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MINI-REVIEW

Characterization of symbiotic and nitrogen 
fixing bacteria
Fanuel Kawaka*    

Abstract 

Symbiotic nitrogen fixing bacteria comprise of diverse species associated with the root nodules of leguminous plants. 
Using an appropriate taxonomic method to confirm the identity of superior and elite strains to fix nitrogen in legume 
crops can improve sustainable global food and nutrition security. The current review describes taxonomic methods 
preferred and commonly used to characterize symbiotic bacteria in the rhizosphere. Peer reviewed, published and 
unpublished articles on techniques used for detection, classification and identification of symbiotic bacteria were 
evaluated by exploring their advantages and limitations. The findings showed that phenotypic and cultural tech‑
niques are still affordable and remain the primary basis of species classification despite their challenges. Develop‑
ment of new, robust and informative taxonomic techniques has really improved characterization and identification 
of symbiotic bacteria and discovery of novel and new species that are effective in biological nitrogen fixation (BNF) in 
diverse conditions and environments.
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Introduction
The process of biological nitrogen fixation (BNF) is cata-
lyzed by a two-component nitrogenase complex (Yan 
et al. 2010). The enzyme nitrogenase catalyzes the simul-
taneous reduction of one N2 and 2 H + to ammonia and 
a molecule of hydrogen gas. The enzyme consists of two 
proteins, an iron protein and a molybdenum-iron pro-
tein. The entire process uses 16 mol of ATP and a supply 
of electrons and protons and occurs optimally between 
legumes and bacteria (de Carvalho et al. 2011).

Symbiotic relationship between the roots of legumes 
and certain soil bacteria accounts for the development of 
a specific organ, the symbiotic root-nodule, whose pri-
mary function is nitrogen fixation (Shvaleva et al. 2010). 
Depending on the type of microorganism, the energy 

N2 + 8H
+
+ 8e

−
+ 16ATP → 2NH3 +H2 + 16ADP+ 16Pi

required for the reduction during N fixation is generated 
by photosynthesis, respiration or fermentation.

High rate of O2-respiration is necessary to supply the 
energy demands of the N reduction process however 
O2 also irreversibly inactivates the nitrogenase complex. 
These conflicting demands are met by control of O2 flux 
through a diffusion barrier in the cortex of nodules, which 
limits permeability to O2 (Matthay et al. 2019). Oxygen is 
then delivered to the bacteroids by the plant O2-carrier, 
leghemoglobin found in the nodule (Jones et  al. 2007). 
To maintain the low-ambient O2-concentration within 
the nodule, N2-fixing bacteroids use a high-affinity 
cytochrome cbb3-type oxidase encoded by the fixNOQP 
operon to produce ATP (Pitcher and Watmough 2004).

There are diverse group of symbiotic bacteria found 
within the roots of legume plants. However, defining the 
identity of these closely related bacterial species remain 
a significant and challenging feature among taxono-
mists. Classification and taxonomy of bacteria nodulat-
ing legume plants have significantly changed in the last 
30  years. Initially, classification and identification tech-
niques relied mainly on biochemical, nutritional and 
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serological characteristics together with host ranges. 
Currently, modern molecular tools and techniques have 
considerably improved the identification of legume nod-
ulating bacteria. Molecular genetic markers are more 
sensitive and accurate in distinguishing closely related 
bacterial species and detect higher diversity compared 
to phenotypic methods. Traits used in phenotypic char-
acterization include colony morphology, physiology or 
biochemical reactions of bacteria may vary based on 
the media and laboratory conditions. Nonetheless, all 
the taxonomic methods and techniques have their own 
weaknesses in studying the diversity and phylogeny of 
bacteria (Pontes et al. 2007). Studies have demonstrated 
that accurate identification of bacteria fixing nitrogen in 
legumes is vital for researchers in applied research and 
industry particularly those strains with high nitrogen-
fixation ability (Franco-Duarte et  al. 2019). The current 
review highlights selected common methods of detecting 
and identifying symbiotic bacteria in legume crops for 
improvement of nodulation efficiency and present their 
advantages and limitations.

Phenotypic, cultural and metabolic characteristics
A wide range of morphological, cultural and meta-
bolic characteristics are used to describe and identify 
nodule bacteria. Phenotypic traits often used include 
growth rate, mucous production, colony characteris-
tics, and change in pH of the isolates during growth on 
Yeast Extract Mannitol Agar (YEMA) media (Hungria 
and Kaschuk 2014; Maatallah et  al. 2002). Growth in 
YEMA has been used to classify pure bacterial colonies 
into either slow or fast growers, presence or absence of 
mucous, low or high pH among other properties such 
colony colour, margin and diameter (Kawaka and Muoma 
2020). Microscopy and staining also group isolates into 
either Gram positive or negative in addition to absorp-
tion of Congo red dye (Kawaka et  al., 2014). In a study 
conducted in western Kenya, Kawaka et al. (2016) high-
lighted phenotypic and cultural characteristics that are 
commonly used to describe native symbiotic isolates 
from different soils (Table 1). As indicated in Table 1, the 
pure bacterial isolates are mostly characterized to give 
presumptive identity, establish relationships between iso-
lates and to understand their behavior.

Additional methods such as cell protein banding pat-
tern, multilocus enzyme electrophoresis and tolerance 
to stress, salinity, heavy metals and high temperatures 
may be used to characterize nodule bacteria (Dekak et al. 
2018). These tests were suggested as a way to resolve 
taxonomic difficulties but were later considered to be 
impracticable (Graham and Parker 1964). Despite the 
criticism, phenotypic, cultural and metabolic methods 

are frequently carried out in combination with other 
techniques and provides the primary basis for species 
classification (Li et al. 2020).

Cross inoculation
The concept of cross inoculation depends on the sym-
biotic bacteria ability to selectively form nodules with 
a group of legume hosts (Mendoza-Suárez et  al. 2020). 
Nodulated bacterial strains are described as being spe-
cific when they are selective in their host range and con-
sidered promiscuous when they have a broader range 
of host (Kawaka 2016; Provorov et  al. 2013). However, 
several researches have reported that legumes are nodu-
lated with bacteria that are not within their own groups 
(Pankievicz et  al. 2019). The cross inoculation method 
like other earlier methods of identification does not 
take into consideration the nitrogen fixation abilities of 
the bacteria. Studies have reported that bacterial strains 
form nodules on leguminous hosts but only a few of the 
species can effectively fix nitrogen on those host plants 
(Bourion et  al. 2018). Consequently, the use of cross 
inoculation technique in the classification of nodule bac-
teria has reduced due to associated setbacks.

Traditionally, classification of symbiotic and nitrogen 
fixing bacteria was based on cross-inoculation concept 
that depended largely on the degree of host specificity. It 
is therefore important that such a classification requires 
a standardization of nodulation tests and the control of 
optimal conditions for plant growth. The genes involved 
in the development of the symbiotic organ in plant roots, 
stems or nodule are collectively called nodulation (nod) 
genes. These genes are unique to symbiotic bacteria and 
the phylogenies of nodA, nodB, nodC and nodD resem-
ble each other but vary considerably from the phylogeny 
of 16S rRNA (Aguilar et al. 2022). Studies have indicated 
that the phylogenies of nod genes may correlate with the 
host plant (Aguilar et al. 2022; Mohammed et al. 2018). 
For example, as a nodulation gene marker, nodC gene is 
a common nod gene essential for nodulation in all symbi-
otic bacterial species. Laboratory analyses performed by 
using a variety of techniques showed various degrees of 
correlation between symbiotic genes and chromosomal 
genotypes. Generally, these findings concluded that sym-
biotic genes appear to have been transferred between 
strains (Laranjo et  al. 2014). Symbiotic bacterial genes 
are usually located on plasmids thus increasing their like-
lihood of gene transfer. In contrast, nif genes are found 
in many bacteria besides those fixing nitrogen however 
it remains unclear whether these genes are evolutionary 
part of the symbiotic genome or part of the “normal” bac-
terial genome (Drew et al. 2021). Different authors have 
reported that the phylogeny of nifH closely resembles 
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that of 16S rRNA genes and that these genes probably 
share a common evolutionary history (Drew et al. 2021; 
Watanabe and Horiike 2021). However, there is also evi-
dence of phylogenetic discordance that could be due to 
lateral transfer of nif genes (Lau et al. 2014). Due to con-
venience and agronomic significance in selecting strains 
with the potential use as inoculants for particular leg-
umes, many researchers continue to justify the use of this 
method (Gopalakrishnan et al. 2015).

Serology
The use of comparative serology provides valuable infor-
mation about relationships between prokaryotes and 
has been helpful for rapid identification of various spe-
cies of bacteria (Fair and Tor 2014). The technique differs 
from other standard procedures only in the prepara-
tion of antigens, but it is less time-consuming (Solomon 
et al. 2012). The technique involves the use of antibodies 
raised against surface antigens of the test strain to detect 
the presence (or absence) of that strain in a suspension 
through agglutination, immunodiffusion, immunofluo-
rescence or the enzyme-linked immunosorbent assay 
(ELISA) (Maurin 2020).

Since the antigenic properties of the nodule bacteria 
are stable characteristics, the method is particularly use-
ful in ecological studies as it does not modify the strain 
or alter its nodulation competitiveness (Spriggs and 
Dakora 2009). The immunofluorescence technique has 
also been successfully used to rapidly identify rhizobial 
strains, though this requires expensive equipment and 
large quantities of labelled antibody (Spriggs and Dakora 
2009).

Serological method relies on the reaction of antigen 
and antibody to assess symbiotic bacterial diversity in the 
rhizospheric microbiome. Serological studies focusing on 
indigenous nodule based bacteria demonstrate significant 
strain variations within and among different geographic 
regions (Stępkowski et  al. 2018). The use of serology 
has made it possible to relate the occurrence of particu-
lar serogroups in a particular location to certain soil 
parameters like pH or total nitrogen content (Pongslip 
2012; Tesfahunegn and Gebru 2020). Apart from using 
serology to study the diversity of nodulating bacteria, its 
practical relevance is to identify strains that are vital in 
managing symbiosis. Despite many studies documenting 
serological diversity within nodule bacteria populations, 
relatively few authors have exploited these variations to 
predict symbiotic performance (Kawaka 2016; Kawaka 
et  al. 2018; Vitorino and Bessa 2017). The use of serol-
ogy to classify bacteria has weaknesses such as presence 
of strains that are un-reactive against all antisera tested 

(Remigi et al. 2016), non-reactive strains and cross-reac-
tion of strains with antiserum derived from reference 
strains (Kawaka et al. 2018; Zhang et al. 2014).

Antibiotic resistance
Microbial studies in natural habitats require recovery of 
either the resident population or added cell on selective 
media that excludes other contaminants in the environ-
ment. The absence of suitable media that allows for selec-
tive recovery of symbiotic bacteria in soil has hampered 
studies on the behavior of these bacteria (Ondieki et al. 
2017). Symbiotic bacteria like other bacteria consist of 
few naturally occurring mutants that are tolerant to high 
concentrations of selected antibiotics (Naamala et  al. 
2016). Growing of selected antibiotic resistant mutants 
in media that contains elevated levels of anti-microbial 
agents has been used to identify symbiotic bacterial 
strains and other bacteria (Spriggs and Dakora 2009). 
Culturing these bacteria on YEMA plates containing 
antibiotic markers target symbiotic strains with resist-
ant strains retaining their biological nitrogen fixation 
abilities (Kawaka et al. 2018; Mora et al. 2014). The anti-
biotic resistant marked strains are identified by the fact 
that they can grow on media containing the antibiotics 
while non-marked ones are unable to grow (Knight et al. 
2019). The technique is preferred when strain identifica-
tion by serology is not possible as a result of cross reac-
tion of strains or due to lack of antisera. The technique is 
popular due to the ease of obtaining mutants resistant to 
streptomycin (Baldani et al. 2014; Fair and Tor 2014).

Usually the mutant strain will grow on the antibiotic 
media and other bacteria will be suppressed (Enne et al. 
2006). It is crucial to ensure that antibiotic-resistant 
mutants that are selected for inoculation experiments 
have not lost their ability to form nodules or their abil-
ity to fix nitrogen with the host plant. Symbiotic capacity 
of the mutant is always compared with its parent culture 
from time to time (Voisin et al. 2015). The mutant should 
also be stable throughout the steps of infection, nodula-
tion, nitrogen-fixation and subsequent re-isolation.

16S rRNA gene sequence
Earlier taxonomic studies described rRNA gene as an 
ideal marker for bacterial phylogenetic analysis (Gornung 
2013; Idris et al. 2020). Sequencing the 16S rRNA gene is 
considered as a model genetic marker for classifying and 
identifying bacterial species including symbionts (Caputo 
et al. 2019). The gene sequence analysis is efficient in clas-
sifying poorly described (Clarridge 2004), rarely isolated 
(Fredricks and Relman, 1996), phenotypically aberrant 
strains and identification of novel noncultured bacteria 
(Clarridge 2004; Stöhr et al. 2005).
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The rRNAs form important parts of ribosomes that that 
are needed in mRNA translation (Acinas et al. 2004). This 
genetic marker has features making it the preferred tech-
nique for phylogenetic analysis. Firstly, 16S rRNA gene is 
found in all organisms thus allows comparison of genetic 
relationship among organisms through phylogenetic 
tree analysis. Secondly, the gene is highly conserved and 
does not change over time demonstrating that random 
sequence variations in organisms can provide a precise 
measure of evolution. The level of conservation in 16S 
rRNA gene results from its vital role as a key component 
in the cell compared to other genes like those required 
for enzyme synthesis. Mutations in enzyme genes are fre-
quently tolerated because they interfere with structures 
not essential as the rRNA gene. Lastly, 16S rRNA gene 
sequence is approximately 1500  bp in length including 
the conserved and variable regions that provide sufficient 
information required for taxonomy. Usually, conserved 
regions are important in designing primers and allow 
alignment of sequences of organisms that are remotely 
related (Chakravorty et al. 2007). Following these advan-
tages, 16S rRNA gene sequence is widely preferred as a 
technique for phylogenetic classification of symbiotic 
bacteria (Janda and Abbott 2007). Generally, the similar-
ity of 16S rRNA gene sequences is an important thresh-
old for delineation of many species. Consequently, a large 
number of 16S rRNA gene sequences are available in the 
nucleotide databases. Based on the sequences availability 
in the database for comparison, researchers consider 16S 
rRNA gene as the preferred marker for identification and 
constructing phylogenies (Fuks et al. 2018). Construction 
of a phylogenetic tree using 16S rRNA has revealed close 
taxonomic affiliation of symbiotic bacteria species from 
diverse soils as shown in Fig. 1 (Kawaka et al. 2018). The 
generation of phylogenetic trees uses morphological, bio-
chemical, behavioral or molecular features of species or 
other group. As indicated in the Fig. 1, trees depict lines 
of evolutionary descent of different species, organisms 
or genes from a common ancestor. Phylogenies are use-
ful for structuring classifications and provide insight into 
events that occurred during evolution. In addition, trees 
show descent from a common ancestor and therefore it is 
crucial to understand phylogenies in order to fully appre-
ciate evidence supporting the theory of evolution.

However sequences in certain databases are not regu-
larly updated and accurate leading to lack of consensus 
on the reliability of 16S rRNA gene sequence data (Clar-
ridge 2004; Woo et al. 2008). Notwithstanding, the accu-
racy of 16S rRNA gene analysis is not widely used and 
only restricted to large and reference laboratories due to 
technical expertise and high cost (Clarridge 2004; Woo 
et al. 2008).

DNA‑DNA hybridization
DNA–DNA hybridization (DDH) is a common tech-
nique for analyzing genomic similarity to determine bac-
terial taxonomy (Auch et  al. 2010; Degefu et  al. 2013). 
The technique is used as tool in determining specific 
variations among closely related microbial species. The 
method has enjoyed an enormous relevance since 1960s 
as a regular criterion for describing new bacterial spe-
cies including symbionts (Krieg, 1988). The concept is 
based on the ability of hybridized DNA of related organ-
isms to withstand thermal variation and entire similarity 
is calculated from pairwise whole genome comparisons 
(Markegard et al. 2016; Rollinson and Stothard 2017).

The DNA molecule is denatured then returns to its 
original conformation by reducing the temperature, 
which is referred to as a reassociation temperature and 
involves three steps (Wang et  al. 2014). Firstly, shear-
ing of the genomic DNAs of assayed unknown organ-
ism and reference strain into small fragments of about 
600–800 bp (Fitzgerald et al. 2015). Secondly, the mixed 
DNA fragments of the two strains are heated to dissoci-
ate the double strands (Auch et al. 2010) and finally cool-
ing the temperature down until the fragments re-anneal 
(Wang et  al. 2014). The level of matching base pairings 
of the two strands depends on the melting temperature 
of double strands (Auch et  al. 2010; Wang et  al. 2014). 
The genomic relatedness of two strains is estimated 
from the melting temperature (Gasser et al. 2008). Usu-
ally, DDH value ≤ 70% is considered as an indication that 
the unknown bacteria are different from the reference 
strain (Tindall et  al. 2010; Wayne et  al., 1987). Despite 
estimating similarity between genomes, DDH is a tedi-
ous, inaccurate, error prone and gives conflicting results 
(Rosselló-Mora 2006). The method provides non-cumu-
lative relative DNA similarity values and therefore it can-
not be used to set up incrementally comparative database 
(Rosselló-Mora 2006). DDH technique requires a large 
amount of quality DNA, technical expertise, specialized 
laboratories and applied only on strains that have gene 
sequences (Tindall et al. 2010). Due to the current devel-
opments of genome sequencing, DDH method is likely to 
be replaced by alternative techniques based on genome 
sequence comparisons (Du et al. 2013; Oren 2004). Until 
costs associated with sequencing are reduced, DDH still 
remains the method of choice to genomically delineate 
species.

In the recent past, the use of multiple protein-
encoding housekeeping genes has gained a wide usage 
as a tool for investigating taxonomic relationships 
(Uelze et  al. 2020). Housekeeping genes was proposed 
as a portable sequence-based method for identifying 
clonal relationships among bacteria. The method uses 
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information from multiple genes to give an overall 
and reliable relationship among organisms. Sequenc-
ing of at least five housekeeping genes that are univer-
sally distributed as single copies and located at distinct 
chromosomal loci offers a great promise for bacterial 
taxonomy. Compared to other taxonomic methods 
such as 16S rRNA genes, the higher degree of sequence 
divergence of housekeeping genes is superior for iden-
tification purposes. The more conserved 16S rRNA 

gene sequences do not always allow species discrimi-
nation (Ferraz Helene et  al. 2022; Haque et  al. 2017). 
In addition, a small number of carefully selected gene 
sequences could be equal or even surpass the preci-
sion of DNA–DNA hybridization for quantification of 
genome relatedness (Haque et  al. 2017). Housekeep-
ing genes yields sequence clusters at a wide range of 
taxonomic levels ranging from intraspecific through 
the species level to clusters at higher levels (Leray et al. 

Fig. 1  Phylogenetic tree of the 16S rRNA gene isolates (in bold) and closely affiliated species



Page 7 of 11Kawaka ﻿AMB Express           (2022) 12:99 	

2019). Together with DNA-DNA hybridization, analysis 
of housekeeping genes has the potential be considered 
as a standard practice in bacterial taxonomy.

Whole genome sequencing
Whole Genome Sequencing (WGS) is a technique that 
analyses the entire chromosomal DNA of an organism 
and the DNA of mitochondria, chloroplast or plasmids at 
a single time. WGS is the most informative and compre-
hensive method of characterizing genomes.

WGS allows the inference of the phylogenetic relation-
ship between a set of bacterial strains. The technique is 
very appealing and enables the identification of addi-
tional classes of mutation that are refractory to detection 
by exome sequencing. WGS offers the opportunity to 
interrogate noncoding regions of DNA and identify func-
tionally important sequence variants that influence gene 
expression.

Currently, researchers have sequenced a large number 
of bacterial genome and the data is easily accessed from 
public nucleotide databases such as the Genebank (Land 
et al. 2015). The technology is increasingly being adopted 
in classifying nitrogen-fixing and related bacteria (Uelze 
et al. 2020). So far complete genome sequences of Rhizo-
bium, Sinorhizobium, Mesorhizobium, Bradyrhizobium 
and Azorhizobium among others have been sequenced 
and available for public use (Molina-Sánchez et al. 2015; 
Sugawara et  al. 2013). The technique provides complete 
genetic variation and the sequence data can be used for 
identification and taxonomy of organisms.

Due to the rapid drop in the price of technology, it is 
projected that many more symbiotic bacteria complete 
genomes will be sequenced. Sequencing whole genome is 
still expensive as it requires specialized laboratories and 
skilled expertise to analyze the sequence data. Research-
ers still use nucleotide sequences of different genes and 
genetic fingerprints for phylogenetic and diversity studies 
despite the markers having limited molecular informa-
tion. As the cost of sequencing continues to decrease and 
experience is gained in data analysis and interpretation, it 
is anticipated that WGS will be the method of choice for 
future research.

Metagenomics
The technique involves genomic analysis of microor-
ganisms by direct extraction and cloning of DNA from 
an assemblage of microorganisms. Development of 
metagenomics stems from the inevitable evidence that 
uncultured microorganisms represent the vast majority 
of organisms in most environments. The evidence arise 
from analyses of 16S rRNA gene sequences amplified 
directly from the environment, this approach avoided 

the bias caused by culturing and eventually led to the 
identification of new microbial lineages (Bowers et  al. 
2021). The microbial world has been revolutionized 
by analysis of 16S rRNA genes however such studies 
have yielded only a phylogenetic description with little 
insight into the genetics, physiology, and biochemistry 
of the members. The use of metagenomics has provided 
a second tier of technical innovation that facilitates 
study of the physiology and ecology of environmental 
microorganisms (Lear et  al. 2021). Metagenomics has 
led to the discovery of novel genes and gene products 
including the first bacteriorhodopsin of bacterial ori-
gin, novel molecules with antimicrobial activity and 
new proteins, RecA, DNA polymerase, and antibiotic 
resistance determinants (Kwon et  al. 2013). The reas-
sembly of multiple genomes provides an insight into 
energy and nutrient cycling, genome structure, gene 
function, population genetics and microheterogeneity 
and lateral gene transfer among members of an uncul-
tured community (Handelsman 2004). Utilization of 
metagenomic sequence information has the poten-
tial to facilitate the design of better culturing strate-
gies to link genomic analysis with pure culture studies. 
Metagenomics has redefined the concept of a genome 
and accelerated the rate of discovery of new genes. The 
technique has been widely used in biotechnology to 
screen functional enzymes, antibiotics and many rea-
gents in libraries from different environments (Popovic 
et  al. 2017). However, quite a number of barriers have 
impeded the discovery of new genes that could be used 
to solve medical, agricultural, or industrial problems.

Metagenomics is also considered the primary tech-
nique for studying phylogeny and taxonomy of com-
plex microbiomes (Berg et  al. 2020). Microbiome 
research has evolved rapidly over the past few years 
however their phylogeny and taxonomy are more com-
plex and less studied (Meisner et  al. 2022). The use of 
metagenomics has significantly enhanced understand-
ing on metabolic, physiological and ecological roles of 
environmental microorganisms (Strazzulli et  al. 2017). 
However, analysis of the microbiome is affected by 
experimental conditions such as sequencing errors and 
genomic repeats (Berg et  al. 2020). Furthermore, the 
introduction of new sequencing technologies and pro-
tocols has led to numerous new methodologies that 
negatively affect results of the analyses. There are sev-
eral specific marker/target genes that have been iden-
tified for studying microbiome (Meisner et  al. 2022). 
These marker genes are functionally conserved across 
phylogenetic distances thus serving as a molecular 
clock for studying evolutionary changes. The highly 
conserved 16S rRNA gene has a crucial cellular role and 
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survival forming the basis of obtaining precise genomic 
classification of known and unknown microbial taxa.

Comparative proteomics
Proteomics is a high-throughput technology that has 
been adopted to investigate a wide range of biological 
aspects including phylogenetic and molecular divergence 
studies.

In the recent past, considerable attempts have been 
made to characterize the diversity of proteins expressed 
in different tissues under a variety of conditions (Faize 
et  al. 2020; Kawaka et  al. 2018). The prospect of identi-
fying bacteria using mass spectrometry (MS) and its role 
in detection and characterization of microorganisms 
has elaborately been described (Rahi and Vaishampayan 
2020). Initially, mass spectrometry was introduced to 
rapidly identify intact microorganisms (Nomura et  al. 
2020). Following the development of proteomics and 
bioinformatics, protein databases have successfully sup-
ported MS identification of microorganisms. Using 50 
subunit ribosomal proteins, many bacterial species have 
been identified (Tatsukami and Ueda 2016). Similarly, 
matrix-assisted laser desorption/ ionization time-of-
flight MS (MALDI TOF MS) correctly identified 408 and 
360 g-negative bacilli strains at the genus and species lev-
els at a successful rate of 93% and 82% respectively (Jia 
et al. 2015).

Recently, MS technique for rapid identification and 
classification of microorganisms has attracted great inter-
ests from microbiologists for use in symbiotic bacteria 
research (Vitorino and Bessa 2017). For example, MALDI 
TOF MS showed a fast and reliable platform for identifi-
cation and ecological studies of species from the family 
Rhizobiaceae (Ashfaq et al. 2022). MALDI TOF MS has 
also been applied for in situ identification of plant inva-
sive nodule bacteria in different legumes (Ziegler et  al. 
2012). Nonetheless, the MALDI TOF MS technique 
requires a well-established reference spectral database 
for accurate bacterial identification. Sample preparation 
and period of growth of bacteria such as symbiotic bac-
teria affects the quality and reproducibility of the protein 
mass spectra (Mandal et al. 2007).

Polyphasic taxonomy
Polyphasic taxonomic approach puts emphasis the use of 
classical methods in combination with modern genetic/
molecular techniques for bacterial delineation (Chan 
et  al. 2012). The method takes into account all available 
phenotypic and genotypic data and integrates them into a 
consensus type of classification. The classical techniques 
such as morphological and biochemical descriptions are 
usually used as well as chemotaxonomic features like cell 

wall, polar lipid, fatty acid, and respiratory menoquinones 
(Yadav et  al. 2020). These crucial diagnostic biomarkers 
help in the general assignment of isolates to their cor-
rect taxa. Chemotaxonomic characteristics are useful in 
reflecting phylogenies at the genus/family level. Modern 
molecular techniques focus on variable and conserved 
regions that are assessed by comparing multiple sequence 
alignments and viewed as phylogenetic trees (Chowdhury 
and Garai 2017). However these taxonomic classifica-
tions do not necessarily define the expected physiological 
traits since closely related organisms from different loca-
tions can have very distinct physiologies and metabolic 
processes. Therefore, it is essential to conduct laboratory 
investigations on the isolates from different regions and 
compare to reference strains of closely related organisms. 
Despite modern molecular techniques revolutionizing 
bacterial taxonomy, they still require reinforcement by 
chemotaxonomic and biochemical considerations. Dif-
ferent studies have shown that a combination of descrip-
tive classical techniques together with modern molecular 
sequencing methods has resulted in precise identification 
of new taxa (Berg et al. 2020; Hyde et al. 2019). In future, 
to improve the effectiveness of polyphasic taxonomic 
approach, there needs to be a collaborative effort by spe-
cialized laboratories to guarantee a more stable consensus 
on bacterial classification. Otherwise, the technique will 
have to cope with challenges such as enormous amounts 
of data, large numbers of strains and data fusion which 
will require efficient centralized data storage.

Conclusions
There has been an increase in the number of tools for 
determining the identity and diversity of microbial sam-
ples in the last decades. This review has demonstrated that 
methods used in taxonomy have their own discriminating 
power varying from the individual or species levels to the 
genus, family and higher levels. The techniques further 
depend on the field of application, particular conditions, 
the number and the type of strains. The degree of discrim-
ination of a technique may vary and depends on the target 
bacterial taxon. It is therefore important to adopt the use 
of a technique with minimal contradictions that empha-
sizes fast and reliable features for identification.

However, phenotypic and cultural techniques remain 
the preferred presumptive methods of classifying sym-
biotic bacteria despite their limitations and challenges. 
Development of new molecular tools has really improved 
the identification of new legume bacteria and discovery 
of elite species that are effective in biological nitrogen 
fixation. Using an appropriate and informative technique, 
it is possible to correctly identify novel bacterial spe-
cies with superior nitrogen fixing abilities. These strains 
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would be vital in developing inoculation programs and 
boost legume production especially in developing coun-
tries facing food and nutrition insecurities under chang-
ing climatic conditions.
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