through 16S rRNA gene sequencing. There 
was no significant difference in the richness or even-
ness indices of the bacterial community in both March 
and September samples (Additional file 1: Table S2). The 
Shannon index was significantly higher in the healthy 
soils than diseased soils in July (p < 0.05).

For fungi, a total of 30,581 raw sequence reads was 
obtained through ITS sequencing. All the diversity indi-
ces of the fungal community in the diseased soils gradu-
ally decreased throughout the plant growth periods, and 
was lowest by September (Additional file 1: Table S2). In 
contrast, the richness and diversity indices of the healthy 
samples gradually increased, reaching the highest value 
in July.

Soil microbial community β‑diversity
Proteobacteria (36.94 ± 0.64%; mean ± SE) was the 
most dominated bacterial phylum in soil samples, 
followed by Actinobacteria (19.42 ± 0.92%). Relative 
abundance of bacterial classes changed during dif-
ferent tobacco growth stages in both healthy and dis-
eased soils (Fig. 1a). For healthy soils, a clear shift was 
seen from dominance of Alphaproteobacteria (18.89%) 
in the bulk soil samples collected in March to that of 
Betaproteobacteria (13.65%) in the rhizosphere sam-
ples collected in both July and September. For diseased 
soils, the decrease in relative abundance of Alphapro-
teobacteria (17.94%) were also seen in rhizosphere 
samples; however, this compensation of Betaproteo-
bacteria (13.21%) was only in July samples.

Ascomycota (60.35 ± 2.81%) was the most abundant 
fungal phylum in soil samples, including Sordariomycetes 
(35.42 ± 4.47%), Eurotiomycetes (9.85 ± 3.17%), Doth-
ideomycetes (7.09 ± 2.50%), Leotiomycetes (2.66 ± 1.22%) 
and Pezizomycetes (2.16 ± 1.31%) listed as top-10 classes 
(Fig.  1b). Sordariomycetes were higher in healthy soils 
(47.08 ± 0.50%) than in diseased ones (36.12 ± 1.06%). For 
the rhizosphere samples, there was a consistent enrich-
ment of Eurotiomycetes in diseased soils (10.37 ± 3.92%), 
while Pezizomycetes was largely seen in healthy soils 
(6.27 ± 0.58%).

Besides, effects of soil conditions on both bacte-
rial and fungal composition were clearly seen from the 
PCoA analysis (Fig.  2 and Additional file  1: Table  S1). 
PERMANOVA analyses were further confirmed with 

Table 2  Two-year tobacco bacterial wilt disease incidence of 
collection fields (mean ± SE, N = 3)

Fields Disease incidence (%) in 
2016

Disease 
incidence (%) 
in 2017

Healthy – –

Diseased 64.26 ± 3.12 62.29 ± 11.56
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significance of the factor of soil conditions in samples 
with and without bulk soil samples (p < 0.001; Additional 
file  1: Tables S3 and S4). Specifically, PCoA explained 
22% and 12% of total variation in compositions of bac-
terial and fungal bacterial communities in rhizosphere 
soils. Additionally, there were few effects of tobacco 
growth periods on both bacterial and fungal community 
compositions in rhizosphere samples (Additional file  1: 
Table S4).

Rhizosphere microbial taxa discriminated by soil 
conditions
Rhizosphere soil samples collected in July and September 
were further compared with LEfSe to determine the dis-
criminative taxa affected by the factor of soil conditions. 
In July samples, there were 10 taxa found in the heathy 
soils and 9 in the diseased soils (Fig. 3). The genus Ral-
stonia, to which the pathogen R. solanacearum belongs, 
was found in the diseased soils (logarithmic LDA = 4.25, 
p = 0.02). The most significant taxon in the healthy soils 
was the phylum Bacteroidetes (logarithmic LDA = 4.45, 
p < 0.001). In September samples, a total of 35 taxa were 
found: 13 taxa in the healthy soils and 14 taxa in the dis-
eased soils (Fig. 3). The class Alphaproteobacteria (loga-
rithmic LDA = 4.78, p = 0.02) was the most significant 
taxon, followed by the genus Sphingomonas (logarithmic 
LDA = 4.62, p < 0.001) in diseased soils, while the order 
Flavobacteriales (logarithmic LDA = 4.78, p < 0.001) had 
the largest effects in healthy soils. Among those discrimi-
native taxa in healthy soils, there were 6 taxa shown in 
both July and September samples (Fig. 4a), and Flavobac-
terium (in July samples, 1.64 ± 0.11%; in September sam-
ples, 3.29 ± 0.42%) was the only shared genera (Fig. 4b).

With respect to fungi, the LEfSe analysis revealed that 
there were more discriminative taxa in healthy soils than 
diseased soils. In July samples, 13 taxa were identified for 
the healthy soils, and 4 taxa for the diseased soils (Fig. 3). 
The genus Fusarium (logarithmic LDA = 4.72, p = 0.02) 
was found as the most significant taxon in diseased soils, 
while the order Sordariales (logarithmic LDA = 4.86, 
p < 0.001) had the largest effects in healthy soils. In Sep-
tember samples, there were 15 taxa found in the heathy 
soils and 2 in the diseased soils (Fig. 3). Among those dis-
criminative taxa in healthy soils, there were 9 taxa shown 
in both July and September samples (Fig.  4c). The genus 
Chaetomium (in July samples, 10.32 ± 3.22%; in September 
samples, 10.52 ± 6.23%) was the most significant genus in 
healthy soils collected in both July and September (Fig. 4d).

Rhizosphere microbial networks explained by soil 
conditions
For bacterial networks, both the network size and the 
degree of connectivity showed large differences between 
healthy and diseased soils (Fig. 5a). The topologies of the 
healthy networks, namely, the number of nodes and the 
number of links, were higher than that of the diseased 
networks (Additional file 1: Table S5). In total, there were 
231 nodes and 433 links in healthy soils, whereas 156 
nodes and 216 links in diseased soils (Fig. 5a). Moreover, 
using betweenness centrality, Flavobacterium (OTU3316, 
OTU4570) and Pseudomonas (OTU1200, OTU3398, 
OTU9417) were found as key genera in the networks of 
healthy soils.

For fungal networks, the number of nodes and links was 
lower in diseased soils than healthy soils (Fig. 5b and Addi-
tional file 1: Table S5). In July samples, there were 125 links 
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and 70 nodes in healthy soils, and 115 links and 63 nodes in 
diseased soils (Fig.  5b). In September sample, the network 
of healthy soils contained 163 links and 81 nodes, while the 
network of diseased soils contained 128 links and 65 nodes 

(Fig. 5b). High betweenness centrality values were found for 
the genera Fusarium (OTU672, OTU4590) and Mortierella 
(OTU1037, OTU1987) in the networks of healthy soils.
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Discussion
Here, we investigated bacterial and fungal communities 
from the early growth stage to the last two growth peri-
ods and the microbial community in the later stages of 
tobacco growth plays an integral role in plant-pathogen 
interactions. Increasing evidence has shown that the 
rhizosphere microbial community plays an indispen-
sable role in relieving nutrient stress and responding 
to pathogenic micro-invasion by using root exudates 
from plant roots (Okubo et al. 2016). Plants are able to 
recruit specific bacteria and fungi for defense against 
bacterial wilt in the rhizosphere (Lareen et  al. 2016). 
Additionally, the specific selection of microbiome by 
plants in the rhizosphere mainly differs at different 
developmental stages (Yang and Crowley 2000; Bulgar-
elli et al. 2012). Infection by pathogenic bacteria is the 

main cause of plant recruitment of beneficial micro-
organisms in the rhizosphere (Bakker et al. 2013), and 
the antagonistic effect on pathogens is enhanced dur-
ing plant development (Hu et  al. 2020). Specific resi-
dent plant rhizosphere bacterial communities that 
adapt to plants play important roles in both optimize 
growth and protecting against infection by pathogens. 
The recruitment of beneficial microorganisms can also 
change the physiological function of plants to allow 
them to resist aerial pathogens (Kumar et al. 2012).

Although the rhizosphere effects on microbial assem-
blage is proved to be crucial in plant health, it also have 
been reported that the initial variation in soil bacterial 
composition and functioning can determine the out-
break of bacterial wilt disease (Wei et al. 2019). And thus, 
understanding the difference of microbial community 
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in healthy and diseased soils are important regarding to 
plant-pathogen interactions. In this study, we confirmed 
significant shifts in the diversity and abundance of bac-
terial and fungal communities associated with healthy 
and diseased soils. Indeed, there are increasing studies 
focusing on the microbial indicators associated with the 
suppression of tobacco bacterial wilt (Liu et al. 2016; She 
et al. 2017). Here, we used LEfSe and co-occurrence net-
work to investigate the keystone species as well.

Network analysis have been widely used to deter-
mine the association and co-occurrence complexity of 
microorganisms (Su et  al. 2020). Our study shows that 
the rhizosphere soil co-occurance network of healthy 
tobacco plants is more complicated than that of diseased 
tobacco plants. This is consistent with previous research 
results (Yang et  al. 2017). Indeed, microbial communi-
ties with relatively high diversity have better resistance 
to invasion by pathogenic bacteria (Hu et al. 2020). Inter-
actions between microbial species can affect disease 
dynamics by changing the relative and absolute density 
of pathogens in the host-associated microbiome (Mendes 
et al. 2011; Mueller and Sachs 2015). In the healthy and 
diseased rhizosphere soil networks, we observed positive 
interactions between nodes, indicating niche overlap, as 

well as negative interactions, which suggest competition 
or exclusion (Faust and Raes 2012). Competitive inter-
actions and the production of antimicrobial compounds 
play an important role in controlling pathogen density 
and disease dynamics (Wei et  al. 2015). Further experi-
mentation is needed to decipher the impact of competi-
tive microbes on soil microbial ecological networks and 
plant health.

The greater variety of potential key taxa observed in 
the rhizosphere samples might be beneficial to maintain 
plant health. Analyses of LEfSe and network analysis 
showed that Flavobacterium and Pseudomonas may be 
the most active microbial species in healthy soil. Flavo-
bacterium can play a role in biological control by produc-
ing antibacterial effect factors, antibacterial substances, 
extracellular macromolecular degrading enzymes, etc. 
(Bernardet and Nakagawa 2006; Kwak et  al. 2018; Car-
rion et al. 2019). Pseudomonas which can produce anti-
fungal/inhibitory compounds and siderophores that 
can control against bacterial wilt disease (Ramesh and 
Phadke 2012; Chandrasekaran et  al. 2016). High Pseu-
domonas diversity can reduce R. solanacearum density in 
the rhizosphere and decrease the disease incidence due 
to both intensified resource competition and interference 
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with the pathogen (Hu et al. 2016). Notably, the network 
analysis revealed the Mortierella and Fusarium were key 
species in healthy soils. It was also reported from previ-
ous studies that Mortierella was an indicator species in 
disease suppressive soils (Expósito et  al. 2017; Xiong 
et al. 2017). Mortierella can produce antibiotics, and has 
potential antagonist activity against various plant patho-
gens (Tagawa et al. 2010). F. oxysporum confers biocon-
trol against root diseases in various plants (Lamo and 
Takken 2020). Thus, a potentially beneficial microbiome 
may form cooperative associations with other taxa to 
maintain plant health.

In conclusion, our results showed that there are sig-
nificant differences in microbial composition between 
healthy and diseased soils. Both factors of soil condi-
tions and tobacco growth periods can have an influence 
on the bulk and rhizosphere microbial composition. Yet, 
the impact of soil conditions is larger than that of tobacco 
growth periods in the rhizosphere soils. Discrimina-
tive taxa determined by LEfSe and network analysis in 
healthy soils showed beneficial potentials. This implies 
that steering soil microbiome in a beneficial way could 
have great opportunities to maintaining soil-borne dis-
ease. However, these findings need to be further con-
firmed in greenhouse experiments.
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